
DISTRIBUTED COMPUTING FRAMEWORK FOR SYNTHETIC
APERTURE RADAR APPLICATION

Eric M. Gurrola, Paul A. Rosen
Radar Science and Engineering Section

NASA Jet Propulsion Laboratory
California Institute o€ Technology

Pasadena, CA, USA
Eiic.itl.GurraIai~iol.n;as~.oov, P a u ~ . A . R o s e l ~ ~ ~ i d.nasa.gov

Absh-uct- We are developing an extensible software
framework, in response to Air Force and NASA needs for
distributed computing facilities for a variety of radar
applications. The objective ofthis work is to develop a Python-
based software framework, that is the framework elements of
the middleware that allows developers to control processing
flow on a grid in a distributed computing environment.
Framework architectures to date allow developers to connect
processing functions together as interchangeable objects,
thereby allowing a data flow graph to be devised for a specific
problem to be solved. The Pyre framework, developed a t the
California Institute of Technology (Caltech), and now being
used as the basis for next-generation radar processing at JPL,
is a Python-based software framework. We have extended the
Pyre framework to include new facilities to deploy processing
components as services, including components that monitor
and assess the state of the distributed network for eventual
real-time control of grid resources.

I. INTRODUCTION

The Air Force Research Laboratory (AFRL) has entered
into a collaboration with NASMJPL in the area of emerging
computational technologies, including the area of grid
computing. Building on successes in other projects related to
on-board radar processing technology between AFRL and
the Jet Propulsion Laboratory (JPL), this collaboration seeks
to extend the radar processing methodology ffom specific
Computational elements implemented on a special purpose
processor such as a Field Programmable Gate Array (FPGA)
or other embedded system to a distributed computing
environment. This computing environment could extend far
beyond traditional computing centers to small, embedded
computing systems that deliver new capabilities. NASA
space exploration missions, such as the Mission to Mars,
provide scenarios of application. Within this domain,
emerging areas of computing will be challenged to deliver
highly embedded SQlUtiOnS meeting size, weight, and power
constraints yet able to integrate with flexibility and
robustness into a computational grid extending beyond
global proportions.

MichaeI Aivazis
Center for Advanced Computing Research

California Institute of Technology
Pasadena, CA, USA
Aivazis@caltesh.edu

Our objective is to develop a Python-based software
framework, that is, the framework elements acting as
middleware to allow developers to control processing flow
on a grid in a distributed computing environment.
Framework architectures to date allow developers to connect
processing functions together as interchangeabk objects,
thereby allowing a data flow graph tQ be devised for a
specific problem to be solved. The Pyre framework,
developed at the California Institute of Technology
(Caltech), and now being used as the basis for next-
generation radar processing at JPL, is a Python-based
software framework. The goals of Pyre framework
development are extremely well-aligned with the envisioned
distributed computing applications to synthetic aperture
radar.

11. SCENARIOS FOR APPLICATION TO bITERFEROMETRlC
SYNTHETIC APERTURE RADAR

Characterization of the way the surface of the earth
deforms in response to internal and external forces relies on a
variety of geodetic measurement techniques. Most of these
methods provide point-to-point measurements of the
displacement field. In contrast, InSAR provides high-
resolution map views of the deformation [I-31. The spatial
resolution provided by InSAR has the potential to
revolutionize studies of seismic and volcanic hazards, the
relationship between fluid flow in’ the crust and surface
deformation, the dynamics of long term strain accumulation
at tectonic plate boundaries, and the relationship behveen
glacier dynamics and climate change.

InSAR has proven itself as a reliable technology for
topographic and surface deformation mapping. Aircraft with
single-pass InSAR systems routinely generate fine-resolution
topographic maps. In these systems, two antennas are
separated spatially to form a baseline in a planar surface
normal to the flight direction. From &e coherent radar
images of an area one can construct an interferogram as the
product of one image and the complex conjugate of the

-.+__/- ”--- __. -----
This work supported by the Air Force Research Laboratory

other. The phase of each point in the interferogram encodes
the difference in the length of the paths traversed by the
radar signal in propagating from the radar antenna to the
surface and back again. The phase is related to the
topography of the surface.

Repeat-pass hSAR relies on repeated imaging of a given
geographic location by air or space-borne radar platforms. If
the surface is unchanged between imaging times, then the
repeat-pass interferometer behaves as a topographic mapper
much as the single-pass system. However, if the deformation
is such that the surface itself remains intact, such as with
tectonic motion, then the phase encodes the topography and
displacements of the surface. Sensitivity of the phase to
displacements is much higher than to the topography itself. If
the surface is disrupted between observations, such as by
lava flows, building collapse, or severe shaking, the phase
becomes random as the surface becomes decorrelated
between imaging times. An interferogram used for
measuring surface displacements is a map view of surface
motion, with a typical pixel size of 20 meters and a detection
threshold of a few millimeters.

Geophysics applications to date have concentrated on
map views of surface motion over limited areas (100 km x
100 km typically). Since an interferogram encodes both
topography and deformation, data reduction methods must
reliably remove the topographic effects. This can be done
either using an existing topographic data set, or by
generating heights from an interferogram known to include
no deformation. Given the appropriate radar data sets and/or

digital elevation model (DEW, and knowledge of the sensor
and orbit, generating deformation maps over very wide areas
is in principle straightforward.

While InSAR is a method with potential for tremendous
growth, exploitation of this tool currently involves individual
and isolated data archives, inhomogeneous sets of processing
codes, and products that do not merge well with other related
data. This is not unexpected with a developing technique,
but without further synthesis, organization, and development
of standards, the ful l potential of InSAR to solve both
scientifically and socially important problems will not be
realized. The field will develop several data sources over the
next decade as individual countries and agencies launch their
own satellites or embark on other acquisition programs.
These data along with intermediate derived products (such as
interferograms) will need to be archived and cataloged. It is
likely that the producers of the data will set up their own
archive facilities, each of which will house many terabytes of
data.

We seek to establish a system that will atlow researchers
to utilize data from any participating archive sitc in a
transparent manner. A typical processing sequence initially
consists of a set of basic steps that are repeated each time
new parameter choices are made. Some of these steps are
simple and well suited to the interactive environment of a
workstation, but others are computationally intensive and
lend themselves to parallel processing on large machines. At

Figure 1. Example of a typical traditional method of processing InSAR data whereby pairs of raw data and a DEM are
fed to a software engine for serial processing, typically done on a single computer. There is clearly opportunity in this
flow to distribute the processing of individual raw data sets and there are also opportunities within individual
processing components, whish are typicalIy computationaIly intensive, to parallelize and hence distribute the
processing.

the moment., the processing consists of manually moving the
data to the appropriate environment, applying the necessary
computation, and then retrieving the data. While this can be
somewhat automated through the use o f processing scripts,
each project tends to involve a custom script. This is a
serious impediment to the ase ofthe data by non-experts, and
also for the "discovery phase" of data mining, where one
may need to scan and/or combine many interferograms
looking for subtle changes that are not obvious on any single
scene. Figure 1 illustrates a typical traditional processing
approach, where sets of data are processed serially to
deformation products in particular geographic areas, then
merged at a later time through a GIS system. Figure 2
illustrates the desired science-driven approach, in which the
details of how the computation is done and which computing
resources are used for any specific part of the computation is
subsumed into the computational framework

Beyond basic processing tools, there are sophisticated
algorithms that are deveIoped for specific scientific
applications. However, the lack of an underlying framework
for the data manipulation causes each of them to be "one of"
pieces of code that are not shared with other applications.
The distributed fiamework will allow the user to specify, in a
simple graphical way the processing sequence to be applied
to the data, choosing the steps from a suite of available code
and plugging them together. The underlying framework will
take care of moving the data between various computers and
displaying the results on the home workstation.

111. THE COMPUTATIONAL FRAMEWORK
The computational framework is based on Pyre [4],

which was developed at Caltech. Pyre is based on Python
and provides a modern object oriented layer on top of

legacy software. The Pyre layer allows us to develop
abstract components referred to as facilities that speci@ a
user interface and methods. Specific implementations of the
abstract facilities can be bound to an application based on
data provided by the user. The legacy software, often
written as monolithic special purpose code in Fortran or C,
is bound to a Python component through standard methods
as illustrated in Figure 3. Pyre provides access to many
convenience classes to any component written in Pyre,
which brings a whole host of services to the legacy software
components. The legacy radar processing software named
ROIPAC developed at JPL has been re-factored into the
Pyre framework.

In the work described here we have re-factored the
interface definition for pyre components in such a way that
appropriately implemented components can be used as
network services. The current imptemenntation requires the
developer to write a sma11 wrapper class that derives from an
existing, user-supplied component and the framework
Service class. The purpose of the wrapper class is to forward
network requests to the implementation methods of the user
supplied components.

A number of classes were developed for this purpose to
enable reliable and safe deployment of components as
distributed services. The required classes were the
following: (1) authenticating users of services; (2)
communication protocols; (3) encoding and transport of
binary data across the network; (4) monitoring the status of
remote processes; (5) evaluating the status of the network
itself for efficient deployment of resources; (6) and providing
for persistence and termination of services. Figure 4

! 8 ,&
8

t

t

Figure 2. A science driven data flow

* The integration framewurk is
set of co-operating abstrzict.
sem ices

from TCPService or UDPService. SupGrt for staging

Figure 3. The Python-based Pyre Framework for integrating legacy scientific software into an object oriented
framework of interacting services.

and indicates the user’s perspective of the resulting distributed
computing framework.

We have constructed a component named /PA that acts as
an authentication service for distributed computations. IP.4
listens to the network at a user specified port for incoming
authentication connections that provide a user name,
password pair that is verified against an internally managed
database of known users, The user database can be stored as
a flat ASCII file with the passwords encrypted using a
variety of encryption algorithms, or it can be stored as a table
in a relational database back end such as PostgresSQL.
Attempts to connect that do not obey the connection protocol
or contain invalid user name-password pairs are ignored.
Upon receipt of a valid user nme-password pair, ipa issues
session keys that the client can present to other services as
authentication credentials. A variety of algorithms for
session key expiration are provided, such as keys that can be
used only once, keys that have a finite lifetime and keys that
never expire.

The prototype of a persistent service is a component
called IDD. IDD issues tokens in a fixed numeric sequence
with the capability of encoding additional information in the
token, such as the date it was issued. Component idd persists
the currently issued token so that upon restart it can continue
issuing tickets fiom the same sequence.

Support for Remote Procedure Calls is implemented by
the various subcomponents of the dass Service. The IP
protocol used is determined by whether a component inherits

The components necessary to encode and transport
binary data are under design. Prototypes have been
constructed to transfer data between client and server using
all UNIX IPC mechanism and IP protocols, and in fact have
formed the basis for the operation of the services mentioned
in the previous two sections. However, high performance
data transport, the kind that would be suitable for large
datasets, is still the subject of active research. Access to the
data streams from lower level languages is currently
provided by populating arrays of native data types and
making them available through an API. Support for more
advanced data types will be considered on demand as

Figure 4. Pyre Framework for Distributed Computing

applications that require such support are constructed. applications provided in freely available package by the
same name that has been in use for more than fifteen years.

In order to collect process status fiom a distributed
calculation, we have extended the standard Pyre package
journal with the ability to transmit status messages to a
monitoring service that is responsible for the collection and
collation of messages from all the services that are employed
to c q out a task. The resulting service, journal, listens to
the network on a specified port for incoming status
messages. The messages can be transported using either
UDP or TCP and can encode sufficient information so that
the end user can identify the host, service instance and
context of all messages that arrive. Support for user specified
meta data is provided, making it possible for application
specific context to be encoded in the message without the
need for any extension on the part of the journal service. This
is extremely important since it ameliorates the difficulties
associated with debugging a distributed application.

Testing of the network status between the machine that
manages a distributed computation and the various hosts
where services might be deployed is carried out by
component ntp. Like all distributed components, ntp consists
of a service that is deployed on a remote host and a client
process that is deployed on the controlIing machine. The
latter sends to the former a carefulIy designed sequence of
packets that allow the client to compute an estimate of the
instantaneous network bandwidth between the two hosts.
This component is implemented by wrapping the

This method of testing the status of the network has
several disadvantages. First, the testing method provided by
ntp does not allow an accurate estimate of the latency of the
network; it appears that a simple extension of the packet
distribution along with better timing information exchange
would solve this problem, but such changes are outside the
scope of this prototyping effort. Secondly, ntp is unable to
construct a predictive model of network behavior and as
such, its estimates of network weather are extremely
unreliable. A better solution would provide estimates on how
likely a certain amount of data is to be transferred between
the two hosts in a given amount of time based on both
instantaneous and historical performance of the network.

In order to distribute components among the various
hosts, we have constructed the gsl package. Package gsl
consists of a set of components that facilitate remote
launching of components by using only user-space tools
based on the ssh family. This allows users to build and
deploy distributed applications without requiring special
privileges or the involvement of system administrators on the
remote machines. Users take advantage whichever machines
they have access to, by installing their software on these
machines, ensuring that the correct environment is prepared
for remote jobs and launching the relevant services.

Data flow between processes, whether they are on
different machines or not, turned out to not require the
construction of any new components. The machinery
constructed to facilitate remote procedure calls is sufficiently
powerhl to allow the exchange of arbitrary data streams.
However, the fimework provides support for the
construction of specialized transport components that can
take advantage of whatever features of the data stream are
known in order to optimize performance. Such transport
algorithms tend to require advance knowledge about what is
being transferred and therefore are best written as part of the
optimization step of an application that is already debugged
and running correctly.

The finalization of distributed computations is handled
by extending the interface of a distributed service.
Finalization is now performed when the application instructs
the service proxy to clean up after itself, which causes the
proxy to send the finalize command to the remote service.
The implementation of the finalization behavior is service
dependent, so the framework gives services the opporhmity
to customize the finalization steps. In particular, services are
classified as restartable or nQt, depending on whether each
use ofthe service in a given computation pollutes its internal
state to such a degree that the service cannot be used by any
other client and must be restarted each time. Both behaviors
are available as mix-in classes that allow the developer of a
service to specify and then further customize the finalization
steps.

These tasks form the minimal set of requirements for a
robust distributed system. Even though they are to be
considered prototypes and not ready for deployment by
general users, they are fimctional enough t,o allow users to
explore strategies for implementing distributed applications.

ACKNOWLEDGMENT
Eric Gurrolst and Paul Rosen performed this work at the

Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the Air Force Research
Lab. Michael Aivazis performed 'this work at Para-Sim Inc
in Altadena California.

REFERENCES
Rosen, P. A,, S. A. Hensley, I . R. Joughin, F. K. Li, S . N. Madsen, E.
Rodriguez, and R. M. Goldstein, Synthetic aperture radar
interferometry, hoceedings of the IEEE, vol. 8X1 no 3. pp. 333-382,
March 2000.
Burgmann, R. P. A. Rosen, and E. J. Fielding, Synthetic aperture
radar interferometry to measure Earth's surface topography and Its
Deformation, Annual Reviews EaTth P lane tq Science, vol. 28, pp.

Massonet, D., K. L. Feigl, Radar interferometry and its application to
changes in the Earth's surface, Reviews of Geophysics, vol. 36, no. 4,
pp. 441-500,November 1998.
http://www .cacr.caltech.edu/projects/pyre/

169-209,2000.

