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We present a flow down error analysis from the radar 
system to topographic height errors for bi-static 
single pass SAR interferometry for a satellite tandem 
pair. Because of orbital dynamics the baseline length 
and baseline orientation evolve spatially and 
temporally, the height accuracy of the system is 
modeled as a function of the spacecraft position and 
ground location. Vector sensitivity equations of 
height and the planar error components due to 
metrology, media effects, and radar system errors are 
derived and evaluated globally for a baseline mission. 
Included in the model are terrain effects that 
contribute to layover and shadow and slope effects on 
height errors. The analysis also accounts for non- 
overlapping spectra and the non-overlapping 
bandwidth due to differences between the two 
platforms' viewing geometries. The model is applied 
to a 514 km altitude 97.4 degree inclination tandem 
satellite mission with a 300 m baseline separation and 
X-band SAR. Results from our model indicate that 
global DTED level 3 can be achieved. + 

Topographic maps have been computed with 
spaceborne single-pass SAR interferometry such as 
the Shuttle Radar Topography Mission (SRTM) 
[Rosen et al. 20001. The height accuracy of these 
Digital Elevation Models (DEMs) is partially 
restricted due to the physical baseline separation of 
the two receiving antennas on the single platform. 
Larger baseline separations are possible with repeat- 
pass SAR interferometry as has been demonstrated 
with ERS, JERS, and RADARSAT, but coherence of 
the interferogram can be reduced due to temporal 
decorrelation of the scene due to changes in the 
surface scattering as well as media effects of the 
ionosphere and troposphere [Zebker et al. 1994, 
Rosen et al. 20001. To achieve high-resolution 

topography, both single pass SAR interferometry and 
large baseline separations are desirable. 

SRTM obtained elevation data on a near-global scale 
to generate a DTED level 2 (30 meter postings) 
Digital Elevation Model (DEM). This is currently 
the most complete high-resolution digital topographic 
database of the Earth. The German Aerospace Center 
DLR has proposed to generate a global DEM 
corresponding to DTED level 3 specification (12 
meter postingsl) by means of a second SAR satellite 
(TanDEM-X) flying in a tandem orbit configuration 
with TerraSAR-X [Moreira et al. 20041. Using the 
TanDEM-X pair as an initial design, we globally 
evaluate performance of the tandem orbit 
configuration as it evolves over time. Error 
contributions from the individual components change 
over time due to geometry considerations and we 
seek to find the time at which the overall height and 
planimetric InSAR errors are minimal. 

Error Sources 

The error sources for the DEM model that we 
consider are: 1.) random and systematic phase noise, 
2.) baseline length uncertainty errors, 3.) baseline 
orientation errors, 4.) platform velocity errors, 5.) 
wavelength errors which are due to both the local 
oscillator stability and due to the Prati shift effects, 
6.) ranging errors due to timing and media effects of 
the troposphere and ionosphere, and 7.) absolute 
platform position errors. These error sources are 
considered independent in this study. An RSS of the 
individual error sources produces vertical and 
planimetric errors for the InSAR configuration. 

HRTI Level 3 requirements specify 10-meter 
postings; DTED Level 3 is less stringent and 
averages to 12-meter postings. In both specifications 
for horizontal-circular error at 90% probability 
(CE90) is 3 meters relative and 10 meters absolute. 
The vertical-linear error at 90% probability (LE90) is 
2 meters relative and 10 meters absolute. 



Formulation of Error Sources 

The basic reconstruction equation represents the 
topography R as a sum of the platform position P 
and a vector p i  from the platform to the resolution 
cell, where p is the slant range and ri is the look 
vector. 

The errors in the interferometric measurement can 
then be represented by: 

The first term maps errors in the platform metrology 
directly to errors in the topography. The second term 
originates from system timing and delay errors, and 
to signal delays due to propagation through an 
inaccurately modeled medium. System delays can be 
calibrated by observing known ground control points 
and are typically stable over data collects. The last 
term involves measurements of phase, baseline 
length, baseline orientation, velocity, and the 
wavelength. Appendix (A9) shows the variation of 
the look vector with respect to variations in the phase 
cP, and the variation in the baseline direction i, while 
(A10) shows the variation of the look vector with 
respect to the variation in the velocity F . 

Using (3) and (2) we can compute then the 
topographic partial with respect to phase (5). 

The error of R in the direction of the vertical is then 
the partial of the topographic height error with 
respect to phase (6). 

The errors in the baseline 66 can be expressed as 
errors in the baseline length and errors in baseline 
orientation (7). 

Using (7) (3) and (2), we can express the topographic 
height errors with respect to baseline length errors 
(8), and with respect to errors in the orientation (9). 

dh i i x ?  
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Assuming the error in the velocity is only of the form 
(10) 

A 

we can combine this with (4) and (2) to obtain the 
topographic height errors with respect to velocity 
errors (1 1). 

In a similar fashion, the variation of the look vector 
with respect to the wavelength h is given by (12). 

Combining (12) and (2) we obtain the topographic 
height errors with respect to the wavelength errors. 

Phase Noise 

The partial of the height error due to phase error is 
given by (6). A Cramer-Rao bound determines the 
phase noise standard deviation from the 
interferometric correlation and the effective number 



of looks (14). We assume that geometric, temporal, 
volumetric, and rotational decorrelations are 
negligible compared to the thermal-noise correlation 

ySNR. That is y = y ,  where ysNR is given by (15). 

- sm 
YSNR - SNR + 1 

Ambiguous Heights 

If the change of the topography as observed by the 
phase difference of the two receiving antennas is 
larger than 2x, the reconstructed height change is 
ambiguous when phase unwrapping. The maximum 
limit of the ambiguous heights can be expressed as 
(16) and (17). 

In (17), we use (6) but for broadside viewing 
geometry and simplicity we replace equivalent 
scalars ~ b ^ .  (h x v̂ ) with the perpendicular 

component of the baseline Bl , and (A x O )  . with 

sin(i), where i is the incidence angle. Additionally the 
effective wave-number k was replaced by 2np/h, 
where p is either a 1 or 2 depending on whether 
single-antenna transmit mode or dual-antenna 
transmit mode (ping-pong). 

In this study, one of the constraints imposed on the 
system is to have better (larger) than 50-meter 
minimum ambiguous height. 

Effective Number of Looks 

The effective number of looks NL in (14) is the output 

post size per resolution element on the ground dxdy. 

This is additionally scaled to account for the non- 
overlapping spectra due to different azimuth viewing 
angle and the non-overlapping bandwidth from the 
Prati shift due to different incidence angles. Equation 

(18) shows these relationships. 

In the first scaling, the angular extent of the synthetic 

aperture spanned by the target point BsA must be 

larger than the angular offset in azimuth 6azofief 

between the two images for Doppler spectral overlap. 

If the azimuth offset is larger than 6 ,  there is 
decorrelation, and no interferometry is possible. 

In the second scaling, BI is the perpendicular 

component of the interferometric baseline and BEri,is 
the critical baseline (22 below). At the critical 
baseline there is no overlap in the correlated 
spectrum and again no interferometry is possible. 

Slope Effects 

Terrain-slope effects can have a significant impact on 
the accuracy of height estimates derived from InSAR 
data. Terrain-induced slopes alter the range-spectral 
overlap between the two SAR channels comprising 
the interferogram by reducing the local 
interferometric coherence. Moreover, layover and 
shadow can lead to voids in the data where valid 
height estimates are not possible. Furthermore, 
significant terrain variations make phase-unwrapping 
"holes" and/or errors more likely, especially when 
the ambiguous heights are small. It is therefore 
important that terrain effects be modeled. 

In this study we model the terrain-slope effects as 
decreasing the correlation coefficient due to a smaller 
spectral overlap and also fewer looks due to an 
increase of the range resolution as projected onto the 
ground as will be explained. 

Terrain statistics are difficult to model because land- 
surface shapes and characteristics vary greatly over 
the Earth. Moreover, problems arising from layover, 
shadow, and phase unwrapping are due to non-local 
phenomena. The terrain at one location can influence 
height estimates at a different location though these 
mechanisms. Because terrain effects are important, 
yet difficult to characterize rigorously, we adopt a 
heuristic model. While this model makes many 
approximations, we view it as a starting point for 
modeling terrain effects. The full derivation of the 
model is outside the scope of this paper, but the 
modeling methodology is described as follows. 



Suppose that a locally stationary random process can 
approximate terrain heights with an isotropic 2-D 
piecewise power-law power spectral density (PSD). 
The characteristics of power-law spectra therefore 
imply that the expected height variation over a given 
horizontal cell depends on the size of the cell and the 
cell sampling resolution. We examined DEMs from 
various sources to estimate power-law slope 
parameters, which are assumed to be constant over 
the entire Earth. The local terrain statistics are 
therefore characterized by an overall scale factor on 
the PSD. We use a low-resolution DEM with global 
coverage to estimate this scale factor as a function of 
Earth-surface location. 

With the local terrain PSD characterized, we use the 
piecewise power-law in order to extrapolate the low- 
resolution, wide-area height variability to the high- 
resolution measurements desired. The estimated 
RMS height variability (3, as determined from the 
GTOP030 global digital elevation map (DEM) 
[edc.usgs.gov/products/elevation/gtopo30/gtopo3O.html] is 
then transformed into a slope-variability parameter 
0,,,, by dividing by the desired high-resolution 
horizontal posting. While this height-to-slope 
transformation neglects the fact that SAR data are 
uniformly sampled in the slant plane rather than the 
horizontal (ground) plane, it is useful for first-order 
analyses. 

The resolution element on the ground 6, in computing 
the effective number of looks NL in (18) must account 
for a slant range reduction due to the local slope. 
Figure 1 shows the geometry. 

The radar slant range resolution 6p projected on a flat 
Earth 6y is Gplsin(i) where i is the incidence angle 
from the horizontal (flat-Earth) line to the dotted line 
in Figure 1. Geometry shows that the projection of 
the slant range resolution due to the terrain-slope 
onto flat Earth can be represented by (19). 

When considering slope-effects, the effective number 
of looks NL in (1 8) must then include (19), as in (20). 

Figure 1. Geometry for slope effects on slant range 
projection onto flat-Earth. 

A secondary effect of terrain-slopes is a reduction of 
the correlation due to decreased spectral overlap after 

Prati filtering to a flat surface. That is y ySNRyGeom 

where yGeom is given by (2 1) (22) and (23). 

B .  = 
Ap tan(@) 
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(22) 
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Here again p is 1 or 2, and 6 p  is the slant range 
resolution. Equation (21) represents the fraction of 
spectral overlap remaining after Prati filtering to a 
flat surface for spectral shifts with and without 
terrain-slope effects. 

B .  crrt - slope 

Finally, the fraction of sampled posts invalidated by 
layover and shadow effects are computed using a 
model parameterized in terms of 0,,,, and ei. This 
parametric model was derived empirically by using 
SRTM and GeoSAR DEMs to feed geometry- 
specific simulations of LEO SAR sensors. 

Future work will involve the inclusion of similar 
empirical parametric models for phase-unwrapping 
errors. 

1- - 



Error Assumptions 

For the case study, the orbit height is modeled at 514 
km. The radar system parameters at X band model 
the pulse width at 52 microseconds with 2.26 kW 
peak power. We also use the DLR model of a 4.8 m x 
70 cm antenna aperture. Radar performance models 
of this system yield a ground swath of 20 km. A 
ground point moving at 7 kdsec  swaps out 140 krn2 
Isec for area coverage rates. 

The random phase noise (14) is modeled as a 
function of the number of looks and the SNR values 
from the radar model as specified in Table 1. Over a 
span of incidence angles we hold the range resolution 
on the ground fixed to 3 meters by altering the 
transmitted bandwidth. 

Table 1. Radar model used for study lists the 
worse case SNR over the swath for increasing 
incidence angles. 

We additionally assume a 10-degree systematic 
uncertainty in the phase noise. The GPS metrology 
[Remco, 20051 and mechanicallelectrica1 alignment 
in an RSS sense yields 1.37 mm of baseline error. 
The baseline orientation error is modeled as a 
function of the baseline length error due a simple 
lever arm effect. The velocity errors are 20.e-6 
d s e c  and derive from Grace GPS-only overlapping 
orbit solutions. The wavelength errors are assumed to 
be le-10 meter. The range error due to the timing and 
media errors is 11.4 cm in an RSS sense; this 
includes 5 cm for timing, 10 cm for troposphere, and 
2 cm for ionosphere. Finally GPS-only solutions in 
down-track can achieve accuracies at the 10 cm level 
for absolute position errors. 

Results for Orbit Configurations 

We evaluate several orbit scenarios to compute the 
minimum RSS topographic height error as the 
tandem-orbit evolves over its 11-day repeat track. 
From the interferometric height sensitivity equations 
above, to minimize the height errors we need to 
maximize the interferometric perpendicular 
component of the baseline between the two 
platforms. This simplistic notion however has its 
limitations in that at some point of increasing the 
baseline length, phase unwrapping errors will affect 
the performance of the interferogram due to 
decreasing an~biguous heights. The platform 
separation we consider in this study is 300 meters. 

At each second in the orbits, we evaluate all ground 
grid points in the potential swath, both left and right 
looking sides of the radar, and we save only error 
contributions of the minimum RSS height accuracy. 
To aid in searching through the nearly 112 million 
0.2x0.2 degree grid points, we require certain 
geometric criteria to be met. First the ground 
elevation angle must be larger than 10 degrees. This 
quickly reduces the number of points over the globe 
to a more manageable data set. Second, the look 
angle must be between 20 and 70 degrees, and the 
squint angle must be +I- 2 degrees. Additionally, the 
incidence angle must be from 25 to 50 degrees, the 
ambiguous heights must be larger than 50 meter, and 
image time offsets must be less than 0.5 seconds. 
Also as per (18), the angular offsets must be less than 
the angle subtended by the synthetic aperture and the 
perpendicular component of the baseline must be less 
than the critical baseline. Additional criteria require 
that the fraction of posts in layover and shadow must 
be smaller than 10 %. 

In the orbit configuration study we are looking for 
trends to optimize tandem-orbit performance. The 
first orbit we consider is a simple pendulum type 
orbit, where the two platforms move back and forth 
relative to each other once per rev. This can be 
achieved simply by offsetting the ascending nodes of 
the two platforms. The eccentricity, inclination, and 
argument of periapsis are held the same. This results 
(Figure 2) in horizontal baselines at low latitudes but 
small baselines at high latitudes. 

The second orbit we consider is a cartwheel 
configuration where the platforms are in the same 
plane (same ascending nodes) but 180 degrees offset 
in the argument of periapsis. In this configuration the 
baseline oscillates between along track and vertical 
offsets. This results (Figure 3) in large vertical 
baselines at the poles. The large along-track 
separation at the low latitudes does not translate into 
large interferometric baselines since the trailing 
spacecraft must image the same point on the ground 
as the leading spacecraft. However due to Earth 
rotation, there is a component of the baseline that is 
in the cross-track direction of the image ground point. 
We can additionally rotate the cartwheel 
configuration to come up with a third orbit such that 
the vertical offsets lie along the low latitudes and the 
along-track offsets are near the poles. We will refer 
to this as the rotated cartwheel. 

The fourth type of orbit we consider is a corkscrew 
configuration where we offset both the ascending 
nodes as in the pendulum, and offset the argument of 
periapsis by 180 degrees as in the cartwheel. This 
results (Figure 4) in large vertical baselines at the 
poles as the cartwheel orbit and in large horizontal 
baselines at low latitudes as the pendulum orbits. 



Figure 2. Pendulum type orbit with top view 
looking down from the pole, and side view looking 
at the equator shows horizontal baselines at the 
low latitudes but small baselines at the poles. 

side view 

Figure 3. Cartwheel type orbit with top view 
looking down from the pole, and side view looking 
at the equator shows vertical offsets in the 
baseline at the poles. Along track offsets at the 
equator do not necessarily translate into large 
interferometric baselines. 

Table 2 lists the four tandem-orbit configurations and 
the associated minimum R.M.S. (root-mean-square) 
height errors as accumulated over the 11-day repeat 
orbits. Represented in Figures 5, 6, 7, 8 are the 1- 
sigma absolute height errors from the minimum 
heights as RSS'ed from the individual error sources 
over the 11-day repeat cycle for the different orbit 
configurations. The scales for Figures 5, 6, 7, 8 are 
in meters. The pendulum configuration (Figure 5) 
yields large height errors near the poles where we 
have a small perpendicular component of the 
interfereometric baseline, and progressively smaller 
errors nearer the equator. The cartwheel 
configuration (Figure 6) yields smaller errors near the 
poles due to the larger vertical offset of the platforms. 
Re-phasing this to a rotated cartwheel configuration 
(Figure 7) yields smaller errors at low latitudes. 
Finally the corkscrew configuration (Figure 8) 
produces the largest perpendicular component of the 

baseline on a global scale; the result is a more 
uniform distribution of the height errors over the 
Earth. 

fap view 

side view 

Figure 4. Corkscrew type orbit with top view 
looking down from the pole, and side view looking 
at the equator shows vertical baselines at the poles 
and horizontal baselines at low latitudes. 

Table 2: Global R.M.S. of topographic height 
errors associated with different tandem orbit 
configurations. Outlier points above 20 meters 
have been removed from the statistics. The 
postings are to 12 meters. 

The 112 million 0.2x0.2 degree sampled grid points 
are sorted according to absolute height errors and 3 
sample points are presented in Table 3. Listed are 
sample values at 15 %, median, and 85 % of the max 
height error. The table additionally presents the error 
contributions from the individual error sources. We 
assume that only relative phase errors contribute to 
the relative DEM errors and that the RSS of all the 
error sources contribute to the absolute error. For 
DTED Level 3, the relative requirement is 3 m CE90 
(horizontal) and 2 m LE90 (vertical). The absolute 
DTED Level 3 requirement is 10 meters for both 
CE90 and LE90. The dominant error source to the 
absolute error in all cases is the baseline length 
uncertainty. 

tandem orbit 

300 m pendulum 

300 m cartwheel 

300 m rotated 
cartwheel 

300 m corkscrew 

Slope effects contribute to the relative error budget 
where there are significant slopes. On a global scale, 
analysis shows that the R.M.S. for relative height 
errors (phase only errors) neglecting slope is 1.22 m; 
when considering slope affects the global R.M.S. is 
1.39m. 

R.M.S. 
(meters) 

5.15 

4.00 

3.79 

3.00 



Figure 5. Global height errors for 
sendulum orhit confieuratkn. 

l i h ~  
Figure 6. Global height errors f o ~  
cartwheel orbit confinuratian. 

I 

Figure 7. Global height errors for mo Figure 8. Global height errors for 

rotated cartwheel configuration. corkscrew configuration, 

Table 3. Breakdown of the error components for 3 sample points !+om the corkscrew orbit configuration. 
The prrstings are to 12 meters. DTED Level 3 CE9U (horizontal), LE90 (vertical) relative error requirement is 
3,2 meters respectively. The absolute requirement is  10 meters for both CE90 and LEN. In this study, only 
random phase noise is considered to contribute to the relative errors. 



Appendix 

We construct an orthogonal triad 

~ - ( L - G ) G  
G,/3 = , f = G x p as in Figure A1 

16 - ( i  i);l 

b= (b$)B+(b.v)v 

V 

adar look vector n 

Figure 1. Baseline vector b in the plane $ and v 

We express the look vectorrias a composite of the 
orthogonal axes in (Al) and its variation in (A2). 
ri = (ri - f ) P +  (ri . p ) p  + ( r i . f )9  (All 

62 = (62 . B)G + (6s . fi)p + (6iz f)y^ (A21 
Processing to constant Doppler ri - B (Vk I a )  where 
V is the velocity and k is the wave number 2 a  / A ,  
requires that 6ri . F + ri = 0. First we consider no 
variation in 6C, so that 6ri F = 0 and since ri is a 
unit vector, 66 . ri = 0, we isolate 6ri . f  in (A2) as: 

-(6A . p)(p . ri) 
(6ri sf)  = (A31 

p - r i  
Substituting (A3) into (A2) yields (A4). 

Gi = [(P . ri)$ - (B . (6ri . p)/(p - 2 )  (A4) 

From(~1)andFigui-e 1, the [ I  o f ( ~ 4 ) i s  ri x B, 
which leads to (A5). 

The interferometric phase 4 is represented by (A6) 
where B is the length of the interferometric baseline 
and variations of this yield (A7). 
2 . h  = - $ / ~ k  (A61 

& .  6 = -6@/Bk - rid; ('47) 
Using 6ri F = 0 ,  it can be shown that 62 . p (A5) is 

62 - b  ̂ / p . 6 ,  and using (A7), (A5) becomes (AS). 

-(a@ / Bk + iz 6 i ) [ i  x G] 
6iz = (As) 

( p  . i ) (p . ti) 
Finally, y^ . ri in (AS), which can be expressed as 

(B x p).ri ,canbeshowntobe i . ( r i  x B) /p  .&  
giving us the final result (A9). 

-(6@ 1 Bk + ri .6b^)[iz x $1 
6ri = 049) 

6 . (iz X B) 
In a similar fashion, if we consider variations in 
c% # 0, the variation of the look vector with respect 
to variations in velocity B can be expressed as (A10). 

-(ri 6?)(ri x i )  
62 = (A101 

B . (ri x i )  
Here we started with (A2) and again use 6ri . i z  = 0, 
but this time 6fi . v^ = -ri -6; * 0 .  As a first step we 
again isolate 6ri . f in (A2) as (A1 1). 

6ri . p = [(ri . c%)(F . ri) - (6s . p)(p . iz)] l(y  ̂ iz) (A1 1) 
We then substitute (A1 1) into (A2) and along with 
(A 12) yields (A1 3). 
62 . p = (G . b^)(ri . 6B) l(p .b") (A 12) 

+ ( 6  .i)(iz . B)f - (Q mi)($ . ~ ) f ]  (A13) 

It can then be shown that (A13) is equivalent to 
(A10). 
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