
>\
b I

Development of a state machine sequencer for the Keck Interferometer:
evolution, development & lessons learned using a CASE tool approach

Leonard J. RedeTa, Andrew Booth*a, Jonathon Hsieh*”, Kellee Summer’b

aJet Propulsion Laboratory, California Institute of Technology, bW. M. Keck Observatory,
California Association for Research in Astronomy

ABSTRACT

This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and
Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling
Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of
the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science
operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the
W. M. Keck Observatory at Mauna Kea, Hawaii.

The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate
several lower-level hardware and software hard real time subsystems that must perform their work in a specific and
sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a
high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access
interfaces. The overall operation of the system is simplified by the automation.

The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody
product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented
and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of
multiple infrastructures is presented.

Keywords: Interferometer, sequencer, CASE tool, UML

1. INTRODUCTION

The Keck Interferometer is the major ground based instrument of NASA’s Origins program. The goal of the program is
to search for extra-solar planets. Since June of 2002 science data has been collected utilizing the Interferometer (IF)
Sequencer for high-level instrument control. The IF sequencer is implemented using a subset of UML design
methodology (two out of twelve UML views). The commercial Rhapsody CASE tool product provided by I-logix is
used for graphical entry of the design and to automatically generate C++. Thus the C++ generated is coupled to
Rhapsody’s UML model. To understand the IF Sequencer structure one must first have a conceptual knowledge of the
sequencer role within the overall Interferometer control system software architecture.

The entire control system software consists of a hierarchy of state based controllers (figure 1)’. These consist of various
high-speed real-time embedded controllers based on a JPL framework developed specifically for real-time
Interferometer control (known within this paper as the “JPL RTC T~olki t”~) . Slower functionality within the system
utilizes legacy Keck Observatory telescope control infrastructure built on the Experimental Physics and Industrial

* Leonard.J.Reder@ipl.nasa.pov; phone 1 818 354 3639; fax 1 818 393 4357; Jet Propulsion Laboratory, MS171-113,4800 Oak
Grove Drive, Pasadena, CA 91 109 ’ ksummers@keck.hawaii.edu; phone 1 808 885 7887; fax 1 808 885 4464; W. M. Keck Observatory, 65-1120 Mamalahoa Highway,
Kamuela, HI 96743

1

>/e-

Control System (EPICS). The overall operation of the system is provide by automation implemented in the IF
sequencer at the top-level. The IF Sequencer is a software program designed to command the various objects of the
“JPL RTC Toolkit” (that provide real-time servo control of subsystems components such at Fast Delay Lines (FDLs),
Fringe Trackers, etc.). High-level commands are sent to the two large Keck telescopes by way of telescope sequencers
that isolate the IF sequencer from the complexity of the various Keck telescope subsystems. All components must be
commanded to perform their work in a specific and sequential order; though not in the hard real-time domain. The IF
Sequencer is the highest level of control in Keck Interferoemeter software control system.’

+
Commands

GUI
I , // ‘l’arge
Target List J ’
Sequencer

-

.*

+ Interferometer Telescope -

sequencers ‘ GUI

Targets &
status \

,------ Targets &
status

sequencer

Commands
& status

A

I ’ I EPICS subsystem 1
Fig. 1 Sequencing hierarchy

In the following sections of this paper the history of the development and evolution from a simple EPICS
implementation to the object oriented design currently being deployed at Keck are discussed. Our evaluation and
selection of the Rhapsody CASE tool (which was essentially motivated by the automatic state machine code generation
capability) is presented. And finally some lessons learned and a conclusion given.

2. HISTORY

During the development of the “JPL RTC Toollut” and subsequent implementation of Keck Interferometer specific
software (that is built on the tool kit) there had been much discussion of how to control the lower level subsystems in a
unified and consistent way. Experience with PTI (Palomar Testbed Interferometer) suggested that some form of high
level control program be developed. At PTI a sequencer was implemented to run within the VxWorks operating system
to perform overall control of the system.

The W. M. Keck Observatory had been using State Notation Language (SNL) that runs within a general sequencer
control program that is part of EPICS. This sequencer program was being used for Keck motion control as part of the
Keck A 0 system. It was January 2001 and the EPICS sequencer had been recently ported to UNIX and looked to be a
viable solution to the sequencing problem. There was also a certain amount of pressure to use the W. M. Keck legacy
approach and existing organizational standards. First fringes with the instrument where required for March of that year

* The current implementation of the Interferometer sequencer includes a primitive version of the Target List Sequencer
functionality implemented between IF sequencer C++ and the GUI. The Target List Sequencer is intended to further
automate the systems and allow timed observations of groups of star targets. At the time of this writing the
implementation of the Target List Sequencer has not begun.

-

2

so an initial version had to be rapidly implemented. The first version (Increment 0) of IF Sequencer was a simple UNIX
EPICS sequencer written in SNL that generated periodic sidereal delay values corresponding to a star target being
observed. These values are sent to “JPL RTC Toolkit” developed Fast Delay Line controllers via CORE3A commands.
Since the SNL language is an only extension to conventional C the implementation required wrapping CORBA
interfaces with a simple C code API. A library for computing delay line target values used at PTI was reused. And a
simple TCL GUI was written that used legacy Keck Keywords to command and monitor the Increment 0 EPICS based
IF sequencer. This scheme was successfully used for acquiring first fringes.

In the course of the EPICS SNL development it was quickly realized that building state machines purely from
procedural compiled code would be cumbersome and not scale well with complexity. It would have certainly been
possible but not “pretty”. So we set out to explore other solutions. First we tried a more object oriented approach by
using TCL with the object oriented extension called Incr TCL. Incr TCL allows classes to be defined within the TCL
scripts. This approach allowed us to code both CORBA client and server side functionality into ow TCL. Both JPL
and Keck had significant expertise with TCL so there where no big culture shocks associated with the technology. A
small test sequencer consisting of a simple finite state machine was coded in TCL to drive two test siderostats that were
in place at Keck for testing. We used the State design pattern of reference [3] as the basis for the script. Although using
a scripting language made it easy to modify and test, again, it was quickly realize that with more complex state
machines the code would become difficult to maintain. It was 350-noted that a some-acditional development effort
would be required to implement a multi-threaded framework that would be required.

At about the time we where considering these solutions, a colleague suggested using a CASE tool to automatically
generate state machine codes by first representing them as UML state chart notation. The JPL Deep Space One
technology demonstration mission had evaluated the use-qf a product called Rhapsody (manufactured by I-logix C01-p.~)
but decided that the tool would not work well for(thzh,application. We examined the I-logix website and quickly ---A*-‘

decided that Rhapsody was worth serious consideration. After seeing an on-site presentation and demonstration of
Rhapsody we started to build basic evaluation sequencer models‘: this proved to be more difficult than expected, but
without other options we decided using Rhapsody as our development tool was an improvement over-hand coding.
More about the evaluation in the next section, but from the initial prototype work, we where able to build the first
deployed IF sequencer (Increment 1) for the purposes of visibility squared science operations.

The Increment 1 version consisted of UML models entered into Rhapsody; only the static class diagram and state chart
views where used. C++ code was auto-generated for execution on the Solaris operating system since real-time was not
a requirement, the Rhapsody tool was coupled to the ACEITAO CORBA ORB that the “JPL RTC Toolkit” is built on
and a set of helper classes to wrap primitive “JPL RTC Toolkit” functionality where designed. Included in these helper
classes was the notation that the IF sequencer would be hierarchical with some sort of communications infrastructure
sending messages from one state machine to another. The idea adopted early on was that for each Interferometer
subsystem there would be first a mid-level state machine for direct control (thus we have a state machine for each major
intereferometer low-level subsystem, Fringe tracker, Fast Delay Line, Angle Tracker, etc.) and then a high-level state
machine which commands each of the mid-level ones. The experience gained from this design and prototyping stage
was useful in the implementation of Increment 2 that is described in section 4.

While our initial development using Rhapsody was going on, a parallel effort was going on to port the “JPL RTC
Toolkit” to the Linux-RTAI platform in summer of 2001. This was done under a research grant provided by NASA
under the Advanced Information Systems Technology (AIST) program. The “JPL RTC Toolkit” had been evolving as
well. Eventually there was a port to the Sun Solaris operating system.

It was therefore logical that our next version (Increment 2) leverage and reuse the newest “JPL RTC Toolkit”
infrastructure (Fig. 2). The “JPL RTC Toolkit” consists of a collection of libraries and three executable programs. The
libraries provide a white box framework for building specific servo control objects. The framework includes support
for configuration and telemetry. The executables programs are Telemetry and Configuration servers and a CPU
Manager. The Telemetry server provides a publishhbscribe telemetry implementation (via CORB A event channels).
A configuration server provides a link to a database of persistent storage so that any parameter within IF Sequencer can
be independently configured at run-time.

3

I Middleware and Sequencers Embedded Real-time
Front End (Telemetry and configuration Servers) Control Software

User Applications CPU Manager (CPU Managers)

Fig. 2 Component diagram of IF Sequencer Configuration with JPL RTC Toolkit

Figure 2 shows a UML component view of the IF Sequencer within the “JPL RTC Toollut”. The use of the CPU
Manager allows one to load and instantiate specific objects that contain state machine code. The CPU Manager is
CORBA enabled as are all LF Sequencer state machine objects (known as RTC Managed objects since they are loaded
and instantiated by the CPU Manager). The advantage of this scheme over the Increment 1 is that object instantiation is
no longer hardwired. The application can be reconfigured for various modes of operation. This makes reconfiguration
for Visibility Squared, Astrometry, Nulling, Differential Phase and Imaging modes possible. More on the specific UML
object oriented framework is presented in section 4.

3. EVALUATION

Initially, our only thought was to automatically generate state machine code. We all had a rather nai‘ve view of CASE
tool technology and what it was and could do. Thus we did not compare Rhapsody (Fig. 3) with other tools available in
2001. There was considerable schedule pressure and no time for comprehensive evaluations. So immediately a simple,
proof of concept, Fringe Tracker state machine sequencer was implemented. A great deal was learned about the tool
and what was became the basis for our UML model framework.

Immediately it was discovered that Rhapsody was much more then a simple state machine code generator. People had
the impression that non-programmers would easily use the tool as well and this was quickly realized to be impractical
during our evaluation. Moreover, Rhapsody is, as we quickly learned, a UML design and code generation tool in a
general sense. Rhapsody supports the entire set of UML diagram types*. Figure 3 shows a screen snapshot of
Rhapsody. The UML state chart a high-level state-machine visibility squared sequencer is in the right hand window and
an over all tree view of the code model is in the left window. It was quickly learned that groups of classes could be
designed graphically from which thousands of lines of code automatically generated.

Code generation from a conceptual graphical model is inherently a tricky thing to do! It gets even trickier when third
party legacy frameworks must be integrated. Issues arise that you would never think of when hand-writing code. There
are specific manglings that one might want to inflict upon source in special circumstances. Rhapsody generated source
has its own “coding style” as well. Unfortunately, this style is inherently different from that of “JPL RTC Toolkit.
Modification of this style based on an incredibly large number (hundreds) of configurable properties within the
Rhapsody product is possible. The properties allow one to change everything from the graphical appearance of the
model to how code is automatically generated and more. Although the scheme provides great flexibility when malung
modifications to generated code; it also causes an equal amount of confusion and frustration to the developer trying to
change something specific about the source code. This property scheme is annoying when first used. To modify

A

something in the auto-generated code it requires the correct property to be changed. To modify a property, you are
required to memorize (or hunt for) it. The nice feature is that properties follow the hierarchy of your model in scope but
still can be difficult to keep track of. For all the inconvenience, they have enabled the Rhapsody tool to be very flexible
and without this feature we would not have been successful in integrating Rhapsody with our existing “JPL RTC

oolkit” framework classes.

Fig. 3 Screen shot of Rhapsody CASE Tool showing model view on left and Hare1 statechart of visibility squared
science observation sequence state machine subsystem class on right.

The process of using the Rhapsody tool for us was to first enter UML and then spend much time exploring the
properties and entering code within the UML that implements interfaces and uses the Rhapsody supplied framework.
Our core functionality of state machines is embedded into particular classes, the details of which are discussed in the
next section. Within these state machines one would select states and enter code into specific text entry areas, the
resulting generated code would contain this hand entered code in specific areas.

Creating code using the methodology of first entering graphical representations to generate framework code and then
entering particular fragments of code to provide specific interfaces and algorithm functionality is quite daunting and
extremely difficult for the developer that is accustom to line-by-line coding. With much patience and work one can
become proficient with the technology. So our evaluation resulted in the conclusion that auto-generating code for
implementing state machines was not by any means easy, but would be more appropriately characterized as doable and
more manageable over the entire life cycle of our software then any of the other approaches we tried. And so we moved
forward.

4. OBJECT ORIENTED DESIGN (THE UML MODEL)

Figure 2 shows a conceptual component view of the IF sequencer as it exists within the “JPL RTC Toolkit”. At the far
left are the Keck specific components that provide fast servo control directly to Interferometer hardware. These are

5

running on VxWorks single board computers as “JPL RTC Toolkit” cpu manager tasks. Each of these VxWorks
components can be thought of as a set of objects known as RTC gizmos.

The IF sequencer basic functions are, sending commands to RTC gizmos (e.g. lower-level subsystems) through
CORBA and transmitting and receiving data through a “JPL RTC Toolkut” Telemetry Server (top center of Fig. 2). The
sequencer monitors telemetry items in order to detect responses from subsystems there where commanded. Telemetry
is generated by the IF sequencer to update status on front-end GUIs that consists of a Python script (right side of Fig. 2) .

The Configurator GUUConfiguration Server/Configuration Database as shown in Fig. 2 are used to provide dynamic
run-time configurability to the Sequencer. At the center of Figure 2 is the “JPL RTC Toolkit” CPU Manager
component. Within the CPU manager framework are standard interfaces for dynamically loading shared libraries than
finding and/or creating instance objects defined by these libraries. The implementation of the IF sequencer consists of a
set of shared libraries. All of the state machines and support infrastructure is compiled in io a single library called
1ibSequencerCoreso and several different lib*Factory.so libraries. Normally the objects would have been separated
into individual libraries but because we are using the Rhapsody supplied event communication framework rather then
CORBA for state-machine object to state-machine object communications all objects had to be consolidated into a
single shared library. Then for each “JPL RTC Toolkit” managed object we implemented a factory library that provided
the interfaces needed by the CPU manager framework.

The sequencer is organized as a hierarchy of classes both in a static sense and in a dynamic sense. Figure 4 shows the
static class diagram. Each of the most specialized classes is a standalone state machine. State-machine objects have
names ending in suffix of “Subsystem”. We call the state machine objects from here on subsystem classes.
I

SequencerSu bsystem
(Utilities class)

fdltargsubsystem
I
Fig. 4 Static class diagram of subsystems class hierarchy

The Sequencer is composed of several mid-level subsystem classes controlled by a single high-level state machine class.
Each of the mid-level subsytems, such as fdltargsubsystem (the FDL sidereal target generator), is itself a state machine
that acts as the interface to one or more RTC Gizmos. There is one high-level state machine for each science mode of
the Keck Interferometer. Currently, only the Visibility-Squared mode (VSquaredSubsystem) state machine has been
implemented. A new high-level state machine for Nulling operations (NullerSubsystem) is in its initial stages of
development at the time of this writing. Each of the mid-level state machines has been designed with reusability and
extensibility in mind. The same fdltargsubsystem class used by the VSquaredSubsystem can be instantiated for use
with a high-level NullingSubsystem class with no modifications. As more observing modes come online, more high-
level state machines will be implements, similarly, as more RTC Gizmos are implemented more mid-level subsystem
objects will be needed.

s - ” -- *_-

6

There are many commonalties among the Subsystem classes that make up high-level and mid-level subsystem classes.
In Fig. 4 the SequencerSubsystem and Gizmosubsystem classes are utility classes that implemented the supporting
functionality that enables subsystem classes to send events, push and monitor various types of telemetry and find,
connect and command an RTC Gizmo.

Although our current implementation only has two levels of subsystem classes there can be more levels created if
desired. A hierarchical approach seemed to make sense since the sequencer functionality always is expressed as some
composition of subsystems. Further, a hierarchical (tree) model promotes less confusion in an event model (such as the
one included with Rhapsody) because events can only be passed up and down the tree, not sideways.

4.1 SequencerSubsystem Class

In the IF Sequencer, the SequencerSubsystem class provides the foundation for all subsystem (state-machine) objects.
It is the base class but not abstract. All other subsystem classes are derived from this class. Figure 5 shows the
SequencerSubsystem class dependencies. Note that the Collection, ManagedObject and ManagedObjectImpl
classes are not actually implemented within the Rhapsody UML model view of Fig. 5 but are stubs referencing
externally implemented code within the core “JPL RTC Toolkit” shared library. The two classes stereotyped as
<<CORBAInterface>> are IDL6 (Interface Definition Language) that define top-level interface methods that all
subsystem classes contain.

RTC CPU Manager Classes

RTC

i

Fig. 5 SequencerSubsystem utility class relationship to RTC Toolkit.

The SequencerSubsystem class defines a state machine that serves as the basis for building application specific
subsystem classes (shown Fig. 6a). More on this in a moment, but first there are utility functions implemented within
Sequencersubsystem class that need to be described.

Sequencersubsystem defines several methods to implement a subsystem hierarchy of event communication. The rule
we adopted early on was the topology is restricted to a single parent and any number of child SequencerSubsystems.
Rhapsody events are passed to the parent through the Upstream method and broadcast to all children through the
Downstream method. The purpose of the Upstream method is to inform a higher-level parent state machine of
important events such as exceptions without knowing the exact type of the parent. Thus, an fdltargsubsystem instance
can propogate a fault event up the hierarchy without knowing if its parent is a VSquaredSubsystem or a

7

NullerSubsystem. The Downstream method enables the opposite functionality: broadcasting an event to all child
subsystems regardless of exact type. For example, a vSquaredSubsystem can send an on event to all of its connected
children.

Finally, PushStatusTelemetry is used by GUIs or other clients to update data on internal state of the
Sequencersubsystem. This method pushes the most recent value for all attached telemetry items. It is also called by
when after an object has been configured. This way, client applications are informed of configuration changes as soon
as they happen.

‘ “

.r,c#.--.-~*

The Sequencersubsystem class inherits from Collection to support Configuration use and from
ManagedObjectImpl in order to be interfaced with the CPU Manager framework.

4.1.1 RTC Managed Objects

Every subsystem class (Fig. 5) within the IF Sequencer is derived from ManagedObjectImpl and has an associated
factory class derived from ObjectFactoryImpl that make them “JPL RTC Toolkit” managed objects. Within the
framework, objects are created by factories. When the managed object is created by the factory a unique id is registered
with an ObjectManager (another “JPL RTC Toolkit” object) within the cpu manager. That Id contains both Name and
Type information, which are used everywhere the subsystem needs a Name or Type reference. Thus
created within the cpu manager can readily be found.

I

4.1.2 Configurable Objects (Collection Class)

Figure 5 shows that the Sequencersubsystem class inherits from the “JPL RTC Toollut” Collection class. The
Collection class provides an aggregation relationship with two “JPL RTC Toollut” template convenience classes;
Entry<*> and Array<*>. These classes provide the interface to the Configuration Server for run-time configuration of
parameter within the subsystem class. The template type argument can be any of the IDL defined primitive types.
When a new configurable parameter is desired, a new attribute of type Entry<*> or Array<*> is added to the
subsystem class model. The attributes act like conventional primitive type but are configurable.

The Configurator GUI at the bottom left of Fig. 2 is used by the user to set values and execute reconfiguration of
subsystem object instances within the IF Sequencer.

4.1.3 CORBA Command Bindings

Each of the mid-level subsystem classes inherit from the Gizmosubsystem class that provides capability for resolving
and binding references to RTC Gizmos registered in a CORBA Name Service. The Gizmosubsystem class has an
association with a global singleton running asynchronously in a separate thread called the GizmoManger. The
GizmoManager contains a pair of methods for connection and reconnection to RTC Gizmos. Each class derived from
Gizmosubsystem overrides the pure virtual instrumentznit method, which calls a b i n d G i zmo method of the
GizmoManager. This method will asynchronously find a Gizmo in the CORBA Name Service and correctly bind the
reference to the GizrnoSubsystem data member. If at any time the Gizmo becomes unavailable, GizmoSubsystems
calls the GizmoManager r e B i n d G i zmo method, which continuously attempts to find the Gizmo again. Since
GizmoManger is running in a separate thread the subsystem object thread will never be blocked with connection
retries.

4.1.4 Telemetry

The IF sequencer utilizes the “JPL RTC Toolkit” publish/subscribe telemetry infrastructure via an intuitive, efficient,
multi-threaded interface to the Telemetry Server for both supplying and consuming telemetry items.
Sequencersubsystem derived classes publish telemetry in order to update status on GUIs and in archiver software; they
subscribe to telemetry items to monitor behavior of RTC Gizmos under control. Telemetry channel names are

8

hierarchical. A set of convenience methods in SequencerManager class reduces instantiating a telemetry supplier or
consumer to a single (long) line of code.

4.1.4.1 Supplying Telemetry

The CreateSupplier and CreateStructSupplier template methods in SequencerManager return a new instance of a
“JPL RTC Toolkit” object called StructSupplierImpl or SupplierImpl. These are the fundamental client side objects
used to connect to a unique telemetry channel (one of this objects is instantiated for each channel named). The
overloaded operator “=” is then used to publish (or push) telemetry based on a publishing mode. For example one can
instantiate a SupplierImpl reference called MyTelemetrySupplier and then push MyValue to is using the statement
“MyTelemetrySupplier = Myvalue;”. The publishing mode is set at construction time and can be changed externally by
configuration. Currently publish modes of OFF, the publishing is disabled, FULL-RATE published at full rate,
VALUE-CHANGE sending of telemetry over channel happens only on a value change.

4.1.4.2 Consuming Telemetry

In the “JPL RTC Toolkit”, the final destination of telemetry is a user-defined filter class. The SequencerManager
CreateFilter and CreateStructFilter methods return a new instance of a “JPL RTC Toolkit” Filter
(handler) class. These references can be used to set a consuming mode analogous to the publishing mode of
SupplierImpl instances. The telemetry infrastructure uses a push/push (COMA event) channel model that allows
subscribers to passively wait for data (e.g. monitor). The subscriber to a telemetry channel defines a Push method
within ones handler. The methods will be called whenever telemetry moves through the subscribed channel. The Push
methods function is to typically generate Rhapsody events that cause a state machine (subsystem object) to respond to
the received telemetry value. An example of this is the fringe tracker state machine class (ftsubsystem) where an
aggregation relationship to a LockSecsFilter class is established. The LockSecsFilter class implements a Push method
that tests telemetry representing the amount of time a fringe tracker has been locked onto a fringe during an observation.
When this exceeds an internally set time an event is generated to the ftSubsystem state machine that commands it to
sequence the fringe tracker to stop tracking.

It is important for consumers to process incoming telemetry data quickly so as not to tie up the limited resources of the
Telemetry Server. This is accomplished through the use of an AsynchronousDispatcher to handle telemetry distribution
with a separate pool of threads.

4.1.5 Derived Classes

Figure 4, above, shows the set of derived classes in the IF Sequencer. These are the NullerSubsystem,
VSquaredSubsystem high-level automation (observation mode state machines) and the fdltargsubystem, ftsubsystem
and katSubsystem mid-level automation (for direct sequencing control of RTC Gizmos). More are being developed as
needed. The fdltargSubsystem delivers pre-computed sidereal targets (delays settings) to update fast delay line
positions and control them; the ftSubsystem controls the fringe tracker and the katSubsystem controls the (Keck) angle
trackers. Each of these implements a specialized state machine (subsystem) class (e.g. fdltargsubsystem is an example
shown in Fig. 6b) that is derived from the base state machine (Fig. 6b) implemented within the SequencerSubsystem
class. Derived classes automatically contain the basic state chart functionality.

9

init. sidereal target
calculation

updates

Fig. 6 Hare1 State charts (a.) base state machine implementation, (b.) fast delay line target generator state
machine (note b. inherits a.).

The base state machine (Fig 6a) contains five states within a NOMINAL composite state to provide standard behavior
to all derived state machine objects. The only default behavior in each of these five states is to push a structured
telemetry item providing information about current state, last state and status messages about operation, to an external
software component such as a GUI that has subscribed. The external WARNING and FAULTED states are used to
handle exception behavior. Faults are propagated to higher and lower-level state machines as necessary.

Derived classes define custom CORBA IDL interfaces by inheriting from SequencerSubsystem-I. An example of this
is shown in Fig. 7 for the fdltargsubsystem class. Recall that Sequencersubsystem-I inherits from ManagedObject,
as shown in Fig 5. Thus SequencerSubsystem-I provides all the methods in the interfaced defined by “JPL RTC
Toolkit” managed objects in addition to defining the On, Off, ReInit, Halt, Simulateon, and Simulateoff
methods as controls of its basic (Fig. 6a) state machine behavior. The On, Ofl, ReInit, Halt methods generate
Rhapsody events that cause corresponding state transitions; the SimulateOn or Simulateoff methods turn on and off,
respectively, a simulation test mode implemented in every derived state machine object. The idea of the simulation
mode is to provide a capability for testing every state machine object in a stand alone unit test way independent of (and
without connection to) the real time system.

Because each state machine object is loaded and instantiated by the RTC CPU Manager the Rhapsody generated state
machine objects do not have specific knowledge about how they are related. Rhapsody events are passed from state-
machine to state-machine by an inverse invocation scheme thus each state machine must have a pointer to the state
machine it wish to send an event to. This means that direct associations from state machine to state machine for the
purposZs of sendyng events has not been established and must be. Within our UML we create a static class diagram
view similar to that of Fig. 4 but this time it defines associations allowed by type. To establish instance linkages
another IDL method called LinkSubsystems is implemented. Linksubsystems accepts a sequence of managed object
Ids, which specifies a number of other objects that must be referenced. A reference to each object is looked up in the
cpu manager’s ObjectManager class and saved in a Rhapsody attribute. The caller of Linksubsystems can also be
configurable so that the hooking up of object instances becomes fully configurable as well (typically the caller is a GUI
program or startup script).

10

4.2 Delay Line Target Generator State Machine Object (fdltargsubsystem)

Perhaps the simplest mid-level state machine class implemented is the fdltargsubsystem (shown in Fig. 7), thus it is
useful to examine the implementation. An instance of fdltargsubsystem is a flexible state machine that can control
single or multiple pairs of fast delay lines. The primary purpose of fdltargsubsystem is to compute and update FDL
delay target positions every three seconds so that fringe tracking can be maintained on a sidereal target (star) moving
across the sky. This functionality is implemented in Fig. 6b; there is also a set of IDL methods (not shown in Fig. 6b or
7) that allow fundamental commanding (e.g. Idle, Track, etc.) of the FDL RTC Gizmo. The input to the
fdltargsubsystem class is a catalog record of coordinates for the desired observation that is generated by a planning
program called getCa17.

On():void
Off():void
Relnit():void
Halt():void
SirnulateOn():void
SirnulateOff():void
LinkSubsysterns(RTC::Mana edOb'ect IdSequenceType The1dSeq):void

<<CORbAI nt]erface>>
9

Idle(long DelayLine1ndex):void
Calc():void

<<CORBAlnterface>> I
/

Telem
Suppli
lnstan

Fig. 7 Fast Delay Line Target Generator (fdltargsubsystem) static class diagram

While fdltargsubsystem example is perhaps one of the simplest state machine implementations in IF Sequencer
observations cannot be made with the instrument without at least one instance of this state machine running. The state
machine implementation (Fig. 6b) adds only two states; CALC and ZERO-FDL. The CALC state updates delay target
values for specific star position and executes RTC Gizmo CORBA target update operations. This is repeated every
three seconds as denoted by the tm(3000) in Fig. 6b, which is an internal Rhapsody timer thread event that causes a
3000 millisecond delay. The ZERO-FDL state is use to send zero targets to both FDLs effectively parking them at mid
range.

5. LESSONS LEARNED

During the past several years that we have been exposed to CASE tool technology we "think" a few things have been
learned along the way. What follows is a list of lessons learned from our efforts to date, there are without question
more to be learned about this technology!

1. It is hard to integrate multiple infrastructures and even harder to integrate them into a CASE environment.
Although Rhapsody had hooks for adding external infrastructure dependencies this was by no means easy to figure
out. Corollary: On new CASE tool development projects do not mix, and reverse engineering is hard.

11

2.

3.

4.

5.
6.

7.
8.
9.

10.

“Old programming habits die hard,”$ It is hard to get use to the graphicalkoding UML methodology of the CASE
tool environment if you have been a line-by-line coder for years. Corollary: Tool is powerful and useful but
learning curve steep.
Maintainability of code is “vastly” improved. Because C++ code is coupled to UML graphical model it is more
understandable. The use of UML is this manner automatically limits the amount of reverse engineering of code
requiredheghe software life cycle.
A CASE&@olsr&’l strength lies in its ability to stan$r&ze software development across a large team of engineers.
However, using Rhapsody as an individual does benefits; the state machine-based design of classes is well-
suited to development of ‘nterferometer sequencers, however, files sizes of auto generated code get large fast and
this leads to long compiles $ imes. Corollary: Standardized auto-generated code leads to better infrastructure!
Version control of UML\models between only a few developers problematic.
One of the original attractive features of Rhapsody was animation of state machine functionality but this never was
completely functional ow~ola r i s operating system so the more traditional gdb was used for debugging. Corollary:
Features in tool may look good during sales demo but be careful.
When starting one should evaluate and not guess at a CASE tool to use; there are lots of choices today.
Consider a process for development and then a tool.
Templates where not included with Rhapsody case tool so we implemented them externally and hooked them into
tool. This is a kludge and confusing to a new developer. This effectively defeats rule 3 above.
The urge to use many of Rhapsody’s framework features has sometimes overwhelmed the wiser inclination to use
more standardized tools such as the STL (C++ Standard Template Library).

i-. ~

~ --

6. CONCLUSION

The main difference between interferometer sequencers comes down to multiplicities of baselines and instrument
subsystems. The IF Sequencer subsystem (state-machine) classes are highly configurable and meet this requirement.

The IF Sequencer simply orchestrating subsyste$s,* we do not have particular hard real-time requirements for timing
performance. Thus we believe that while the CASE tool approach is superior to hand coding, we tend to feel that a
compiled solution is not warranted. Perhaps this application would more properly reside in an auto-generated
interpreted language implementation. With a scripting language, the designer will be rewarded with less time compiling
changes. Currently run-time configuration is our only means to minimize the amount of compile time required.

h ;\ / -\h

Error detection and recovery is an interesting problem; our current design implements an error scheme that is
recoverable via operator intervention only. This was atthe users request and inevitably there will be AI planning and
fault recovery methods used on the Interferometer sequencing problem in the future.

Rhapsody is an excellent tool, especially for state machine design. Except for having to compile, the problem fits nicely
into the infrastructures provided by I-logix and the “JPL RTC Toolkit”.

ACKNOWLEDGEMENT

The work performed here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration. The authors would like to thank the following people
who contributed to this effort: Mark Colavita for helpful definition and support during the evaluation of the CASE tool
and development; Kevin Tsubota for assistance resolving W. M. Keck Observatory software issues.

REFERENCES
1.

2.

Andrew Booth, et. El., Overview of the control system for the Keck Interferometer, SPIE Advanced Telesope
and Instrumentation Control Software I1 Conference 4848, Waikoloa, HI. August 2002.
T. Lockhart, RTC: a distributed real-time control system toolkit, SPIE Advanced Telesope and
Instrumentation Control Software I1 Conference 4848, Waikoloa, HI. August 2002.

Douglas Schmidt, Using Design Patterns, Frameworks & CORBA, January 23-25,2002, UCLA Extension Course.

12

3 .

4.
5.

6.
7.

8.

Erich Gamma, et. El., Design Patterns Elements of Reusable Object-Oriented Software, Addison Wesley,
1995.
I-logix website http://www.ilonix.com/ has Rhapsody product information and white papers.
Philip C. Irwin, R. L. Johnson, Real-time control using an open source RTOS, SPIE Advanced Telescope and
Instrumentation Control Software I1 Conference 4848, Waikoloa, HI, August 2002.
Michi Henning and Steve Vinoski, Advanced CORBA Programming with C++, Addison Wesley, 1999.
getCal -- Interferometric Observation Planning Tool Suite, Michelson Science Center.
http://msc.caltech.eddsoftware/getCal/ .
Grady Booch, et. El. The Unified Modeling Language User Guide, Addison Wesley, 1999.

13

