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ABSTRACT 

Speckles in a highly corrected adaptive optic imaging system have been studied through numerical simulations and 
through analytic and aigebraic investigations of the Fourier-optical expressions connecting pupil plane and focal plane, 
which simplify at high Strehl ratio. Significant insights into the behavior of speckles, and the speckle noise caused when 
they vary over time, have thus been gained. Such speckle noise is expected to set key limits on the sensitivity of 
searches for companions around other stars, including extrasolar planets. In most cases, it is advantageous to use a 
coronagraph of some kind to suppress the bright primary star and so enhance the dynamic range of companion searches. 
In the current paper, I investigate speckle behavior and its impact on speckle noise in some common coronagraphic 
architectures, including the classical Lyot coronagraph and the new four quadrant phase mask (FQPM) concept. 
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1. INTRODUCTION 

Spectacular recent advances in the development of adaptive optics (AO) systems for astronomy have delivered rather 
highly corrected images in the near-infrared. As one exampIe, the PALAO system on the Palomar 5 meter telescope, 
with 241 controlled deformablemirror (DM) actuators and a 16x16 Shack-Hartmann wavefront sensor, achieves Strehl 
ratios S greater than -0.6 at K band (2.2 urn) ’. At such high correction, regularities begin to emerge in the residual halo 
of focal-plane speckles that account for the fraction of image power, (l-S), not contained in the diffraction-limited core. 
A sample short-exposure image is shown in Figure 1. 

Figure 1 - Highly corrected (Sbehl r&io $4.6; DM actuator density D/a-16, where 
a is the DM actuator spacing) shortcxposure image at 2.2 pn obtained by the 
Palomar adaptive optics system (PALAO). Oft) Surface plot shows the diffraction- 
limited core with symmetric structures on the frst “Airy” ring, surrounded by the 
speckle halo. (Right) Logarithmically stretched tw+dimensional intensity plot 
brings out the fainter features in the outer halo, including a- few instrumental ghosts 
and “waffle d e ”  artifacts. Regularitics in speckle structure should k r n e  
sigmficant at levels of correction only slightly higher than this. 



The image in Figure 1 was obtained with an exposure time of about 0.5 s, comparable to TO, the characteristic timescale 
for the atmospheric turbulence above the telescope pupil to rearrange itself. Hence it represents the focal-plane intensity 
distribution that results from a single phase screen, frozen in time, above the telescope. It was also obtained in a 
relatively narrow spectral band, minimizing chromatic smearing of speckles. 

Images such as these have inspired detailed study of the properties of the speckle halo. One highly suggestive effect in 
particular is clearly visible in the short exposure image of Figure 1: slowly varying non-common-path aberrations 
internal to the A 0  system cause temporally persistent knots of 3- or 4-fold symmetry on the inner Airy ring3. As the 
instrument experiences changing flexure at Cassegrain focus with telescope pointing, these aberrations creep into the 
difference between the wavefront propagated through the A 0  system’s science and wavefront sensing paths, which is 
calibrated only periodically. (The science path directs near-infrared light into a sophisticated science 
camerdspectrometer; the wavefront sensing path directs visible light into a very high frame rate CCD fed by a Shack- 
Hartmann.) Figure 1 suggests an interaction in some sense between the non-common-path aberrations and the 
diffraction-limited point-spread function (PSF), particularly the Airy rings that surround the image core. This 
connection motivates an interpretation of related effects that will be studied in more detail in the next section, but may be 
thought of loosely as an interaction between the diffraction-limited PSF and the instantaneous phase screen presented by 
aberrations impressed across the telescope pupil by atmospheric phase fluctuations. 

2. SPECKLES AT HIGH CORRECTION IN THE DIRECT IMAGING CASE 
(NO CORONAGAPH) 

Image formation in a telescope may be modeled very simply by a Fourier optical picture in which the optical fields in the 
focal plane are related to those in the pupil plane by Fourier transformation. The input pupil is the telescope aperture, 
having two spatial coordinates (Cq), and described by an aperture function A(&?) and a phase function @(&q), each a 
real function. (Scintillation is neglected.) The effect of the adaptive optics system is to reduce the phase function to a 
very small “remnant” level that cannot be corrected, having mean-square value (14). The image-plane intensity in a 
short exposure due to a single remnant phase screen is 

Here F.T.[. . .I denotes two-dimensional spatial Fourier transformation into the (x,y) coordinate system of the focal plane. 
(The Fourier transform may also be denoted, more compactly, by an overbar.) The exponential in Equation (1) may 
sensibly be expanded in a truncated Taylor series when the remnant phase @ is small: 

i@ 2- Intensity I ( x ,  y )  = I Ae I - I A[1+ i@] I 
Carrying out the algebra for this first-order expansion, one finds three terms, one that is the diffraction-limited PSF 
corresponding to aperture A ,  one that is linear in the Fourier transform of @, and one that is quadratic: 

Intensity ( x , y )  =Ix12+2Re[ i (A@s)A*]+ lA@& l2 (3) 
The symbol “ 8 ” denotes two-dimensional convolution, and the asterisk denotes complex conjugation. “Re[ 7’ denotes 
the real component of a complex-valued expression. The first term in Equation (3) is by far the largest in amplitude, 
since the remnant phase function is small in the context of high-correction imaging. The two speckle terms, the last two 
in Equation (3), represent two distinct kinds of patterns of light that has been distributed in the spatially extended speckle 
halo. The relative brightness of speckles from these two terms will vary as a function of correction, both Strehl ratio S 
and deformable mirror (DM) actuator density D/u, but speckles from the second term must eventually dominate as the 
degree of adaptive correction gets very large4. The second term of Equation (3) may be called the “linear” term, being 
roughly linear in 5,  and the speckles it describes called “linear-term’’ or simply linear speckles. The third term of 
Equation (3) and its speckles may similarly be called “quadratic”. 



If the aperture A is an unobstructed and unapodized (or “clear”) circle of diameter D, the first term in Equation (3) takes 
on the familiar form of an Airy pattern, the diffraction-limited PSF for this pupil geometry. The PSF is simply an image 
of an unresolved star at perfect correction, i.e. Q, = 0 or S = 1: 

P S F ( x , y ) = I A I 2 = A i r y =  (4) 

The unapodized case allows some simplification, since then A@=@; a symmetric aperture, such as a circle, has a real 
Fourier transform. Then Equation (3) becomes the following expression for PSF plus two kinds of speckles: 

- -  - 2  
Intensity (x, y )  = I A I - 2Irn[@] A + I l 2  

An unusual property of the second term is that it inherits the nulls of the PSF from the multiplicative factor 2, and so 
linear speckles are “pinned” to (spatially located on) Airy rings4. 

The symmetry properties of the speckle terms are very important, and follow from the fact that the Fourier transform of 
@, a real function, is Hermitian’. It follows that the third, or quadratic, term has spatial (centro)~ymmetry~’~, while the 
second, or linear, term has spatial antisymmetry. One consequence is that the linear-term speckles have zero net image 
power when integrated over the focal plane in a single short exposure (or single realization of the phase screen), though 
individual linear-term speckles may be bright’. Linear-term speckles are in fact dominant in single-speckle intensity at 
sufficiently high Strehl ratio S and DM actuator density DIU, particularly on the inner Airy rings’. 

It is formally possible to retain additional terms in the Taylor series expansion for the phase exponential in Equation 
(2)’O-12. However, some recent work on properties of higher order terms13 has confirmed that the new terms that result 
are less interesting physically than the two terms in Equation (3) derived from the first-order expansion. The brightest 
term not included in Equation (3) is brightest near the origin, but this is primarily a correction to the PSF, as may be seen 
from the following decomposition (here e.. .> denotes an average over the pupil): 

- 
-ARe{ g}= - A  Re( a2 - (a2) + (a2)) 

= speckles -ARe{(l- S ) A )  
= speckles - (1 - S )  PSF (6)  

Adding this PSF correction to the first term of Equation (3) gives a net intensity equal to S x PSF, which is what would 
be expected for an A 0  system operating at Strehl ratio S: it indicates that a fraction S of the total light is put into the 
diffraction-limited PSF. This PSF correction is nominally static, and should not be counted as a speckle term. The true 
speckles from this term, the first term in Equation (6),  are much fainter. They are pinned, spatially symmetric, and they 
have zero temporal mean at any point in the focal plane. 

3. A CORONAGRAPH AT HIGH ADAPTIVE CORRECTION 

A strength of adaptive imaging is the ability to search for companions close to bright stars, which indeed provide guide 
stars for the A 0  wavefront sensor. These searches are of great scientific interest, as companions may include planets, or 
even earth-like planets, which are otherwise detected only by somewhat indirect means. It is natural to couple an A 0  
system to a coronagraph, for even more powerful companion detection capability, because a coronagraph is designed to 
suppress the bright on-axis star and permit the regions around it to be searched to a much deeper level. A coronagraph 
will not only suppress the core of the image of the on-axis star, but also all of the secondary diffraction (“Airy”) rings 
extending out into the focal plane, where faint companions will be sought. 



A schematic depiction of an astronomical coronagraph is shown in Figure 2. The imaging properties are modified by the 
insertion of two masks, one in a focal plane and one in the pupil plane. The first of these is an opaque spot a few times 
the diffraction limit in diameter, in the classical Lyot coronagraph, but some innovative approaches have emerged 
recently, including the four quadrant phase mask (FQPM)6 shown in Figure 2. The FQPM applies a phase shift of 0 or n 
alternately in four quadrants of the focal plane, and this can in principle achieve very high rejection of the central star if 
the aperture is unobscured and there is very little remnant tiphilt error. Both focal-plane masks work by diverting light 
from the bright central star to the periphery of the pupil plane, and so both employ a similar “Lyot” mask in the reimaged 
pupil, which blocks light from the outer edges and slightly reduces the spatial resolution of the final image. 
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Figure 2 - Schematic of a coronagraph on an astronomical telescope. The telescope 
primary, represented by a lens, defines the entrance pupil P1. Focal-plane optical 
fields are related to those in the pupil plane by Fourier transformation. A focal-plane 
mask “f’ is inserted in the first focal plane FPI, and the light at the periphery of the 
reimaged pupil P2 is blocked by a Lyot mask before the final image is formed. 

In the coronagraph case, optical fields in the first focal plane and the reimaged pupil plane are intentionally modified by 
the masks “f’ and “p” placed there. As shown in detail in Figure 2, these multiply the incident optical fields so that the 
final image intensity becomes, in analogy to Equation (l), 

One may now carry out the speckle expansion for a ~oronagraph’~ in analogy with the direct-imaging case of Section 2. 
Assuming the correction is high so that the remnant phase is small, the phase exponential may be expanded to retain 
only the lowest non-trivial order: 



I ( x , y )  = 

As in the direct-imaging case, three terms are obtained to this order. The first is the diffraction-limited PSF of the bright 
on-axis star, modified (presumably, strongly attenuated) by the action of the coronagraph. A convenient 
phenomenological expression for this on-axis attenuation is 

pfA[l+i@] (8) 

where the coronagraphic suppression factor KO,. is greater than unity and possibly large. It is a function of position 
within the focal plane, and as defined here applies only to an on-axis source, so is not in any strict sense a PSF. It may 
be quoted as an aximuthal average over the image, for a given radial offset from the central star; it may also be sensible 
to average over some radial region, since the coronagraph will in general shift the positions of Airy rings. 

4. PROPERTIES OF THE CORONAGRAPHICALLY-FILTERED SPECKLE TERMS AT 
HIGH CORRECTION 

An extremely important property of speckles in the direct imaging case at high correction is that they appear in patterns 
of definite spatial symmetry. These symmetries occur in the case of speckles in a coronagraph as well, by fairly similar 
arguments, and can probably be exploited to help suppress the noise level due to speckles. Properties such as temporal 
and spatial means and spatial pinning to Airy rings hold for coronagraphic speckles in fairly close analogy with the 
direct imaging case. An additional interesting property, evident from the form of Equation (8) or from numerical 
simulations, is that the coronagraph has little effect on the intensity of quadratic speckles, but will sharply attenuate the 
intensity of linear-term speckles. In the following sections the properties of the two dominant speckle types shown in 
Equation (S), the ones arising from a first-order expansion of the phase exponential in Equation (7), are presented; as 
with direct imaging, terms from higher orders in the expansion are less important physically to imaging at high 
correction. 

a. Quadratic-Term Speckles 
_. 

The third term in Equation (8) is roughly quadratic in the coronagraphically-filtered speckle amplitude, pz, and is the 
natural analog of the quadratic speckles seen in the direct-imaging case, which arise from the term quadratic in the 
(unfiltered) speckle amplitude G .  In fact, as is shown in Figure 3, quadratic-term speckles are little affected by the 
coronagraph, as might be expected if one thinks of them as sources in the first focal plane of the telescope that are 
reimaged by subsequent coronagraph optics: a coronagraph is designed to pass off-axis sources with little attenuation. 
As the Figure shows, both the Lyot and FQPM coronagraphs modeled here preserve the basic off-axis quadratic speckle 
pattern, though the Lyot blocks speckles near the center of the field behind its occulting spot. More subtly, since each 
coronagraph reduces the pupil diameter with a Lyot mask in the reimaged pupil, each slightly degrades the spatial 
resolution and peak intensity of quadratic speckles. 

Also apparent in the Figure is the spatial (centro)symmetry of quadratic speckles. This results from the fact that the 
phase screen cD is real, so its Fourier transform is Hermitian. For the real filters f, p of either the Lyot or FQPM 
coronagraphs, the coronagraphically-filtered speckle amplitude is Hermitian, so its squared modulus is spatially 
symmetric. 

Not surprisingly, the symmetric speckles in a coronagraph are distributed over a halo of diameter -Ua, where a is the 
typical transverse coherence scale of the phase screen (equal to ro for ground-based observations). They may be found 
anywhere in this region: they experience no pinning to Airy rings, as the linear-term speckles do. The quadratic 
speckles, when integrated over the focal plane, fully account for the fractional light contained in speckles, (14,). 
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Figure 3 - Numerical simulations of quadratic-term speckles showing they are little 
altered by passage through a coronagraph. (Top left) the PSF for a telescope with no 
coronagraph sets the spatial scale. (Top right) the quadratic speckle pattern for a 
clear circular aperture with no coronagraph. (Bottom left) for the same phase screen, 
the quadratic speckle pattern after passage through a Lyot coronagraph. (Bottom 
right) again for the same phase screen. the quadratic speckle pattern after passage 
through a four quadrant phase mask (FQPM) coronagraph. Intensity scales are 
arbitrary, but the same in all three speckle panels. 

b. Lioear-Term Speckles 

The second term in Equation (8) is roughly linear in the coronagraphically-filtered speckle amplitude, and also contains 
a multiplicative factor proportional to the amplitude of the diffraction pattern from the bright on-axis star. As in the 
direct imaging case, this leads to the spatial pinning of linear speckles onto the secondary maxima (Airy rings) of that 
pattern: ie., these speckles vanish on the nulls of the on-axis diffraction panern. Because the on-axis diffraction pattern 
is strongly attenuated by the action of the coronagraph, it is expected that the hear-term speckles will be attenuated as 
well; this can be seen to occur in the numerical simulations presented in Figure 4. 

Coronagraphic linear-term speckles occur in spatially antisymmetric patterns, in close analogy with Iinear speckles in the 
direct imaging case. This is apparent in Figure 4, and can also be seen by considering the algebraic form in Equation (8). 
The coronagraphically filtered speckle amplitude and PSF amplitude both derive from the Fourier transform of a real 
function, and passing through the real filters f, p result in both terms being Hermitian; the imaginary part of their product 
is then spatially antisymmetric. 



Figure 4 - Numerical simulations of linear-term speckles showing they are 
substantially attenuated by passage through a coronagraph. (Top left) the PSF for a 
telescope with no coronagraph sets the spatial scale. (Top right) the linear speckle 
pattern for a clear circular aperture with no coronagraph. (Bottom left) for the same 
phase screen, the linear speckle pattern after passage through a Lyot coronagraph. 
(Bottom right) again for the same phase screen, the linear speckle pattern after 
passage through a four quadrant phase mask (FQPM) coronagraph. Intensity scales 
are arbitrary, but the same in ali three speckle panels. 

From the form of the second term in Equation (8), the distribution of linear-term speckles is peaked towards the center of 
the field, where the Airy rings are brightest, and this is apparent in Figure 4. The spatial antisymmetry means that linear 
speckles contribute nothing to the image power integrated over the focal plane, although individual speckles may be 
bright. (As with direct imaging, linear speckles can have negative intensity, but this simply implies partial reduction of 
an Airy ring, in such a way that the net intensity remains non-negative.) 

5. ESTIMATED INTENSITIES OF THE CORONAGRAPHICALLY-FILTERED SPECKLE 
TERMS AT HIGH CORRECTION 

The properties of the remnant speckle ha10 will depend on which of the two brightest speckle types presented in the 
previous section is dominant under given conditions. To determine that, it is useful to derive simple heuristic estimates 
for the typical intensities of speckles of the two types. This derivation assumes that speckles are diffraction-limited 
objects of diameter +D, randomly distributed within a halo of diameter -Ala, where a is a characteristic transverse 
coherence scaie of the remnant phase Screen after correction. On the ground, the Fried scale to of the atmosphere is a 
simple parametrization of the spatial frequency content of turbulence, and the spacing of deformable mirror actuators is 
typically chosen to roughly equal rp  In space, the deformable mirror actuator spacing a is taken as a reasonable 
measure, but there could be other characteristic scales in the optics. 



The speckle halo diameter Uu will obviously be populated by -(D/aj2 diffraction-limited speckles; Roddier" has 
calculated the prefactor to find the following expression for the number of speckles in the halo: 

N ,  = (0.342) (y)2 a 
The total light in the halo is (14) for correction characterized by Strehl ratio S, and the typical intensity of a single 
speckle is found by dividing this light among the number of speckles found in Equation (10). (The spatial smoothness of 
the corrected wavefront is thus playing a key role, along with the Strehl ratio, by determining the size of the speckle halo 
and hence the number of speckles among which the uncorrected light is divided.) A refinement not present in the direct 
imaging case is a slight reduction in peak intensity of any individual speckle with the spatial broadening implied by a 
Lyot mask of diameter Dp, typically 90% of D.  Including this effect, the intensity of a typical speckle is 

2 

quadratic = PI2 = 

Here the peak height is referred to the height of the corrected PSF (of relative intensity and peak height S), rather than to 
that of an ideal (S= l )  PSF; the difference is negligible at high Strehl ratio. The typical speckle intensity of linear-term 
speckles may be found to be, using Equations ( 1  1 )  and (9): 

quadratic 
IZinear-1 

These equations may be used to estimate speckle noise from the two types, using the following equation derived by 
Racine et a1.16: 

(1 3) 
1 

16 
variance(speckles) = - F: ( t  / r0)  

where Fs is the intensity of a typical speckle, t is the integration time, and to is the timescale for realization of a new, 
statistically independent phase screen: milliseconds on the ground, but possibly a rather long time in space. In the latter 
case, a more appropriate picture may be the potential for false companion detections, where an unusually bright speckle 
mimics an off-axis source. These effects are potentially important in space coronagraphy being carried out now: for 
example, the HST/NICMOS ~oronagraph'~ operates under conditions equivalent to S=0.98 and D/a=21. (There is no 
adaptive correction, but the wavefront is flat because the optics are of high quality and situated above the earth's 
atmosphere; an equivalent to the DM actuator density is the inverse of the observed scattered-light halo diameter.) 

6. CONCLUSIONS 

The Fourier-optical' algebra for a coronagraph coupled to an adaptive optics system operating at high correction has been 
presented. Two speckle types, from the first-order expansion of the phase exponential, are found to be most important in 
determining image properties, in close analogy with the direct-imaging case. These terms, roughly linear and quadratic 
in the Fourier transform of the remnant phase screen, are spatially antisymmetric and symmetric, respectively. 
Quadratic-term speckles are little affected by passage through a coronagraph, while linear-term speckles are substantially 
attenuated, along with the diffraction pattern from the on-axis source. 

As in the direct-imaging case, linear-term speckles are pinned to Airy rings, and have zero temporal mean at any point in 
the focal plane. Their spatial antisymmetry means they contribute nothing to the net image power contained in speckles, 
a fraction (14) of the total from the central star, but the intensity of individual speckles may be great. Estimates of 



intensities of typical speckles for different conditions are given. It is found that linear-term speckles are brightest on the 
inner Airy rings, and become dominant at high Strehl ratio S and high deformable-mirror actuator density D/a. 

The speckle properties presented here suggest the following tactics for suppressing the speckle noise or false companion 
detections that could result. First, antisymmetric linear-term speckles might be suppressed by use of a coronagraph or by 
observations at the position of Airy nulls. (Use of broad spectral bands will tend to cancel and suppress linear speckles, 
too.) Then each individual short exposure could be antisymmetrized by subtracting a spatially-inverted copy of itself, 
suppressing symmetric speckles from the quadratic term (this will in general delete half of the image power from any 
bona fide companion, which may be resolved into equal parts symmetric and antisymmetric image signature.) If these 
processed short exposures are co-added, the antisymmetric part of the true companion image will persist, while the 
linear-term speckles, having zero mean at any point in the image, should eventually average away. Particularly in the 
case of space-based observations, the ideality of successive phase screen realizations (randomness, statistical 
independence, timescale over which they are refreshed) should be examined. Relative speckle intensities from 
Equations (1 1) and (12) might be used to fine-tune image processing strategies depending on which type of speckle is 
dominant for given conditions, particular S and D/u. These effects become prominent at somewhat higher correction 
than is now routinely available on the ground, but may be important to space-borne instruments such as HST. 
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