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In this paper, a reconfiguration guidance algorithm for formation flying spacecraft is presented. The for- 
mation reconfiguration guidance problem is first formulated as a continuous-time minimum-fuel or minirnum- 
energy optimal control problem with collision avoidance and control constraints. The optimal control problem 
is then discretized to obtain a finite dimensional parameter optimization problem. In this formulation, the 
collision avoidance constraints are imposed via separating planes between each pair of spacecraft. A heuristic 
is introduced to choose these separating planes that leads to the convexification of the collision avoidance con- 
straints. Additionally, convex constraints are imposed to guarantee that no collisions occur between discrete 
time samples. The resulting finite dimensional optimization problem is a second order cone program, for which 
standard algorithms can compute the global optimum with deterministic convergence and a prescribed level 
of accuracy. Consequently, the formation reconfiguration algorithm can be implemented onboard a spacecraft 
for real-time operations. 

I. Introduction 

Formation reconfiguration guidance is the planning of optimal translational trajectories to transfer spacecraft from 
their current states to a set of desired final states in a given time without violating the collision avoidance and con- 
trol constraints [I]. Several emerging formation flying missions [2-51 will require reconfigurations both to establish 
their science configurations after deployment and to re-target or change baselines during observations [6]. Similarly, 
Earth-orbiting formations, such as interferometric synthetic aperture radar or sparse antenna synthesis, will use recon- 
figurations to tailor radar baselines and gain patterns to specific targets. Reconfigurations can also be used as part of a 
formation fault response to establish a sub-formation of healthy spacecraft. 

There are vxiety of formation reconfiguration guidance algorithms proposed in the literature (see [ I ]  for a sur- 
vey). The reconfiguration algorithm developed in 171 is based on a mixed-integer linear programming problem (MILP) 
formulation. Since MILPs are inherently non-deterministic polynomial time (NPj-complete, this algorithm scales ex- 
ponentially with the number of spacecraft. In [8] reconfiguration trajectories are parameterized as polynomials and a 
heuristically-modified gradient descent algorithm is used to satisfy the collision avoidance constraints. In [9,10] the 
reconfiguration trajectories are also polynomials, but are constrained to pass through numerically generated waypoints 
to avoid collisions. In [l 11 a convex programming approach with randomized schemes is used to solve the reconfigura- 
tion problem with collision avoidance constraints. Potential-based path-planning techniques are common in the robotic 
path-planning literature (see [l, 81 for references). These algorithms are not directly applicable since they cannot guar- 
antee collision avoidance with constrained control magnitudes. Additional results on formation reconfiguration can 
also be found in 112-151. 

In this paper, each spacecraft is assumed to be a point mass in deep space or low-earth-orbit (LEO), and only 
translational path planning is considered. The first step in the formulation is to linearize and time-discretize the 
relative spacecraft dynamics, thereby converting the infinite-dimensional, continuous-time optimization problem into 
a finite-dimensional parameter optimization problem. The collision avoidance and control magnitude constraints are 
enforced at the discrete time samples as second-order cone (SOCj [16] or Iinear inequality constraints. The collision 
avoidance constraint is imposed by using separating planes between each pair of spacecraft, where a heuristic is used 
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to generate these separating planes. To ensure no collisions occur between discrete time samples, we impose additional 
constraints to guarantee that a relative trajectory does not pass across the separating plane between two discrete time 
samples. This additional constraint also allows larger time steps to be used, thereby shortening algorithm computation 
time. As a result, the non-convex collision avoidance constraints are replaced by linear inequality or SOC constraints, 
thereby converting the reconfiguration guidance problem into a second order cone program (SOCP). Since there are 
interior-point algorithms that can compute the global optimum of SOCPs with a deterministic stopping criteria and 
a prescribed level of accuracy, the resulting formation reconfiguration algorithm can be implemented for real-time, 
onboard operations. 

In summary, the principal challenge in translational reconfiguration guidance is that the collision avoidance con- 
straint describes a non-convex feasible region in the state-space. In fact, the trajectory optimization problem with 
collision avoidance constraints is NP-complete [17,18]. Regarding the previous work in formation reconfiguration, 
the algorithm developed in this paper makes two specific contributions. First, the collision avoidance constraint is 
convexified via a heuristic, resulting in a scalable, efficient algorithm. Second, we extend the collision avoidance 
constraint to apply not only at the discrete times, but between the time samples as well. 

The paper is organized as follows: Section I1 introduces the formation reconfiguration problem formulation with 
control and state constraint. Section 111 introduces the heuristic used to convexify the problem and a solution algorithm. 
Section IV presents illustrative simulations of the algorithm. Section V summarizes our conclusions and describe 
potential future research problems. The notation used is as follows: IR is the set of real numbers, JR" is the space of 
n dimensional vectors with real components, I denotes the identity matrix of appropriate dimensions, llxli denotes the 
standard Znorm of a vector x, and, for any f : IR+ + IRn, f (.) represents the time profile defined by f on a time 
interval [O. TI. 

11. Formation Reconfiguration Trajectory Planning 

In this section, we first describe the reconfiguration trajectory planning problem as a continuous finite horizon 
optimal control problem. Then, the optimal control problem is discretized to obtain a finite dimensional parameter 
optimization problem. This approach describes a direct method [19] to solve an optimal control. We also utilize 
separating planes to impose the collision avoidance constraints in the discrete optimal control problem. 

A. Formulation of an Optimal Control Problem 

In this paper, the spacecraft are modeled as point masses in deep space or a circular LEO with a single thrust vector, 
and we assume the following linear dynamics for each spacecraft, 

where N is the number of spacecraft, xj E I R ~  is the state vector and u j  E JR' is the control acceleration vector of the 
ith macecraft, 

and w is a constant determined by the orbit (W = 0 for deep space). The state vector is composed of position and 
velocity relative to the orbit in LEO and to an inertially fixed point in deep space, i.e., 

where rj E I R ~  is the position vector and vj E JR3 is the velocity vector. The objective of a reconfiguration maneuver is 
to bring the formation to a desired configuration at time t = T > 0 from an existing configuration at time t = 0, which 
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implies the following state constraints 

where, for j = 2,. . . , N ,  x l j , ~  are the initial states of all spacecraft relative to the first one, xlj,~ are the desired states 
relative to the first spacecraft, xl.0 is the initial state of the first spacecraft, and 

Note that the initial and final state are assumed to satisfy all other state constraints that will be listed from this point 
on. There can be an additional constraint of one of the following forms for the first spacecraft's end position 

xl ( T )  = xl.~ or 

x,(T) E Co{al,...,am,) 

where ml > 1 is a positive integer, Co{al,. . . ,am,) indicates the convex hull of the vectors a1 , . . . ,a,, . The equality in 
(4) constraints the final state of the first spacecraft to a prescribed value and the inequality in (4) bounds it to a region. 

Remark 1 A set of the following form 

X =  (x : x e C o { a l ,  ..., a,}}, 

where a1 , . . . , a,, are given vectors, can equivalently be expressed by a finite number of linear inequalities. We use the 
convex hull notation in some of the constraint descriptions for its notational compactness. o 

Relative state constraints are imposed on t E (0, T) in the following general form 

For example, by choosing F = C, where 

c v = [ 0  I ] ,  (6) 

we can bound the relative velocity between each pair of spacecraft with (5). 
The only control constraint considered considered in this paper is a bound on available control acceleration 

A11 of the constraints mentioned up to this point are SOC constraints and they define a convex set of feasible solutions. 
The last constraint is the collision avoidance constraint that makes the problem non-convex and NP-complete [17], 

where Rij is the minimum allowable distance between ith and jth spacecraft, 

Given all the constraints above, we can describe the formation reconfiguration trajectory planning problem as 
follows: 
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Problem 1 
mi. l!mYlh subject to { (11, (31, (41, (51, ( 7 ~  (8) 

u;(.): j=l ,...: N 

where mL' E R~ is dejined by 

\ U j ( t )  1 d t ,  1 = 1; 
j =  1, ...: N :  (10) 

~ l u j ( t ) l / ~ d t ,  1 = 2. 

1 and I $ i  dejines the norm of the vrcror $ t IRA' as follouc~ 

max A=-. 
j=1 ..... N 

- - 

Note that the cost in the Problem 1 is also convex, and we have the following table that gives a physical sense for the 
cost function: 

B. Discretization of the Optimal Control Problem 

The dynamics of each spacecraft (1) is discretized with a zero-order-hold approach, i.e., 

1 

2 

where n is a positive integer such that T = ( n  + l )At ,  k = 1 refers to t = 0, and 

This discretization of the control input leads to the following set of equalities 

Total fuel 

where 

A -- &cat, 

~ . j  [k]  = X~ ( tk )  : u [k] = !j(tk) ; tk = kAt. 

The state and control constraints for the discrete problem are expressed at as follows, 

xllll =x1.0 

 XI,^]^] =xlj,,, j = 2:. . . ,N 

xlj[n+l] = X ~ J , F ,  j = 2  ,..., N 

xI [n + 11 =x1,1.. or XI [n + l ]  E Co{al:. . . ,a,,) 
Fxi j [k]~Co{bl  ,..., b,,}, j > i ?  i = l  ;..., N-1; k = l  ...., n, 

/ ~ ~ [ k ] l l  < U j ,  j =  1 >...! N: k =  1 ...., n, 

Total energy 
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and +C describing the cost is given by 

where 
[ / ~ i j [ k ] I /  = 1. 

Note that the discrete version of the collision avoidance constraint (14) is only satisfied at the times t k ,  k = 

1,. . . , n + 1 as typical for a direct numerical method [7]. However, this constraint alone does not guarantee the col- 
lision avoidance on (tkr t k + l )  for any k = 1, . . . ,n. This observation together with a desire to convexify the collision 
avoidance constraint motivate the utilization of the separating planes to impose the collision avoidance constraint, i.e., 
two spacecraft is separated by a prescribed plane 

The next question is how to generate the separating planes that is how to generate the unit vectors cij[k],  j > i ,  i = 

1,. . . , N - 1; k = 1,. . . , n. A heuristic to generate the separating planes will be discussed in detail in the next section, 
and, in this section, it is only assumed that two consecutive half-spaces for a pair of spacecraft has a nonernpty 
intersection, that is 

where a is a positive constant. 
The following lemma establishes two additional constraints together with (16) that guarantees the collision avoid- 

ance between discrete time samples. 

Lemma 1 Consider the position component r = Cpx, where Cp is as in (91, of the state x with dynamics (12)  and a 
vector c E I R ~  with I ell = 1. Then the inequality below is satisfied 

ifthe following conditions hold: The input u in ( I )  is constant over [t, t + At) that is 

and 
c T [ - 0 . 5 k 2 q + r ( t ) ] > R ,  c r r ( t ) > R .  c T r ( t + ~ t ) > R  when CO=O (20) 

- 0 . 5 a ( c , x ( t ) : q ) k 2  + y(c ,x ( t ) ,q )  R > 
when w>0,  (21) 

American Institute of Aeronautics and Astronautics 



where CX, cc, ppl, and P2 are linearjrnctions of c, x(t), and 17 dejined as 

I (4w2xl (t) -t 2-2 ( t )  i. v1) /m2 

~ ( c , x ( f ) , q ) = c '  2(4a2x;(t)+2wx2(t)+q1)/w3-2xd(t)/o 

q3/a2 

x1 ( t )  - (402x1 ( t )  + 2 ~ ~ 2  ( t )  + 7 1 )  /a2 
1 

P . )  = cT -2 (4w2x1(t) +2m2( t )  + q l )  /a3 +2x4(r ) /a  [ x3(t) -%/a2 
(4w2x1 ( t )  +2wx2(t) t q 1 )  /m3 -x ' t ( t j /a  

l c x  cT -kl ( t )  +2 (4m2xl ( t )  + 2 ~ ~ 2 ( t )  + q ~ )  , 
~6 ( t  ) /a  1 

Remark 2 Since a, y, P I ,  and pz are linear functions of x( t )  and q, constraints in (20) and (21) define convex feasible 
regions (second order cones) for x( t )  and q. o 

Proof: . w = 0: 
In this case, we have 

r ( ~ j  = C,X(T) = r ( t )  + r ( t ) ( ~ - r ) + q ( ~ - t ) ~ / 2  t  2 t .  

Let, 
T g(2) = c r(7) - R = ao + a1 (7 - r )  f az(7 - t12/2, 

where ag = cTr(t )  -R ,  a1 = c T f ( t ) ,  and a2 = cTq. The second and third inequality in (20) imply that 

g(t)  2 0 and g(t + At) 2 0. (24) 

Consequently, if a2 I 0, g(z )  2 0 for a11 T € [t, t  3- At]. When, a2 > 0, g(7) attains a minimum at T* = r - al /a2  and 

If T" $ [t, t  + At] then g(z)  > 0 for all [t , t  + h] . Otherwise. since a2 > 0. 

Now using the first inequality in (20) the following follows 

In this case, we can solve the linear differential equations and show that 

where the argument list ( c ; x ( t ) , ~ )  is dropped for simplicity, and P is a linear function of c, x ( t ) ,  and q (its explicit 
form is given since it is not needed for the proof). Let 

where 
gl('c) = y-R-t  P ( T  t )  + c t ( ~ - t ) ~ / 2  
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and 

Note that 

Consequently, the second and third inequalities in (21) imply that 

This implies that 

when a < 0. Now, defining 

we note that the function h has the same for as g defined in (23) and it satisfies h(t)  2 and h(t +At) 2 0 as in (24). 
Therefore, progressing as in the first part of this proof (when cu = 0) and using the first inequality in (21) as the first 
inequality in (20), we can conclude that 

Now, by using(25), we obtain that 
g ( t ) > O  V z ~ [ t , t + A t ] .  

This concludes the proof of the lemma. w 

Remark 3 The inequalities (20) give conditions under which there exists no collision at any time during a reconfig- 
uration maneuver, and the inequalities (21) give the corresponding condition at LEO. Both set of inequalities define 
convex sets, however, the inequalities for deep space define only linear cones [16] where as the ones for LEO contain 
SOCs. In a SOCP existence of more SOCs imply more computation time [20]. Therefore, when w is small, we use 
the inequalities in (20) instead of (21). o 

The following parameter optimization problem is an approximation discrete approximation of ProbIem 1 where 
collision avoidance constraints are imposed via the separating planes by utilizing Lemma 1. 
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I Problem 2 I 
min 

ztr[kl. j=l ..... N. k=l. ... N l l d ~ l n  subject to { (12); (13) } and 

I Collision avoidance constraints for w = 0: I 

I Collision avoidance constraints for w > 0: I 

where 

rij [k] = Cp-zij [k] ) z i j  [k] = [ cij [k] , X i j  [k] , U.j [k] - ~i [k] ] : 

the linear functions a, y, P I ,  and P 2  are defined in (22), and $d and / ]  . are defined by (15) and (1 1). 

111. Convex Reconfiguration Algorithm 

In this section, a convex solution algorithm for collision free formation reconfiguration based on the solution of 
Problem 2 is described. First, we present the heuristic used to generate the separating planes defined by cij[k] for 
k = 1 ;. .. ,n, j > i: i = 1, .  .. , N - 1. The main objective in generating the separating planes is to have a nonempty 
feasible set for the inequalities described by them at any time step. This is a necessary condition for the second and 
third inequalities in (26) and (27) to have a nonempty feasible set of solutions. Geometrically this makes the planes 
separating each pair of spacecraft consistent. More precisely, once a set of separating planes are chosen, the following 
set of inequalities define the separation between each pair of spacecraft (time index is dropped for simplicity) 

which can be shown in a more compact form as follows 

where indicates element-wise inequalities. 
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The following lemma establishes a sufficient condition for the existence of a nonempty feasible set for (29), that is. it 
establishes a sufficient condition for consistent generation of the separating planes. 

Lemma 2 Given a set of unit vectors ~ 1 2 , .  . .,GIN in I R ~ .  Then, inequalities dejned by (29) have a nonempty set of 
feasible solutions if ciJ, j > i; i = 2, . . . ; N - 1, are chosen to satisfi 

0 

Proof: According to a form of Farkas Lemma [21] one and only one of the following has a solution: 

Let Fl and F2 be the set of feasible solutions for (33) and (34). Farkas Lemma indicates that 31 is nonempty if and 
only if F2 is empty. Therefore, we will prove the lemma via contradiction by showing that F2 is empty. First noting 
that 

P + 0, 

the system of equalities and inequalities described by (34) is equivalent to 

Suppose F2 is nonempty and y = [y12: ~ 1 3 :  . . . , y N - l ; ~ ]  E F2 is a solution. Since 

pre-multipIying the equation above by clz we obtain 

Assume that one of the components yl2, y21,. . . , Y ~ N  is nonzero, i.e. it is positive. Since cT2c2j < 0, j = 3, .  . . ; N ,  this 
implies 

which is a contradiction with equality (36). Consequently, 

Actually we can write = 0 as follows, 
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This i m ~ l i e s  that 

To use induction with (37), we suppose that 

which is true when m = 3 from (37). This together with (39) imply that 

Since cTmcmj < 0 and y 2 0, this implies that 

Consequently, by induction we prove that 
y = 0. 

This shows that y = 0 that implies that !Fl is a nonempty set. 

Remark 4 Satisfaction of inequality (29) is a necessary condition for Problem 2 to have a feasible solution. Conse- 
quently, Lemma 2 guides us to a consistent generation of the separating planes. Yet another requirement that must be 
satisfied during the generation of these planes is that two consecutive separating planes for a pair of spacecraft must 
not be antiparallel, i.e., 

Therefore, the following condition is imposed, which requires a maximum angle 6 between two consecutive separating 
planes, 

~ ~ j [ k + l ] ~ ~ ~ ~ [ k ]  > C O S ~  j > i, i =  1 ,..., N - 1 ;  k =  I : . . . ,  n, (41) 

where we typically choose 8 E [30a,  90'1. o 

The following is the heuristic procedure used in this paper to generate the separating planes such that the inequal- 
ities (32) and (41) are satisfied. Here we assume that the initial and final desired states of the spacecraft do not violate 
the collision avoidance constraints. 

Procedure 1 1. Obtain a solution, .Zj[k]; k = I , .  . . n, j = I , .  . . , N ,  and corresponding position vectors TJ for 
Problem 2 without imposing the collision avoidance constraints (14). 

2. Let 

3. For k > 2, given c ~ z [ k  - I] , .  . . : c I N [ k  - I], generate the separating planes cl2 [k ] ,  , . . . ; c I N [ k ]  as follows: 

a) Let 

I c l , j [ k - l ] :  otherwise. 

b) Let Bl j  = c0s-l ( c l j [ k  - 1 j T c l j [ k ] ) ,  then 

F l  j [kl , 28; 
~1~ [k] = 

rotate ( E l i  cil j ,  8 1  - 8), otherwise. 
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where 0 is the maximum allowed angle separation between two consecutive separating planes, 

and rotate is the rotation operator defined for any v, u E IR3 and angle a as 

rotate(v, u,  a) = cosav  + (1 - cosa)  (vTu)u + s ina  (u x v). 

4. Given c l j  [k] k = 1, .  . .n, j = 2,. . . , N, generate the rest of the separating planes for k = 1, .  . . ,n  j > i, i = 

2, . . . ,  N -  1. Letv = ~ ~ j [ k ] - ~ ~ ~ [ k ] ,  ~ = C O S - '  ( ~ ~ ~ [ k ] ~ c ~ j [ k - l ] ) ,  and 

c = { l 1  c i i [ k ] :  i f n - a <  6; , otherwise. 
rotate(-cli[k], €I,, u,), otherwise. 

Remark 5 In step 4 of Procedure 1, the primary objective in generating the separating planes is to guarantee ci,j [kITcli[k] < 
0. If Cij[k]T~li[k] < 0 and cij [kITcij[k - 1IT > C O S ~  can not be simultaneously satisfied, the angle separation between 
two consecutive planes cij [k - I] and cij [k] is minimized. o 

Now, we describe the solution algorithm. 

Algorithm 1 Given T, At, 8, xj(0), xj(T), and the parameters describing the constraints in Problem 2. 

1 I. Generate the separating planes by using Procedure I. I 
1 2. Solve Problem 2 by using a SOCP solver [22,23]. 1 

IV. Simulations 

In this section, we present several illustrative simulations of three and seven spacecraft formation reconfiguration. 
In each simulation, we assume that b = 60 seconds, n = 30 samples, and 0 = radians. Simulation results presented 
include plots of the relative trajectory, the inter-spacecraft distance, and the control input. 

When three spacecraft are used, each starts on the x-axis, with spacecraft (SC) 1 at the origin and SC 2 and SC 3 
at a distance of lOnz away on either side. The objective of the computed maneuver is for SC 2 to switch places with 
SC 3. In the final example of seven spacecraft, SC 1 again starts at the origin and the remaining spacecraft are located 
lorn away on the corresponding sides of each axis. Again, the spacecraft switch places: SC 2 with SC 3, SC 4 with SC 
5, and SC 6 with SC 7. The maximum available control acceleration for each spacecraft is 1 crn/s2, and the spacecraft 
must stay at least 4 m  away from each other, i.e., the collision avoidance radius, R, is 4 meters. 

A. Simulation 1: 3 Spacecraft in Deep Space, Minimum Fuel 

First we consider a reconfiguration of three-spacecraft formation in deep space, and obtain guidance trajectories via 
minimizing the total fuel. In Figure 1, the relative trajectory graph shows the two switching spacecraft accomplishing 
the required maneuver by moving symmetrically in the X-Z plane around SC 1. Here X, Y ,  Z axes correspond to the 
first, the second, and the third entries in the position vector. Figure 2 shows the four burns required for the maneuver. 
Only the plot for SC 2 is shown, but the plot for SC 3 is the same. Figure 3 shows that the inter-spacecraft distance 
never reaches below 4 m. 
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Figure 1. 

Min. Fuel cost, 3 SCs in DS. Trajectory Graph 

Relative trajectory of SC 2 and SC 3 around SC 1 for 

." 3 Min. Fuel cost. 3 SCr in 0s SC 2 Control Acc, vs. Time 

simulation 1 

Figure 2. Control Accelerations of SC 2 and SC 3 for simulation I 

MI". Fuel mil, 3 SCs ~n DS, inter-SC Distance us Tme 

Figure 3. Inter-spacecraft distances among formation for simulation 1 
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B. Simulation 2: 3 Spacecraft in Deep Space, Minimum Energy 

In this section, we resolve the problem described in Section B with a cost of total energy rather than fuel. Figures 4, 
5, and 6 show that the trajectories and the control input are smoother functions of time when compared to minimum 
fuel solution, which are typical characteristics of minimum energy versus minimum fuel trajectories. 

Min. Energy cost, 3 SCs in DS, Trajectory Graph 

Y (m) 
-20 -20 

X (m) 

Figure 4. Relative trajectory of SC 2 and SC 3 around SC 1 for simulation 2 

,A Mm Enerriyrosl 3 SCsln DS SC 2Contml Acc rr Time 

- 

Figure 5. Control Accelerations of SC 2 and SC 3 for simulation 2 

Figure 6. Inter-spacecraft distances among formation for simulation 2 
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C. Simulation 3: 3 Spacecraft in LEO, Minimum Fuel 

In this section, we resolve the problem described in Section B in LEO rather than in deep space with o = 1.11 x 
lop3 l/s2. Figures 7, 8, and 9 give the simulation result that show more circular trajectories with out of plane compo- 
nents due to the coupled dynamics between the x and y axes in LEO when compared to the deep space results. 

Min. Fuel cost, 3 SCs in LEO, Trajectoiy Graph 

Figure 7. Relative trajectory of SC 2 and SC 3 around SC 1 for simulation 3 

Figure 8. Control Accelerations of SC 2 and SC 3 for simulation 3 

Figum 9. Inter-spacecraft distances among formation for simulation 3 
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D. simulation 4: 7 Spacecraft in Deep Space, Minimum Fuel 

This section presents simulation results for a seven spacecraft reconfiguration in deep space. The trajectories are 
obtained by minimizing the total fuel usage. Figures 10. 11, and 12 present the simulation results, and show that all 
the state and control constraints are satisfied. Again, the control acceleration plots for SC 2 - SC 7 are the same, so 
only that of SC 2 is shown. 

Figure 10. 

Mln Fuel cast, 7 SCs In DS, Trajectory Graph 

'f (m) 
-2D -20 

X (m) 

Relative trajectory of SC 2 - SC 7 around SC 1 for simulation 4 

20, 

15, 

10. 

5 .  - 
E 0, - 

-5. 

10. 

-15, 

-20 

, , o ~  Mln Fuel cost, 7 SCs In DS, SC 2 Control Acc v s  Tlme 
1 Z ,  , 7 

.-- "-? 

:q 
"I 

Figure 11. ControI Accelerations of SC 2 and SC 3 for simulation 4 

20 

20 

V. Conclusions 

In this paper, we presented a formation reconfiguration algorithm for spacecraft in both deep space and low- 
earth-orbit. A heuristic is introduced to convexify the formation reconfiguration problem with collision avoidance 
constraints. Then, a discrete version of the problem, which is a second order cone program, is solved via readily 
avalable algorithms [22,23] that compute the global optimum with a deterministic stopping criteria and prescribed 
level of accuracy. The m a n  convex relaxation is introduced via the separating planes that impose the collision avoid- 
ance constraint. Analysis results are presented to justify the heuristic used to generate the separating planes. We also 
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Min. Fuel cost, 7 SCs in OS, Inter-SC D~stance vs. Tme 

1 
0 2W 400 WO 800 1WO 1MO 7400 1600 180(1 

T~me (s) 

Figure 12. Inter-spacecraft distances among formation for simulation 4 

provide additional constraints at the discrete time instances that guarantee the satisfaction of the collision avoidance 
constraints on the time intervals between two consecutive discrete time samples. Simulation results are presented to 
demonstrate the algorithm. 

The maneuver time is currently treated as an input to the problem but this must be also computed as a part of 
the trajectory planning problem in an efficient way. The heuristic used in the generation of the separating planes can 
further be improved by establishing a measure on the size of the feasible domain described by the choice of these 
planes. Since we are only considering a subset of all feasible solutions, this can lead to considering larger subsets 
of the feasible set. Our current approach to the translational formation reconfiguration can be complemented by the 
recent results on the constrained attitude planning based on convex optimization [24,25]. Furthermore, we can extend 
this formulation to formations in elliptrcal low-earth-orbit. 
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