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Absh-uct- We are developing an extensible software 
framework, in response to Air Force and NASA needs for 
distributed computing facilities for a variety of radar 
applications. The objective ofthis work is to develop a Python- 
based software framework, that is the framework elements of 
the middleware that allows developers to control processing 
flow on a grid in a distributed computing environment. 
Framework architectures to date allow developers to connect 
processing functions together as interchangeable objects, 
thereby allowing a data flow graph to be devised for a specific 
problem to be solved. The Pyre framework, developed a t  the 
California Institute of Technology (Caltech), and now being 
used as the basis for next-generation radar processing at  JPL, 
is a Python-based software framework. We have extended the 
Pyre framework to include new facilities to deploy processing 
components as services, including components that monitor 
and assess the state of the distributed network for eventual 
real-time control of grid resources. 

I. INTRODUCTION 

The Air Force Research Laboratory (AFRL) has entered 
into a collaboration with NASMJPL in the area of emerging 
computational technologies, including the area of grid 
computing. Building on successes in other projects related to 
on-board radar processing technology between AFRL and 
the Jet Propulsion Laboratory (JPL), this collaboration seeks 
to extend the radar processing methodology ffom specific 
Computational elements implemented on a special purpose 
processor such as a Field Programmable Gate Array (FPGA) 
or other embedded system to a distributed computing 
environment. This computing environment could extend far 
beyond traditional computing centers to small, embedded 
computing systems that deliver new capabilities. NASA 
space exploration missions, such as the Mission to Mars, 
provide scenarios of application. Within this domain, 
emerging areas of computing will be challenged to deliver 
highly embedded SQlUtiOnS meeting size, weight, and power 
constraints yet able to integrate with flexibility and 
robustness into a computational grid extending beyond 
global proportions. 
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Our objective is to develop a Python-based software 
framework, that is, the framework elements acting as 
middleware to allow developers to control processing flow 
on a grid in a distributed computing environment. 
Framework architectures to date allow developers to connect 
processing functions together as interchangeabk objects, 
thereby allowing a data flow graph tQ be devised for a 
specific problem to be solved. The Pyre framework, 
developed at the California Institute of Technology 
(Caltech), and now being used as the basis for next- 
generation radar processing at JPL, is a Python-based 
software framework. The goals of Pyre framework 
development are extremely well-aligned with the envisioned 
distributed computing applications to synthetic aperture 
radar. 

11. SCENARIOS FOR APPLICATION TO bITERFEROMETRlC 
SYNTHETIC APERTURE RADAR 

Characterization of the way the surface of the earth 
deforms in response to internal and external forces relies on a 
variety of geodetic measurement techniques. Most of these 
methods provide point-to-point measurements of the 
displacement field. In contrast, InSAR provides high- 
resolution map views of the deformation [I-31. The spatial 
resolution provided by InSAR has the potential to 
revolutionize studies of seismic and volcanic hazards, the 
relationship between fluid flow in’ the crust and surface 
deformation, the dynamics of long term strain accumulation 
at tectonic plate boundaries, and the relationship behveen 
glacier dynamics and climate change. 

InSAR has proven itself as a reliable technology for 
topographic and surface deformation mapping. Aircraft with 
single-pass InSAR systems routinely generate fine-resolution 
topographic maps. In these systems, two antennas are 
separated spatially to form a baseline in a planar surface 
normal to the flight direction. From &e coherent radar 
images of an area one can construct an interferogram as the 
product of one image and the complex conjugate of the 
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other. The phase of each point in the interferogram encodes 
the difference in the length of the paths traversed by the 
radar signal in propagating from the radar antenna to the 
surface and back again. The phase is related to the 
topography of the surface. 

Repeat-pass hSAR relies on repeated imaging of a given 
geographic location by air or space-borne radar platforms. If 
the surface is unchanged between imaging times, then the 
repeat-pass interferometer behaves as a topographic mapper 
much as the single-pass system. However, if the deformation 
is such that the surface itself remains intact, such as with 
tectonic motion, then the phase encodes the topography and 
displacements of the surface. Sensitivity of the phase to 
displacements is much higher than to the topography itself. If 
the surface is disrupted between observations, such as by 
lava flows, building collapse, or severe shaking, the phase 
becomes random as the surface becomes decorrelated 
between imaging times. An interferogram used for 
measuring surface displacements is a map view of surface 
motion, with a typical pixel size of 20 meters and a detection 
threshold of a few millimeters. 

Geophysics applications to date have concentrated on 
map views of surface motion over limited areas (100 km x 
100 km typically). Since an interferogram encodes both 
topography and deformation, data reduction methods must 
reliably remove the topographic effects. This can be done 
either using an existing topographic data set, or by 
generating heights from an interferogram known to include 
no deformation. Given the appropriate radar data sets and/or 

digital elevation model (DEW, and knowledge of the sensor 
and orbit, generating deformation maps over very wide areas 
is in principle straightforward. 

While InSAR is a method with potential for tremendous 
growth, exploitation of this tool currently involves individual 
and isolated data archives, inhomogeneous sets of processing 
codes, and products that do not merge well with other related 
data. This is not unexpected with a developing technique, 
but without further synthesis, organization, and development 
of standards, the ful l  potential of InSAR to solve both 
scientifically and socially important problems will not be 
realized. The field will develop several data sources over the 
next decade as individual countries and agencies launch their 
own satellites or embark on other acquisition programs. 
These data along with intermediate derived products (such as 
interferograms) will need to be archived and cataloged. It is 
likely that the producers of the data will set up their own 
archive facilities, each of which will house many terabytes of 
data. 

We seek to establish a system that will atlow researchers 
to utilize data from any participating archive sitc in a 
transparent manner. A typical processing sequence initially 
consists of a set of basic steps that are repeated each time 
new parameter choices are made. Some of these steps are 
simple and well suited to the interactive environment of a 
workstation, but others are computationally intensive and 
lend themselves to parallel processing on large machines. At 

Figure 1. Example of a typical traditional method of processing InSAR data whereby pairs of raw data and a DEM are 
fed to a software engine for serial processing, typically done on a single computer. There is clearly opportunity in this 
flow to distribute the processing of individual raw data sets and there are also opportunities within individual 
processing components, whish are typicalIy computationaIly intensive, to parallelize and hence distribute the 
processing. 



the moment., the processing consists of manually moving the 
data to the appropriate environment, applying the necessary 
computation, and then retrieving the data. While this can be 
somewhat automated through the use o f  processing scripts, 
each project tends to involve a custom script. This is a 
serious impediment to the ase ofthe data by non-experts, and 
also for the "discovery phase" of data mining, where one 
may need to scan and/or combine many interferograms 
looking for subtle changes that are not obvious on any single 
scene. Figure 1 illustrates a typical traditional processing 
approach, where sets of data are processed serially to 
deformation products in particular geographic areas, then 
merged at a later time through a GIS system. Figure 2 
illustrates the desired science-driven approach, in which the 
details of how the computation is done and which computing 
resources are used for any specific part of the computation is 
subsumed into the computational framework 

Beyond basic processing tools, there are sophisticated 
algorithms that are deveIoped for specific scientific 
applications. However, the lack of an underlying framework 
for the data manipulation causes each of them to be "one of" 
pieces of code that are not shared with other applications. 
The distributed fiamework will allow the user to specify, in a 
simple graphical way the processing sequence to be applied 
to the data, choosing the steps from a suite of available code 
and plugging them together. The underlying framework will 
take care of moving the data between various computers and 
displaying the results on the home workstation. 

111. THE COMPUTATIONAL FRAMEWORK 
The computational framework is based on Pyre [4], 

which was developed at Caltech. Pyre is based on Python 
and provides a modern object oriented layer on top of 

legacy software. The Pyre layer allows us to develop 
abstract components referred to as facilities that speci@ a 
user interface and methods. Specific implementations of the 
abstract facilities can be bound to an application based on 
data provided by the user. The legacy software, often 
written as monolithic special purpose code in Fortran or C, 
is bound to a Python component through standard methods 
as illustrated in Figure 3. Pyre provides access to many 
convenience classes to any component written in Pyre, 
which brings a whole host of services to the legacy software 
components. The legacy radar processing software named 
ROIPAC developed at JPL has been re-factored into the 
Pyre framework. 

In the work described here we have re-factored the 
interface definition for pyre components in such a way that 
appropriately implemented components can be used as 
network services. The current imptemenntation requires the 
developer to write a sma11 wrapper class that derives from an 
existing, user-supplied component and the framework 
Service class. The purpose of the wrapper class is to forward 
network requests to the implementation methods of the user 
supplied components. 

A number of classes were developed for this purpose to 
enable reliable and safe deployment of components as 
distributed services. The required classes were the 
following: (1) authenticating users of services; (2) 
communication protocols; ( 3 )  encoding and transport of 
binary data across the network; (4) monitoring the status of 
remote processes; ( 5 )  evaluating the status of the network 
itself for efficient deployment of resources; (6) and providing 
for persistence and termination of services. Figure 4 
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Figure 2. A science driven data flow 
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Figure 3. The Python-based Pyre Framework for integrating legacy scientific software into an object oriented 
framework of interacting services. 

and indicates the user’s perspective of the resulting distributed 
computing framework. 

We have constructed a component named /PA that acts as 
an authentication service for distributed computations. IP.4 
listens to the network at a user specified port for incoming 
authentication connections that provide a user name, 
password pair that is verified against an internally managed 
database of known users, The user database can be stored as 
a flat ASCII file with the passwords encrypted using a 
variety of encryption algorithms, or it can be stored as a table 
in a relational database back end such as PostgresSQL. 
Attempts to connect that do not obey the connection protocol 
or contain invalid user name-password pairs are ignored. 
Upon receipt of a valid user nme-password pair, ipa issues 
session keys that the client can present to other services as 
authentication credentials. A variety of algorithms for 
session key expiration are provided, such as keys that can be 
used only once, keys that have a finite lifetime and keys that 
never expire. 

The prototype of a persistent service is a component 
called IDD. IDD issues tokens in a fixed numeric sequence 
with the capability of encoding additional information in the 
token, such as the date it was issued. Component idd persists 
the currently issued token so that upon restart it can continue 
issuing tickets fiom the same sequence. 

Support for Remote Procedure Calls is implemented by 
the various subcomponents of the dass Service. The IP 
protocol used is determined by whether a component inherits 

The components necessary to encode and transport 
binary data are under design. Prototypes have been 
constructed to transfer data between client and server using 
all UNIX IPC mechanism and IP protocols, and in fact have 
formed the basis for the operation of the services mentioned 
in the previous two sections. However, high performance 
data transport, the kind that would be suitable for large 
datasets, is still the subject of active research. Access to the 
data streams from lower level languages is currently 
provided by populating arrays of native data types and 
making them available through an API. Support for more 
advanced data types will be considered on demand as 



Figure 4. Pyre Framework for Distributed Computing 

applications that require such support are constructed. applications provided in freely available package by the 
same name that has been in use for more than fifteen years. 

In order to collect process status fiom a distributed 
calculation, we have extended the standard Pyre package 
journal with the ability to transmit status messages to a 
monitoring service that is responsible for the collection and 
collation of messages from all the services that are employed 
to c q  out a task. The resulting service, journal, listens to 
the network on a specified port for incoming status 
messages. The messages can be transported using either 
UDP or TCP and can encode sufficient information so that 
the end user can identify the host, service instance and 
context of all messages that arrive. Support for user specified 
meta data is provided, making it possible for application 
specific context to be encoded in the message without the 
need for any extension on the part of the journal service. This 
is extremely important since it ameliorates the difficulties 
associated with debugging a distributed application. 

Testing of the network status between the machine that 
manages a distributed computation and the various hosts 
where services might be deployed is carried out by 
component ntp. Like all distributed components, ntp consists 
of a service that is deployed on a remote host and a client 
process that is deployed on the controlIing machine. The 
latter sends to the former a carefulIy designed sequence of 
packets that allow the client to compute an estimate of the 
instantaneous network bandwidth between the two hosts. 
This component is implemented by wrapping the 

This method of testing the status of the network has 
several disadvantages. First, the testing method provided by 
ntp does not allow an accurate estimate of the latency of the 
network; it appears that a simple extension of the packet 
distribution along with better timing information exchange 
would solve this problem, but such changes are outside the 
scope of this prototyping effort. Secondly, ntp is unable to 
construct a predictive model of network behavior and as 
such, its estimates of network weather are extremely 
unreliable. A better solution would provide estimates on how 
likely a certain amount of data is to be transferred between 
the two hosts in a given amount of time based on both 
instantaneous and historical performance of the network. 

In order to distribute components among the various 
hosts, we have constructed the gsl package. Package gsl 
consists of a set of components that facilitate remote 
launching of components by using only user-space tools 
based on the ssh family. This allows users to build and 
deploy distributed applications without requiring special 
privileges or the involvement of system administrators on the 
remote machines. Users take advantage whichever machines 
they have access to, by installing their software on these 
machines, ensuring that the correct environment is prepared 
for remote jobs and launching the relevant services. 



Data flow between processes, whether they are on 
different machines or not, turned out to not require the 
construction of any new components. The machinery 
constructed to facilitate remote procedure calls is sufficiently 
powerhl to allow the exchange of arbitrary data streams. 
However, the fimework provides support for the 
construction of specialized transport components that can 
take advantage of whatever features of the data stream are 
known in order to optimize performance. Such transport 
algorithms tend to require advance knowledge about what is 
being transferred and therefore are best written as part of the 
optimization step of an application that is already debugged 
and running correctly. 

The finalization of distributed computations is handled 
by extending the interface of a distributed service. 
Finalization is now performed when the application instructs 
the service proxy to clean up after itself, which causes the 
proxy to send the finalize command to the remote service. 
The implementation of the finalization behavior is service 
dependent, so the framework gives services the opporhmity 
to customize the finalization steps. In particular, services are 
classified as restartable or nQt, depending on whether each 
use ofthe service in a given computation pollutes its internal 
state to such a degree that the service cannot be used by any 
other client and must be restarted each time. Both behaviors 
are available as mix-in classes that allow the developer of a 
service to specify and then further customize the finalization 
steps. 

These tasks form the minimal set of requirements for a 
robust distributed system. Even though they are to be 
considered prototypes and not ready for deployment by 
general users, they are fimctional enough t,o allow users to 
explore strategies for implementing distributed applications. 
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