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Abstract 

This paper discusses the process and results of 
technology assessment in support of the United States 
Vision for Space Exploration of the Moon, Mars and 
Beyond. The paper begins by reviewing the 
Presidential Vision: a major endeavor in building 
systems of systems. It discusses why we wish ta 
return to the Moon, and the exploration architecture 
for getting there safely, sustaining a presence, and 
safely returning. Next, a methodology for optimal 
technology investment is proposed with discussion of 
inputs including a capability hierarchy, mission 
importance weightings, available resource profiles as 
a functioln of time, likelihoods of development 
success, and an objective function. A temporal 
optimization formulation is offered, and the 
investment recommendations presented along with 
sensitivity analyses. Key questions addressed are 
sensitivity of budget allocations to cost uncertainties, 
reduction in available budget levels, and shifting 
funding within constraints imposed by mission 
timeline. 

I. Presidential Vision for Space Exploration: 
A Major Endeavor in Building Systems of 

Systems (1) 

On January 14, 2004, some 31 years after a 
human being last set foot on the lunar surface, 
President Bush announced a new Vision for Space 
Exploration which will pick up where Apollo left off 
on the Molon and propel us onward to Mars. It forms 
the foundation ofNASA’s plans for its next era. 

The Vision calls for the existing fleet of space 
shuttles to be used to complete the International 
Space Station (ISS), and then retired in 2010. The 
shuttle’s replacement, the Crew Exploration Vehicle 
(CEV), will be deployed by 2012 (target 201 11, and 
will carry astronauts to the Moon by 2020 (target 
2018) in preparation for human missions to Mars. 
The CEV architecture is also compatible with 
missions to the ISS and ultimately to Mars. 

11. Why Do We Return to the Moon 
The Moon will help us learn how to live and 

work for extended periods of time on a cold, dusty 

world without a breathable atmosphere, without 
Earth’s atmospheric pressure or protective magnetic 
field, with much less than Earth’s gravity, and with 
regolith up to ten meters deep. As a test-bed analog 
for Mars, the Moon will enable us to develop and 
demonstrate technologies for coping with such a 
world. 

It will allow us to determine the integrated 
effects on human biology of radiation and low 
gravity, and to develop countermeasures. It will 
provide an opportunity for meeting such challenges 
as planetary protection (avoiding contamination of 
other worlds with organisms transported from Earth) 
and mitigating electrostatically charged dust. All of 
these issues are key to missions to Mars. 

Studying lunar regolith, rocks, and craters will 
not only reveal the character and history of the Moon, 
but aIso provide insights into the history of Earth, the 
meteoric bombardment of the inner solar system and 
its effect on the development of life on Earth, and the 
evolution of the sun (Apollo data hint at nuclear 
processes not predicted by current models). And on a 
practical level, geological research forms the basis 
for assessing lunar resources. 

Astronomers will be able to take advantage of 
the very stable viewing along the Moon’s spin axis to 
conduct ultra deep surveys of the very early universe 
with long-baseline interferometers, and also with 
liquid-mirror telescopes for which lunar gravity is 
uniquely enabling. 

ILL System of Systems Architecture for 
Travel to the Moon and Return to Earth 

The architecture is one in which the crew is 
launched separately from the lunar lander, Earth- 
departure stage, and other cargo. This enables the 
crew to ride a smaller, safer rocket. 

First, the Lunar Heavy Cargo Launch Vehicle 
(CaLV) lifts the Earth-Departure Stage (EDS), with 
the Lunar Surface-Access Module (LSAM) attached, 
to low-Earth orbit (LEO), where they are capable of 
remaining for up to 30 days until the crew is 
launched. The CaLV launch system is largely 
derived from the shuttle. It consists of a large 
external tank with five shuttle main engines on its 
back. 



The Crew Launch Vehicle (CLV) carries the 
Crew Exploration Vehicle (CEV) to LEO. The CEV 
rides atop the CLV; if foam or other debris breaks off 
of the CLV during launch, it will not be able to hit 
the CEV. Additionally, a Launch Escape System 
(LES) enables the crew to escape at any time during 
the launch. The CLV is also derived from the shuttle, 
and employs a resuable shuttle solid rocket booster 
(SRB) first stage and a new second stage powered by 
a single shuttle main engine. 

The CEV circularizes its orbit and then docks 
with the LSAM, which is attached to the EDS and 
whatever other cargo is going to the Moon. The EDS 
engine bums, propels the CEVLSAM to their lunar- 
transfer trajectory, and separates from the lunar- 
bound spacecraft. 

When the CEV/LSAM pair reaches the Moon, 
the CEV service module’s engine injects the 
spacecraft into low-lunar orbit (LLO), using 
Lowliquid methane fuel (as will the lunar ascent 
stage) in preparation for future missions expected to 
use in situ methane on Mars. All four crew members 
transfer to the LSAM, which descends to the lunar 
surface, using LOXAiquid hydrogen propellant. The 
CEV continues orbiting autonomously. The LSAM 
is able to access any location on the lunar surface, 
and the system is designed to enable anytime return 
to Earth. 

When the crew’s surface activities have been 
completed, they board the ascent stage, which returns 
them to LLO using the same LOX/methane he1 as 
the CEV’s service module. The remainder of the 
LSAM remains on the lunar surface, to be used in 
constructing a lunar habitat. 

Once in orbit, the ascent stage docks with the 
CEV, and the crew transfers back into the command 
module. The ascent stage separates from the CEV 
and is disposed of via impact on the lunar surface. 
The service module engine injects h e  CEV into its 
Earthbound trajectory. Before entering Earth’s 
atmosphere, the CEV’s command module separates 
from its service module. The service module 
splashes down in the Pacific Ocean, while the 
command module touches down on dry land, 
probably in western California, by means of a 
combination of parachutes, airbags, retro-rockets, 
stroking seats, etc. 
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IV. Determining A Technology Investment 
Portfolio to Enable the Vision (2) 

Structures 
Protection 
Pronulsion 

IV- 1. Introduction 
START (3,4) is a tool to optimize research and 

development primarily for NASA missions. It was 
developed within the Strategic Systems Technology 

Program Office, a division of the Office ofthe Chief 
Technologist at NASA’s Jet Propulsion Laboratory. 
START is capable of quantifying and comparing the 
risks, costs, and potential r e m s  of technologies that 
are candidates for funding. START can be 
enormously helpful both in selecting technologies for 
development -- within the constraints of budget, 
schedule, and other resources -- and in monitoring 
their progress. In this report, START is used to 
analyze the capability needs using data from NASA’s 
Exploration Systems Architecture Study (ESAS). It’s 
important to note, however, that analysis isn’t a one- 
time event, and changes occur. Assessment is a 
continuous process throughout a project lifecycle 
and, commensurately, data such as cost estimates 
should be frequently updated to provide the best 
information for management decisions. 

IV-2. Input Database 
Our sponsor at NASA Headquarters provided a 
database of inputs to our analysis+ This section 
describes the organization of the data. 

Capability Hierarchy 

The capabilities are organized into twelve capability 
areas shown in Table 1. 

Thermal Control 

9 1 Mechanisms 
10 I In-Situ Resource Utilization (ISRU) 
11 1 Analysis & Integration 
12 I Operations 

Table 1: Top-Level Capability Areas 

Mission Set 

There were four missions of interest having 
different relative importance, as shown by their given 
weight in Table 2: 

Mission 
CEV to ISS 
CEV to moon 

0.1 

Table 2: Mission Importance Weights 



Although the Mars mission was included 
structurally in the analysis, a complete dataset was 
not available; thus incorporation of R&D for human- 
robotic Mars missions was deferred to a subsequent 
study. 

Figure off Merit 
Overall 
criticality 
Safety and 
mission success 
Extensibility / 
flexibility 

Programmatic 
risk reduction 

Affordability 

Technical 
performance 

Figures of Merit 

Definition 
Impact of the need on the 
architecture 
Probability of loss of crew, 
Probability of loss of mission 
Lunar, Mars, other destinations, 
Commercial activities, 
National security 
Technology development risk, 
Cost risk, Schedule risk, Political 
risk 
Technology development cost, 
Facilities cost, Ops cost, Cost of 
failure 
How the technical performance 
affects the architecture 

3 

Table 3: Figures of Merit Defied 

80% 

Note that quantitative performance metrics 
(goals) were not available at the time of the study; 
they will be included as part of the next revision in 
FY ’06. 

Cost Profiles 
Each capability has a cost profile outlining its 

cost requirements per year to bring it to technology 
readiness leveI (TRL) 6. The database also contains 
absolute start and end years for each cost profile. 
The base case does not allow time shifting of the 
funding profiles, thus fming the cost profiles in time. 
We subsequently performed a temporal analysis 
which relaxed this assumption such that profiles are 
only constrained to fit within the missions’ capability 
development timelines. 

Probability of Successhlly Developing a 
Capability 

Success in fulfilling a capability for a mission is 
defined for this study as the capability development 
reaching a TRL of 6 within the specified budget and 
schedule. TRL 6 requires a systemhubsystem model 
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or prototype demonstration in a relevant 
environment. 

A measure of the probability of this success can 
be taken from the parameter for quantifying the 
difficulty of maturing a particular capability, the 
“Research and Development Degree of Difficulty” 
(R&D3)(5). The sponsor provided the R&D3 levels 
for each capability for each mission, and each level 
was then linked to a corresponding probability of 
success for fulfilling the capability for each mission 
using table 4. 

50% 

1 R&D3 1 Probabilitv o f  Success 1 

5 20% 

TabIe 4: Probability of success of “Normal” R&D 
effort for different R&D3 levels. 

Center Splits 

Individual center contributions associated with each 
capability have been provided as a percentages of the 
cost. Validation of the center splits is needed since 
the capabilities were not broken down into individual 
tasks, where center splits can be easily identified. 

Assumptions and Caveats re: Data 

We assume a capability needs to be hlly funded 
each year to achieve its mission impact, and the 
funding profile is contiguous (no abrupt starts and 
stops). The analysis assumes independent 
capabilities, i.e., the decision on whether or not to 
fund a capability is independent of the decision of 
whether or not any of the other capabilities are 
selected. The analysis can be updated if dependency 
data becomes available. Large cost capabilities 
without correspondingly large FOMs should be 
reviewed. An example of such a capability is 8e, 
Crew Healthcare Systems. 

Multiple centers can contribute to a capability. 

IV-3. Optimization Formulation 

The optimization algorithm builds portfolios 
with the highest possible total benefit, subject to 
budget and schedule constraints. Using the 
definitions in the following table: 



Nmissions 'Number of missions under consideration 

Wi Weight of the ith mission 

Nagabilitia Number of capabilities under consideration 

Pij Probability of fulfilling the jth capability for 
the i* mission 

Xi j Binary control variables indicating if 
capability j for mission i is selected for ' 

fi 
Table 5: Benefit Function Parameter Definitions 

The benefit function (BF) is a weighted sum of 
expected Figures of Merit (summed per capability, 
per weighted missions). 

If Xij equals 1, the capability is selected for 
funding; if it equals 0 then it is not funded. The 
portfolio is optimized by finding the set of X,j that 
maximizes: 

Subject to annual cost constraints: 

Where t = 2006, 2006+T (T number of years in 
portfolio). 

The optimization problem is solved using the 
Branch and Bound algorithm (6). 

IV-4. Sensitivity Analysis 

Sensitivity analysis involves adjusting model 
input values to determine the impact on the 
recommended portfolio. Our sensitivity analysis 
estimates robustness of the funding to each 
capability. A number of cases using various budget 
scenarios were examined. A representative example 
is reported! here. 

Case 1 : The baseline - the full capability set 
at the full budget 
Case 2: $100M/year budget reduction 

1) 

2)  

Assumed Beta Density Function and Cost 
Uncertainties 

Ideally, cost distributions should be based on 
engineering estimates, with the costs and 
probabilities for various contingencies provided by 
engineers and cost analysts. If details of this type are 
unavailable, the beta distribution is commonly used 
to model cost uncertainty. 

This study fits a beta density function 
distribution based on three costs: minimum, mean, 
and maximum values. It is a rounded version of a 
triangular distribution. The random value from the 
beta distribution is the percent cost variation from 
nominal. The beta function parameters are M = 1.5, fl 
= 3, minimum = 98 %, maximum = 300 %. 

Monte Carlo Simulation 

The Monte Carlo simulation repeatedly generates 
random values used to model the cost uncertainties. 
An iteration of the Monte Carlo simulation starts by 
multiplying a random number drawn from the Beta 
distribution by each cost for each year for each 
capability. The optimization algorithm is then run on 
this modified data. The optimum portfolio is found. 
Each capability's status as in or out of the portfolio is 
recorded. 

Once 1000 iterations have been completed, the 
percentage of time each capability was chosen in the 
optimization is tabulated and is used as the measure 
of robustness for the given capability. The accuracy 
of the Monte Carlo estimate is based on the number 
of iterations; with 1000 iterations the 95% confidence 
interval for true percentage is +I- 1.5%. 

Case 1: The Baseline 

The initial optimization with no cost 
uncertainties resulted in each capability being funded 
as shown in Figure 1. However, for the first 6 years, 
the cost of the capabilities met the budget line exactly 
as shown in figure 1 below. In this case, the slightest 
cost overrun by a capability during any of these years 
would cause a cost overrun in the portfolio. A 
sensitivity analysis was run on the baseline to see 
which capabilities would be recommended for a 
budget cut ifan overrun occurred. 



Figure 1: The total capability costs for the first 6 
years all meet the budget exactly, threatening budget 
overruns if a capability cost is underestimated. The 
results are illustrative rather than normative; they 
are based on preliminary data still undergoing 
revision, and thefinal resuEts are subject fo change. 

The results are shown in table 6. Nine of the 52 
capabilities from the baseline set enter the portfolio 
less than 90% of the time, and four enter less than 
50% of the time. Capability 8e never enters the 
portfolio. 

Table 5: Capabilities selected for full funding less 
than 90% in the Baseline Monte Carlo case. The 
results are illustrative rather than normative; they 
are based on preliminary data still undergoing 
revision, and thejnal results are subject to change. 

Data such as th is indicates a preliminary order 
for consideration of deletion of capabilities due to 
insufficient availability of funding, provided that the 
given figures of merit, costs, and probabilities etc. 
were accurate, and there were no other extenuating 
circumstances. Review of this table is an excellent 
starting point for contingency mitigation; it is not 
meant as a final recommendation. 

Case 2 - Baseline Minus $1  OOM/year 

Case 2 is a repeat of case 1, but with the budget 
cap decreased by $100 Mlyear. 

The results are shown in Table 7. In Case 2 
there are 12 capabilities below the 90th percentile. 

Compared to case 1 ,  there are some changes in 
the rankings of the capabilities. The bottom 5 
capabilities keep their rankings, but lOf, which was 
in the 90th percentile before reducing the budget by 
$100 Myear, is now the 6‘h least robust capability. 
For non-robust capabilities competing to enter a 
portfolio, the change in rankings at different budget 
levels is a result of the changing “competihon 
border” (7)]. For a given budget level, the first 
capabilities entering the portfolio are the highest 
scoring capabilities that can enter without putting the 
portfolio over budget. As the budget cap i s  
approached, a weaker scoring capability can become 
more competitive by simply fitting into the portfolio 
better when other remaining, better scoring 
capabilities are too large cost-wise to fit. This 
dynamic drives the changing of the order of 
robustness rankings seen here and in the results that 
follow as well. From this it can be concluded that 
while a capability might be one of the most robust at 
one budget level, it can be eliminated from the 
optimum portfolio by lesser capabilities as a large 
budget change shifts the location of the competition 
border. 

While the competition border can lead to drastic 
drops in robustness for some capabilities, it can also 
boost the robustness for other capabilities. The 
budget reduction of $100 Mlyear raked 8b’s 
robustness fiom 23.8% to 30.5%, and bumped 1Oc 
into the 90t”l percentile. The number of capabilities 
who see their robustness increase by budget cuts, 
however, is only a few. 

Table 7: Capabilities selected for full funding less 
than 90% for case with reduced budget of 
$100M/year. The results are illustrative rather than 
normative; they are based on preliminary data still 
undwgoing revision, and the final results are subject 
to change. 



IV-5. Temporal Optimization 

As seen earlier, Figure 1 had the feature that 
fhnding every capability resulted in total costs 
meeting the budget cap in the early years, but Iying 
far below the budget cap in later years. Due to this, 
another loptimization was run in parallel to the 
sensitivity analysis to try to take advantage of this 
untapped budget in the later years of development. 
This temporaI optimization calculates not only which 
capabilities to fund, but also when to fund them, by 
moving the cost distribution profiles for each 
capability against the development timeline. The 
capability portfolio is optimized while taking 
advantage of budget surpluses by allowing 
capabilities costs to move to different years. 

Our temporal optimization searches all possible 
combinations of capability funding schedules across 
all capabilities and all missions. In essence, the 
optimization explores the total development costs of 
each configuration by “sliding” each capability cost 
distribution along a timeline. 

The temporal model, shown in Figure 2, takes 
into account a capability development time range 
where all development for a given mission would 
occur. Before this development time, one year of 
delay is allocated for the time between the funding 
decision and the start of development. 

Percentage 
Sew d 

2 5 R 

5 8 YO 

Figure 2: Mission Capability Development Timeline 

Mission Capability CapabXlty Name 
Lunai Ourpcs: X e Crew hcalthcilre systems (medical toals apd 

Lunar M i  e 8 f Habitability Systems (waste manaeement, 

tecliniques, coummcasarcs, exgosure limits) 
~~~~~ 

Temporal optimization formulation 

The optimization in equations 1 and 2 is 
generalized by adding multiple cost profiles for each 
capability. Additional constraints force the restriction 
of only funding a capability at most once. If Xij 
equals one then capability j for mission i is selected 
for funding; if it equals zero then it is not funded. 
The portfolio is optimized by finding the set of X i j  

and Yij,q that maximizes equation 3 subject to 
constraints 4 and 5. 

5 8 %  

5 8 % 

If Y ~ J , ~  equals one then the qth cost profile is used 
for funding capability j for mission i. The cost 
constraints are given by equations 4 and 5 :  

environmentally compliant TPS 
Lunar Outpost 5 b  Surfacehearejection 

Lunar Oubast 6 d Inteerated Svstem Health Manaeement - ISHM 

for all years t 

67% 

67% 

67% 

for all i and j 

Lunar Outpost 7 c  Advanced air and waterrecovery system 

Lunar Outpost S f Habitability systems (waste management, 
hygiene) 

Lunar Sortie 8 b EVA Suit (surface including porlahle life 
support system) 

Lunar Sortie 8 e Crew healthcare systems (medical tools and 
kcbniqUES, cauntemeasms, exposwe limits) 

insulation (vehicle) 
Lunar Outpost 1 a Lightweight shuctures ~ pressure vessel, 

Temporal Optimization Results 

We ran several temporal optimizations based on 
different scenarios from the ESAS dataset. The given 
annual budget curve was adjusted by adding and 
subtracting funds (from -$250M to $200M) 
uniformly across all years. We computed the 
percentage of times each capability was selected by 
the optimization. The following shows which 
capabilities were selected the least amount of times. 

- .  I hygiene). 

5 8 %  I LunarOuhmt 1 2 a  1 Deiachable. human-ratebablative 

5 8 %  

5 8 % 
- 

Figure 3: Temporal optimization results showing 
least robust capability needs. The results are 
illustrative rather than normative; they aye based on 
preliminary data still undergoing revision, and the 
j n a l  results are subject to change. 

The results show that capability Se, “Crew 
healthcare systems (medica1 tools and techniques, 
countermeasures, exposure limits)” is least robust and 
highly likely to be flagged for funding cuts, even 
with increased funding to the annual budget. 

The classification of capability Xe as one large 
conglomerate makes it highly volatile in the temporal 
optimization. There is also no room for temporal 



displacement as the cost distribution covers the full 
14-year timeline. By breaking up capability 8e up 
into smaller parts on the order of magnitude of those 
capabilities it is competing with, a more optimal 
scenario may be achieved. 

Finding a Better Annual Budget Curve 

The given annual budget had a maximum annual 
cost of $527.9M at year 2012. We asked the question 
of whether or not there is any other annual budget 
distribution profile that would fund all capabilities 
while requiring a smaller maximum annual budget, 
By applying the constraint that the budget in any year 
may not exceed $527.9M but letting the shape float 
as a function of year, we were able to determine 
another investment profile with lower annual 
investments and a seemingly flatter shape. 

The results indicate that the smallest annual 
budget that can be used and still €und all capabilities 
is $459.5M per year. This explores all time 
displacements at multiple annual budget caps to find 
the best annual budget curve. 

< c -  . ( 1 + 1  

Figure 4: Optimal Annual Curve by Areas for Flat 
Budget of $459.6M. Given annual budget curve has 
peak of $528M. The results are illustrative rather 
than normative; they are based on preliminary datu 
still undergoing revision, and the final results are 
subjeci to change- 

V. Conclusions 

This jpaper reports on the deployment of the 
START system to determine technology resource 
allocations for a variety of capabilities in support of 
the Presidential vision for space exploration. The 
vision inherently involves a large number of complex 
systems and a program of missions as a function of 
time. An extensive database of cost, performance, 
schedule and associated uncertainties is required to 
effectively allocate finite resources among multiple 
competing candidates. Key questions addressed are 
sensitivity of budget allocations to cost uncertainties, 
reduction in available budget levels, and shifting 

funding within constraints imposed by mission 
timeline. 

The capability now exists to optimize portfolio 
investment including annual as well as total cost 
constraints. The process is transparent and auditable, 
and would benefit by continuous update and data 
validation. A methodology is demonstrated for 
systematically dealing with uncertainties in costs and 
in available budgets. The methodology allows one to 
include non-technical constraints if such i s  desired. 
Temporal optimization gives the decision maker the 
ability to analyze scheduling capability developments 
in time. 
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