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Abstract- Recently LDPC codes with projected graph, or pro- 
tograph structures have been proposed. In this paper, finite length 
ensemble weight enumerators for LDPC codes with protograph 
structures are obtained. Asymptotic results are derived as the 
block size goes to infinity. In particular we are interested in 
obtaining ensemble average weight enumerators for protograph 
LDPC codes which have minimum distance that grows linearly 
with block size. As with irregular ensembles, linear minimum 
distance property is sensitive to the proportion of degree-2 
variable nodes. In this paper the derived results on ensemble 
weight enumerators show that linear minimum distance condition 
on degree distribution of unstructured irregular LDPC codes is 
a sufficient but not a necessary condition for protograph LDPC 
codes. 

Low-density parity-check (LDPC) codes were 
proposed by Gallager [I] in 1962. Ensemble 
weight enumerators for unstructured irregular LDPC 
codes and turbo like codes have been reported in 
1121, t131, 1141, 1151, 1161, 1171, 1181, 1191, 1211. Recently 
a flurry of work has been conducted on the design of 
LDPC codes with imposed sub-sbuctures, starting with 
the introduction of multi-edge type codes in [5] and [6]. 
F'rotograph based LDPC codes are a subclass of multi-edge 
LDPC codes. In [ll] a different method for computation 
of asymptotic weight enumerators for LDPC codes with 
protograph structure has been proposed. The method in this 
paper starts with computation of ensemble weight enumerators 
for finite block size LDPC with a protograph structure. The 
results then are extended to asymptotic cases as the block 
size goes to infinity. 

For high-speed decoding, it is advantageous for an LDPC 
code to be constructed from a projected graph [4], or proto- 
graph 131. A protograph is a Tanner graph with a relatively 
small number of nodes. A protograph G = (V, C, E) consists 
of a set of variable nodes V , a set of check nodes G, and 
a set of edges E. Each edge e E E connects a variable node 
v, E V to a check node c, E C. Parallel edges are permitted, 
so the mapping e -. (v,, c,) f V x C i s  not necessarily 1:l. 
As a simple example, we consider the protograph shown in 
Fig. 1. This graph consists of 3 variabIe nodes and 2 check 
nodes, connected by 5 edges. In this example we have 5 edge 
types i.e. each edge in the base protograph represents an edge 
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Fig. 1. Copy and Permute operation for a proto,mph to generate larger 
graphs 

type. For multi-edge LDPC codes, a group of edges (number 
of edges in each group can be different) represents an edge 
type. For unstructured irregular LDPC codes, there is only 
one edge type. Having the base protograph, we can obtain a 
larger graph by a "copy-and-permute" operation as shown in 
Fig. 1.  This operation consists of first making N copies of the 
protograph, and then permuting the endpoints of each edge 
type among the N variable and N check nodes connected to 
the set of N edges copied from the same edge type in the 
protograph. The derived or lifted graph is the graph of a code 
N times as large as the code corresponding to the protograph, 
with the same rate and the same distribution of variable and 
check node degrees. 

As follows in the protograph representation in the figures, 
those variabIe nodes say m nodes that are connected to the 
channel (transmitted nodes) will be shown as dark filled 
circles. Those variable node that are not connected to the 
channel (punctured nodes or not transmitted nodes) will be 
depicted by a blank circle. The check nodes will be depicted by 
circles with a plus sign inside. The code rate for the protograph 
is R . - - y n. -n provided that the parity check matrix of the 
derived or lifted graph is full rank. 

11. ENSEMBLE WEIGHT ENUMERATOR FOR A PROTOGRAPH 

BASED LDPC 

Consider a protograph based LDPC code as shown in Fig. 2 
(for base protograph ignore the interleavers) with n, variable 
and n, check nodes. 

Let q,, represent the degree of variable node vi, qCi rep- 
resent the degree of check node Q and let 1/31 represent 
the total number of edges types. Suppose we lift (copy and 
permute) this protograph by a factor of N. This is equivalent 



Fig. 2. An LDPC with protograph structure 

to using random interleavers each of size N per each edge of 
the base protograph as shown in Fig. 2. Assign weight di to 
variable node vi for i = 1, . . . : n,. Using the results for serial 
concatenation with interleaved codes [9] and for turbo-like 
codes [2] we can compute the ensemble weight enumerators 
for protograph LDPC codes. Consider each variable and check 
node in the protograph as a constituent code. These constituent 
codes are connected through edges in the protograph where we 
assume each edge has a uniform interleaver [Sl of size N. Each 
variable node vi can be assumed as a constituent code with one 
input of weight di and q,. outputs. The input-output weight 

XT coefficient for node vi is (di) hd, ,,,,, . . . Gdi ,wi ,,,, . where Kro- 
necker Delta is defined as 15,,~ = 1 ; if x = y, and zero 
otherwise. Each check node ci can be assumed as constituent 
code with q,, inputs and no output (or a fictitious output with 
weight zero). Let Azz  be the input weight enumerator for the 
check node q that satisfies the check node constraint. The 
Asi represents the number of sequences with input weight 
wZ = ( ~ i , l ,  wi,~, . . . , qqCi). Let Ad represent number of 
sequences each with weight vector d = ( d l ,  d2, . . . , dny ) that 
is applied to the variable nodes and satisfy the protograph 
constraints. Then ensemble partial weight enumerators for the 
protograph based LDPC can be computed as: 

which reduces to 

of variable nodes {vi,, vi2,.  . . , ~~i~~~ ). Let Sd be the set of 
all possible partial weights of m variable nodes that are 
transmitted through the channel, say with indices 11, 1 2 :  . . . , I ,  
such that dl ,  + dl ,  $ . . . + d l ,  = d. Let S, be the set of all 
possible partial weights of the remaining variable nodes in the 
protograph, namely the punctured variable nodes. Then the 
ensemble weight enumerator for the protograph LDPC code 
can be written as: 

A. Computation of A$ for a check c with degree 3 

Define s = 9fw3. If W I  + w2 + w3 is even and 
max{wl, w2, wy) 5 s 2 N, then 

otherwise = 0. 
Proof: We use the following theorem. 

Multinomial theorem: 

where 

MuItidimensional z-transform for Ak1,w2,,3 can be written as: 

To obtain we need to set nz +n3 = wl, nz +n4 = 
w2, and ns + n4 = w3. Solving this set of equations we get 
n~ = N-s, n2 = S-w3, n3 = S - w ~ ,  and ne = s-wl, where 

= W l + W z + w a  , provided that wl + u;n + w3 is even. Since 
ni > 0 this implies that max{wl; wa, w g )  5 s ( N Q.E.D. 

B. Computation of A& for a check c with degree higher than 
3 

where di = (di,, di2, . . . , diqci ). Partial weights di, s cor- The partial weight enumerators for checks with degree 
responds to edge connections of a check node ci to the set higher than 3 can be obtained from the result for a check with 



degree 3 by concatenation. For example A&1,WZi103,Wq can be 
obtained as 

The weight enumerators for higher degree checks can be then 
obtained in a similar way. 

111. ASYMPTOTIC ENSEMBLE WEIGHT ENUMERATORS a C ( ~ l , t 2 , t 3 ) = H 3 ( ( 0 - € ~ ) , ( ~ - ~ ~ ) , ( u - e 3 ) )  (13) 

We express the normalized low.3hmic asymptotic weight 
distribution of a code as r(6)  ='* where d is Hamming 
distance, 6 = $, and Ad is the ensemble weight distribution. aC(e lr  € 2 ,  €3, €4) = max{aC(el, € 2 ,  A) + ~ ' ( € 3 ,  €4, A) 

X 
One application of having r(6) is to obtain an upper bound on 
minimum Eb/N, threshold when maximum likelihood decod- - H ( A J )  (14) 

ing is used. The bound has been derived in 171. This bound where 
is the tightest closed-form threshold on minimum Eb/N, that 
can be written as 

1 1 - 6  m a x { 1 ~ 1  - ~ 2 1 , 1 ~ 3  - ~ i )  5 A i 

(2) < - mu(l - e-zr(6) 
min - R c  5 

(9) min{(t~ + €21 ,  ( € 3  f 4, (2 - (€1 + Q ) ) ,  (2 - (€3 + € 4 ) ) )  

(15) 
Let y,~ represent the upper bound in (9) in dB. We use this 

The asymptotic weight enumerators for higher degree 
maximum likelihood threshoId in the examples to compare checks can be obtained in a similar way. 
with the iterative decoding threshold for infinite block size 
which will be denoted by yit,, in dB. A. Exarn~le 1 

If the first zero crossing of r(6) (i.e. r(6,,,) = 0 for amin > 
Consider a (3,6) regular LDPC code with a protograph as 

0) exists, then it will indicate that the non-zero normalized 
shown in Fig. 3(a). 

minimum distance of the code grows linearly with the block 
size, i.e. dmin = Smin x n. 

However to make the expressions simple, we first define 
- tn(A -) ?(6) = + where 8 = as N -+ m. Then r(6)  can be 

obtained as r(6)  = &?(ma), where m represents the number 
of variable nodes in the protograph that are connected to the 
channel. and n = mN. 

r(6) = max max 
{dk}ES% {6j} EST 

A lnA:< 
Define aC"(di) = limN,, T. Vector bi represents the 

nonnalized version of the vector d i ,  where each component 
is normalized by N. Then 

~ ( 8 )  = rnax max 
Idk)tSd {6,lES" 

Fig. 3. (a) Protograph of a (3,6) regular LDPC code, (b) equivalent prorograph 
for ensemble weight enumeration. 

n, n, 

aca(d,) - x(g,, - l)H(&) f 11) Using the result in (2), it is easy to show that 
2=1 i=l 

where H ( x )  = - ( 1  - x) ln(1 - x) - x In x is the entropy 
A d l , d z  = 

A ~ : , d ~ , d ~ , d ~ r d z , d 2  
function. The sets Ss and S, are normalized version of the (16) 

sets Sd and S, i.e. each component of the Iatter sets is divided ($ (El2 
b y N a s  N + w .  Using the results in previous and this section we can com- 

Let a = ( E L + E ~ + E ~ ) / Z  such that max{tl, 6 2 ,  € 3 )  < u 5 1, pute Az ,d l ,d l ,d2 ,d2 ,d2  using (41, or we can use an equivalent 
and define protograph as shown in Fig. 3(b) with all degree 3 check nodes 



to compute the ensemble weight enumerators. Using either 
approach we get 

The asymptotic weight enumerators can be obtained as 

~ ( 8 )  = max ?(61,6 - 6 1 )  
61 

(19) 

Fig. 4. Asymptotic normalized weight distributions and zero crossings for 
(3.6) regular LDPC, precoded (3,6) LDPC, and rate 112 random codes 

IV. PRECODED LDPC CODES 

EDPC codes with protograph structure can be precoded 
with an accumulator for better performance. Precoding places 
a degree I variable node between a constraint node and a 
higher degree variable (forming an accumulator) which is 
then optionally erased. Precoding often lowers the iterative 
decoding threshold of a given protograph without altering its 
rate 1101. Through examples we show that precoding also 
improves r ( 6 )  and J,,,. 

Next we investigate the weight enumerators for precoded 
LDPC codes. Consider an LDPC code with a protograph 
having n, variable nodes that are connected to the channel. 
Let ,,,., dnv be the ensemble weight enumerators for 
partial weights { d l ,  d2 ,  . . . , dnw ) for this protograph. Without 
loss of generality suppose we precode the variable node .t.l 

with an accumulator as shown in the Fig. 5. The node is 
disconnected from the channel (punctured) and it is connected 
to the output of an accumulator. The input of accumulator is 

connected to the channel. Define the ensemble weight enumer- 
ators for the precoded version of the original protograph by 
~ p r e  do,dl .d  p , , , , ,  d,, , where do is the partial weight of the variable 

node vo corresponding to the input of the accumulator. 

Fig. 5 .  Protograph of the precoded version of an LDPC code using an 
accumulator 

Using the result in (2) ,  it is easy to show that 

APTe - 
do,d,,d z,..., d,, - A d 1 , d z  ...., d,, - / ~ \ 2  (20) 

l d , l  

However 

Note that dl  > %, and do is even. When dl  = we 
can show that the right hand side of (21) is less than 1. For 
d l  > we can upperbound the right hand side of (21) by 

AZ.d'.d' 5 @(do ,  d l ) N - ( d l - * )  
(22) 

(3 
where B(d0, d l )  does not depend on N .  Thus the precoding 

introduces a so-called interleaving gain. Also for fixed do,  
and d l ,  there exist an Nl such that for N > ,Vl we have 
e ( d o ,  d l ) ~ - ( d l - * )  < 1. Thus 

pi- d a , d l , d z  ,..., d,, < Ad1,d2,...,dn, 
(23) 

The asymptotic result can be written as 

A. Example 2 

Consider the (3,6) regular LDPC code in the example 1. 
This code has 6,i,=0.023, y,l = 0.79 dB, and TiteT = 1.1 
dB. However if we precode the (3,6) LDPC code with an 
accumulator, then we obtain ki,=0.033, y,~ = 0.31 dl3, 
and yite, = 0.87 dB. The asymptotic normalized weight 
distributions and zero crossing that specify the for the 
precoded (3,6) LDPC in this example, are shown in Figures 4. 



B. Example 3 

Consider Repeat Jagged Accumulate (MA) and its precoded 
version Accumulate Repeat Jagged Accumulate (ARJA) LDPC 
codes [20]. The RIA code has 6,in=0.01 3, yml = 0.83 dB, 
and ?it,, = 1.0 dB. However if we precode the RJA LDPC 
code with an accumulator namely ARJA, then we obtain 
dm,,=0.015, y,l = 0.35 dB, and yEt,, = 0.628 dB. The 
asymptotic normalized weight distributions and zero crossing 
for the RJA and ARJA LDPC codes are shown in Fig. 6. 

Fig. 6. Asymptotic normalized weight distributions for RTA LDPC code, 
precoded RJA (ARJA) LDPC code, and rate 112 random codes 

C. Example 4 

If we increase the degree 2 variable nodes to Z3 of the 
inner checks in ARJA LDPC code we can further reduce 
the iterative decoding threshold at the expense of lowering 
the linearity coefficient that represent the growth of minimum 
distance with respect to n. An example of such code is shown 
in Fig. 7. Note that this code does not satisfy the relation 
x'(o);(~) < 1 [14], where X(z), and p(z )  are the degree 
distributions for variable and constraint nodes. However, we 
note that for a protograph this condition is only a sufficient, but 
not a necessary, condition for minimum distance growing with 
n. Specifically, the ensemble asymptotic minimum distance 
over block size for this protograph is a small, but positive 
number 6,,, = 0.004. 

precoder 
Iter. threshold= 0.490 

6,i,=0.0D4 

Fig. 7. Protograph of rate 112 ARIA with 5-checks (213 of inner checks are 
degree 2). The asymptotic minimum distance over block size for this code is 
S,,, = 0.004 

This research was canied out at the Jet Propulsion Labo- 
ratory, California Institute of Technology, under contract with 
the National Aeronautics and Space Administration. 
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