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ABSTRACT 

This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and 
Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling 
Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of 
the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science 
operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the 
W. M. Keck Observatory at Mauna Kea, Hawaii. 

The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate 
several lower-level hardware and software hard real time subsystems that must perform their work in a specific and 
sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a 
high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access 
interfaces. The overall operation of the system is simplified by the automation. 

The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody 
product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented 
and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of 
multiple infrastructures is presented. 
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1. INTRODUCTION 

The Keck Interferometer is the major ground based instrument of NASA’s Origins program. The goal of the program is 
to search for extra-solar planets. Since June of 2002 science data has been collected utilizing the Interferometer (IF) 
Sequencer for high-level instrument control. The IF sequencer is implemented using a subset of UML design 
methodology (two out of twelve UML views). The commercial Rhapsody CASE tool product provided by I-logix is 
used for graphical entry of the design and to automatically generate C++. Thus the C++ generated is coupled to 
Rhapsody’s UML model. To understand the IF Sequencer structure one must first have a conceptual knowledge of the 
sequencer role within the overall Interferometer control system software architecture. 

The entire control system software consists of a hierarchy of state based controllers (figure 1)’. These consist of various 
high-speed real-time embedded controllers based on a JPL framework developed specifically for real-time 
Interferometer control (known within this paper as the “JPL RTC T~olki t”~) .  Slower functionality within the system 
utilizes legacy Keck Observatory telescope control infrastructure built on the Experimental Physics and Industrial 
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Control System (EPICS). The overall operation of the system is provide by automation implemented in the IF 
sequencer at the top-level. The IF Sequencer is a software program designed to command the various objects of the 
“JPL RTC Toolkit” (that provide real-time servo control of subsystems components such at Fast Delay Lines (FDLs), 
Fringe Trackers, etc.). High-level commands are sent to the two large Keck telescopes by way of telescope sequencers 
that isolate the IF sequencer from the complexity of the various Keck telescope subsystems. All components must be 
commanded to perform their work in a specific and sequential order; though not in the hard real-time domain. The IF 
Sequencer is the highest level of control in Keck Interferoemeter software control system.’ 
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Fig. 1 Sequencing hierarchy 

In the following sections of this paper the history of the development and evolution from a simple EPICS 
implementation to the object oriented design currently being deployed at Keck are discussed. Our evaluation and 
selection of the Rhapsody CASE tool (which was essentially motivated by the automatic state machine code generation 
capability) is presented. And finally some lessons learned and a conclusion given. 

2. HISTORY 

During the development of the “JPL RTC Toollut” and subsequent implementation of Keck Interferometer specific 
software (that is built on the tool kit) there had been much discussion of how to control the lower level subsystems in a 
unified and consistent way. Experience with PTI (Palomar Testbed Interferometer) suggested that some form of high 
level control program be developed. At PTI a sequencer was implemented to run within the VxWorks operating system 
to perform overall control of the system. 

The W. M. Keck Observatory had been using State Notation Language (SNL) that runs within a general sequencer 
control program that is part of EPICS. This sequencer program was being used for Keck motion control as part of the 
Keck A 0  system. It was January 2001 and the EPICS sequencer had been recently ported to UNIX and looked to be a 
viable solution to the sequencing problem. There was also a certain amount of pressure to use the W. M. Keck legacy 
approach and existing organizational standards. First fringes with the instrument where required for March of that year 

* The current implementation of the Interferometer sequencer includes a primitive version of the Target List Sequencer 
functionality implemented between IF sequencer C++ and the GUI. The Target List Sequencer is intended to further 
automate the systems and allow timed observations of groups of star targets. At the time of this writing the 
implementation of the Target List Sequencer has not begun. 

- 
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so an initial version had to be rapidly implemented. The first version (Increment 0) of IF Sequencer was a simple UNIX 
EPICS sequencer written in SNL that generated periodic sidereal delay values corresponding to a star target being 
observed. These values are sent to “JPL RTC Toolkit” developed Fast Delay Line controllers via CORE3A commands. 
Since the SNL language is an only extension to conventional C the implementation required wrapping CORBA 
interfaces with a simple C code API. A library for computing delay line target values used at PTI was reused. And a 
simple TCL GUI was written that used legacy Keck Keywords to command and monitor the Increment 0 EPICS based 
IF sequencer. This scheme was successfully used for acquiring first fringes. 

In the course of the EPICS SNL development it was quickly realized that building state machines purely from 
procedural compiled code would be cumbersome and not scale well with complexity. It would have certainly been 
possible but not “pretty”. So we set out to explore other solutions. First we tried a more object oriented approach by 
using TCL with the object oriented extension called Incr TCL. Incr TCL allows classes to be defined within the TCL 
scripts. This approach allowed us to code both CORBA client and server side functionality into ow TCL. Both JPL 
and Keck had significant expertise with TCL so there where no big culture shocks associated with the technology. A 
small test sequencer consisting of a simple finite state machine was coded in TCL to drive two test siderostats that were 
in place at Keck for testing. We used the State design pattern of reference [3] as the basis for the script. Although using 
a scripting language made it easy to modify and test, again, it was quickly realize that with more complex state 
machines the code would become difficult to maintain. It was 350-noted that a some-acditional development effort 
would be required to implement a multi-threaded framework that would be required. 

At about the time we where considering these solutions, a colleague suggested using a CASE tool to automatically 
generate state machine codes by first representing them as UML state chart notation. The JPL Deep Space One 
technology demonstration mission had evaluated the use-qf a product called Rhapsody (manufactured by I-logix C01-p.~) 
but decided that the tool would not work well for(thzh,application. We examined the I-logix website and quickly ---A*-‘ 

decided that Rhapsody was worth serious consideration. After seeing an on-site presentation and demonstration of 
Rhapsody we started to build basic evaluation sequencer models‘: this proved to be more difficult than expected, but 
without other options we decided using Rhapsody as our development tool was an improvement over-hand coding. 
More about the evaluation in the next section, but from the initial prototype work, we where able to build the first 
deployed IF sequencer (Increment 1) for the purposes of visibility squared science operations. 

The Increment 1 version consisted of UML models entered into Rhapsody; only the static class diagram and state chart 
views where used. C++ code was auto-generated for execution on the Solaris operating system since real-time was not 
a requirement, the Rhapsody tool was coupled to the ACEITAO CORBA ORB that the “JPL RTC Toolkit” is built on 
and a set of helper classes to wrap primitive “JPL RTC Toolkit” functionality where designed. Included in these helper 
classes was the notation that the IF sequencer would be hierarchical with some sort of communications infrastructure 
sending messages from one state machine to another. The idea adopted early on was that for each Interferometer 
subsystem there would be first a mid-level state machine for direct control (thus we have a state machine for each major 
intereferometer low-level subsystem, Fringe tracker, Fast Delay Line, Angle Tracker, etc.) and then a high-level state 
machine which commands each of the mid-level ones. The experience gained from this design and prototyping stage 
was useful in the implementation of Increment 2 that is described in section 4. 

While our initial development using Rhapsody was going on, a parallel effort was going on to port the “JPL RTC 
Toolkit” to the Linux-RTAI platform in summer of 2001. This was done under a research grant provided by NASA 
under the Advanced Information Systems Technology (AIST) program. The “JPL RTC Toolkit” had been evolving as 
well. Eventually there was a port to the Sun Solaris operating system. 

It was therefore logical that our next version (Increment 2) leverage and reuse the newest “JPL RTC Toolkit” 
infrastructure (Fig. 2). The “JPL RTC Toolkit” consists of a collection of libraries and three executable programs. The 
libraries provide a white box framework for building specific servo control objects. The framework includes support 
for configuration and telemetry. The executables programs are Telemetry and Configuration servers and a CPU 
Manager. The Telemetry server provides a publishhbscribe telemetry implementation (via CORB A event channels). 
A configuration server provides a link to a database of persistent storage so that any parameter within IF Sequencer can 
be independently configured at run-time. 
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Fig. 2 Component diagram of IF Sequencer Configuration with JPL RTC Toolkit 

Figure 2 shows a UML component view of the IF Sequencer within the “JPL RTC Toollut”. The use of the CPU 
Manager allows one to load and instantiate specific objects that contain state machine code. The CPU Manager is 
CORBA enabled as are all LF Sequencer state machine objects (known as RTC Managed objects since they are loaded 
and instantiated by the CPU Manager). The advantage of this scheme over the Increment 1 is that object instantiation is 
no longer hardwired. The application can be reconfigured for various modes of operation. This makes reconfiguration 
for Visibility Squared, Astrometry, Nulling, Differential Phase and Imaging modes possible. More on the specific UML 
object oriented framework is presented in section 4. 

3. EVALUATION 

Initially, our only thought was to automatically generate state machine code. We all had a rather nai‘ve view of CASE 
tool technology and what it was and could do. Thus we did not compare Rhapsody (Fig. 3) with other tools available in 
2001. There was considerable schedule pressure and no time for comprehensive evaluations. So immediately a simple, 
proof of concept, Fringe Tracker state machine sequencer was implemented. A great deal was learned about the tool 
and what was became the basis for our UML model framework. 

Immediately it was discovered that Rhapsody was much more then a simple state machine code generator. People had 
the impression that non-programmers would easily use the tool as well and this was quickly realized to be impractical 
during our evaluation. Moreover, Rhapsody is, as we quickly learned, a UML design and code generation tool in a 
general sense. Rhapsody supports the entire set of UML diagram types*. Figure 3 shows a screen snapshot of 
Rhapsody. The UML state chart a high-level state-machine visibility squared sequencer is in the right hand window and 
an over all tree view of the code model is in the left window. It was quickly learned that groups of classes could be 
designed graphically from which thousands of lines of code automatically generated. 

Code generation from a conceptual graphical model is inherently a tricky thing to do! It gets even trickier when third 
party legacy frameworks must be integrated. Issues arise that you would never think of when hand-writing code. There 
are specific manglings that one might want to inflict upon source in special circumstances. Rhapsody generated source 
has its own “coding style” as well. Unfortunately, this style is inherently different from that of “JPL RTC Toolkit. 
Modification of this style based on an incredibly large number (hundreds) of configurable properties within the 
Rhapsody product is possible. The properties allow one to change everything from the graphical appearance of the 
model to how code is automatically generated and more. Although the scheme provides great flexibility when malung 
modifications to generated code; it also causes an equal amount of confusion and frustration to the developer trying to 
change something specific about the source code. This property scheme is annoying when first used. To modify 
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something in the auto-generated code it requires the correct property to be changed. To modify a property, you are 
required to memorize (or hunt for) it. The nice feature is that properties follow the hierarchy of your model in scope but 
still can be difficult to keep track of. For all the inconvenience, they have enabled the Rhapsody tool to be very flexible 
and without this feature we would not have been successful in integrating Rhapsody with our existing “JPL RTC 

oolkit” framework classes. 

Fig. 3 Screen shot of Rhapsody CASE Tool showing model view on left and Hare1 statechart of visibility squared 
science observation sequence state machine subsystem class on right. 

The process of using the Rhapsody tool for us was to first enter UML and then spend much time exploring the 
properties and entering code within the UML that implements interfaces and uses the Rhapsody supplied framework. 
Our core functionality of state machines is embedded into particular classes, the details of which are discussed in the 
next section. Within these state machines one would select states and enter code into specific text entry areas, the 
resulting generated code would contain this hand entered code in specific areas. 

Creating code using the methodology of first entering graphical representations to generate framework code and then 
entering particular fragments of code to provide specific interfaces and algorithm functionality is quite daunting and 
extremely difficult for the developer that is accustom to line-by-line coding. With much patience and work one can 
become proficient with the technology. So our evaluation resulted in the conclusion that auto-generating code for 
implementing state machines was not by any means easy, but would be more appropriately characterized as doable and 
more manageable over the entire life cycle of our software then any of the other approaches we tried. And so we moved 
forward. 

4. OBJECT ORIENTED DESIGN (THE UML MODEL) 

Figure 2 shows a conceptual component view of the IF sequencer as it exists within the “JPL RTC Toolkit”. At the far 
left are the Keck specific components that provide fast servo control directly to Interferometer hardware. These are 

5 



running on VxWorks single board computers as “JPL RTC Toolkit” cpu manager tasks. Each of these VxWorks 
components can be thought of as a set of objects known as RTC gizmos. 

The IF sequencer basic functions are, sending commands to RTC gizmos (e.g. lower-level subsystems) through 
CORBA and transmitting and receiving data through a “JPL RTC Toolkut” Telemetry Server (top center of Fig. 2). The 
sequencer monitors telemetry items in order to detect responses from subsystems there where commanded. Telemetry 
is generated by the IF sequencer to update status on front-end GUIs that consists of a Python script (right side of Fig. 2) .  

The Configurator GUUConfiguration Server/Configuration Database as shown in Fig. 2 are used to provide dynamic 
run-time configurability to the Sequencer. At the center of Figure 2 is the “JPL RTC Toolkit” CPU Manager 
component. Within the CPU manager framework are standard interfaces for dynamically loading shared libraries than 
finding and/or creating instance objects defined by these libraries. The implementation of the IF sequencer consists of a 
set of shared libraries. All of the state machines and support infrastructure is compiled in io  a single library called 
1ibSequencerCoreso and several different lib*Factory.so libraries. Normally the objects would have been separated 
into individual libraries but because we are using the Rhapsody supplied event communication framework rather then 
CORBA for state-machine object to state-machine object communications all objects had to be consolidated into a 
single shared library. Then for each “JPL RTC Toolkit” managed object we implemented a factory library that provided 
the interfaces needed by the CPU manager framework. 

The sequencer is organized as a hierarchy of classes both in a static sense and in a dynamic sense. Figure 4 shows the 
static class diagram. Each of the most specialized classes is a standalone state machine. State-machine objects have 
names ending in suffix of “Subsystem”. We call the state machine objects from here on subsystem classes. 
I 

SequencerSu bsystem 
(Utilities class) 

fdltargsubsystem 
I 
Fig. 4 Static class diagram of subsystems class hierarchy 

The Sequencer is composed of several mid-level subsystem classes controlled by a single high-level state machine class. 
Each of the mid-level subsytems, such as fdltargsubsystem (the FDL sidereal target generator), is itself a state machine 
that acts as the interface to one or more RTC Gizmos. There is one high-level state machine for each science mode of 
the Keck Interferometer. Currently, only the Visibility-Squared mode (VSquaredSubsystem) state machine has been 
implemented. A new high-level state machine for Nulling operations (NullerSubsystem) is in its initial stages of 
development at the time of this writing. Each of the mid-level state machines has been designed with reusability and 
extensibility in mind. The same fdltargsubsystem class used by the VSquaredSubsystem can be instantiated for use 
with a high-level NullingSubsystem class with no modifications. As more observing modes come online, more high- 
level state machines will be implements, similarly, as more RTC Gizmos are implemented more mid-level subsystem 
objects will be needed. 

s - ”  -- *_- 
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There are many commonalties among the Subsystem classes that make up high-level and mid-level subsystem classes. 
In Fig. 4 the SequencerSubsystem and Gizmosubsystem classes are utility classes that implemented the supporting 
functionality that enables subsystem classes to send events, push and monitor various types of telemetry and find, 
connect and command an RTC Gizmo. 

Although our current implementation only has two levels of subsystem classes there can be more levels created if 
desired. A hierarchical approach seemed to make sense since the sequencer functionality always is expressed as some 
composition of subsystems. Further, a hierarchical (tree) model promotes less confusion in an event model (such as the 
one included with Rhapsody) because events can only be passed up and down the tree, not sideways. 

4.1 SequencerSubsystem Class 

In the IF Sequencer, the SequencerSubsystem class provides the foundation for all subsystem (state-machine) objects. 
It is the base class but not abstract. All other subsystem classes are derived from this class. Figure 5 shows the 
SequencerSubsystem class dependencies. Note that the Collection, ManagedObject and ManagedObjectImpl 
classes are not actually implemented within the Rhapsody UML model view of Fig. 5 but are stubs referencing 
externally implemented code within the core “JPL RTC Toolkit” shared library. The two classes stereotyped as 
<<CORBAInterface>> are IDL6 (Interface Definition Language) that define top-level interface methods that all 
subsystem classes contain. 

RTC CPU Manager Classes 

RTC 

i 

Fig. 5 SequencerSubsystem utility class relationship to RTC Toolkit. 

The SequencerSubsystem class defines a state machine that serves as the basis for building application specific 
subsystem classes (shown Fig. 6a). More on this in a moment, but first there are utility functions implemented within 
Sequencersubsystem class that need to be described. 

Sequencersubsystem defines several methods to implement a subsystem hierarchy of event communication. The rule 
we adopted early on was the topology is restricted to a single parent and any number of child SequencerSubsystems. 
Rhapsody events are passed to the parent through the Upstream method and broadcast to all children through the 
Downstream method. The purpose of the Upstream method is to inform a higher-level parent state machine of 
important events such as exceptions without knowing the exact type of the parent. Thus, an fdltargsubsystem instance 
can propogate a fault event up the hierarchy without knowing if its parent is a VSquaredSubsystem or a 
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NullerSubsystem. The Downstream method enables the opposite functionality: broadcasting an event to all child 
subsystems regardless of exact type. For example, a vSquaredSubsystem can send an on event to all of its connected 
children. 

Finally, PushStatusTelemetry is used by GUIs or other clients to update data on internal state of the 
Sequencersubsystem. This method pushes the most recent value for all attached telemetry items. It is also called by 
when after an object has been configured. This way, client applications are informed of configuration changes as soon 
as they happen. 

‘ “ 
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The Sequencersubsystem class inherits from Collection to support Configuration use and from 
ManagedObjectImpl in order to be interfaced with the CPU Manager framework. 

4.1.1 RTC Managed Objects 

Every subsystem class (Fig. 5) within the IF Sequencer is derived from ManagedObjectImpl and has an associated 
factory class derived from ObjectFactoryImpl that make them “JPL RTC Toolkit” managed objects. Within the 
framework, objects are created by factories. When the managed object is created by the factory a unique id is registered 
with an ObjectManager (another “JPL RTC Toolkit” object) within the cpu manager. That Id contains both Name and 
Type information, which are used everywhere the subsystem needs a Name or Type reference. Thus 
created within the cpu manager can readily be found. 

I 

4.1.2 Configurable Objects (Collection Class) 

Figure 5 shows that the Sequencersubsystem class inherits from the “JPL RTC Toollut” Collection class. The 
Collection class provides an aggregation relationship with two “JPL RTC Toollut” template convenience classes; 
Entry<*> and Array<*>. These classes provide the interface to the Configuration Server for run-time configuration of 
parameter within the subsystem class. The template type argument can be any of the IDL defined primitive types. 
When a new configurable parameter is desired, a new attribute of type Entry<*> or Array<*> is added to the 
subsystem class model. The attributes act like conventional primitive type but are configurable. 

The Configurator GUI at the bottom left of Fig. 2 is used by the user to set values and execute reconfiguration of 
subsystem object instances within the IF Sequencer. 

4.1.3 CORBA Command Bindings 

Each of the mid-level subsystem classes inherit from the Gizmosubsystem class that provides capability for resolving 
and binding references to RTC Gizmos registered in a CORBA Name Service. The Gizmosubsystem class has an 
association with a global singleton running asynchronously in a separate thread called the GizmoManger. The 
GizmoManager contains a pair of methods for connection and reconnection to RTC Gizmos. Each class derived from 
Gizmosubsystem overrides the pure virtual instrumentznit method, which calls a b i n d G i  zmo method of the 
GizmoManager. This method will asynchronously find a Gizmo in the CORBA Name Service and correctly bind the 
reference to the GizrnoSubsystem data member. If at any time the Gizmo becomes unavailable, GizmoSubsystems 
calls the GizmoManager r e B i n d G i  zmo method, which continuously attempts to find the Gizmo again. Since 
GizmoManger is running in a separate thread the subsystem object thread will never be blocked with connection 
retries. 

4.1.4 Telemetry 

The IF sequencer utilizes the “JPL RTC Toolkit” publish/subscribe telemetry infrastructure via an intuitive, efficient, 
multi-threaded interface to the Telemetry Server for both supplying and consuming telemetry items. 
Sequencersubsystem derived classes publish telemetry in order to update status on GUIs and in archiver software; they 
subscribe to telemetry items to monitor behavior of RTC Gizmos under control. Telemetry channel names are 
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hierarchical. A set of convenience methods in SequencerManager class reduces instantiating a telemetry supplier or 
consumer to a single (long) line of code. 

4.1.4.1 Supplying Telemetry 

The CreateSupplier and CreateStructSupplier template methods in SequencerManager return a new instance of a 
“JPL RTC Toolkit” object called StructSupplierImpl or SupplierImpl. These are the fundamental client side objects 
used to connect to a unique telemetry channel (one of this objects is instantiated for each channel named). The 
overloaded operator “=” is then used to publish (or push) telemetry based on a publishing mode. For example one can 
instantiate a SupplierImpl reference called MyTelemetrySupplier and then push MyValue to is using the statement 
“MyTelemetrySupplier = Myvalue;”. The publishing mode is set at construction time and can be changed externally by 
configuration. Currently publish modes of OFF, the publishing is disabled, FULL-RATE published at full rate, 
VALUE-CHANGE sending of telemetry over channel happens only on a value change. 

4.1.4.2 Consuming Telemetry 

In the “JPL RTC Toolkit”, the final destination of telemetry is a user-defined filter class. The SequencerManager 
CreateFilter and CreateStructFilter methods return a new instance of a “JPL RTC Toolkit” Filter 
(handler) class. These references can be used to set a consuming mode analogous to the publishing mode of 
SupplierImpl instances. The telemetry infrastructure uses a push/push (COMA event) channel model that allows 
subscribers to passively wait for data (e.g. monitor). The subscriber to a telemetry channel defines a Push method 
within ones handler. The methods will be called whenever telemetry moves through the subscribed channel. The Push 
methods function is to typically generate Rhapsody events that cause a state machine (subsystem object) to respond to 
the received telemetry value. An example of this is the fringe tracker state machine class (ftsubsystem) where an 
aggregation relationship to a LockSecsFilter class is established. The LockSecsFilter class implements a Push method 
that tests telemetry representing the amount of time a fringe tracker has been locked onto a fringe during an observation. 
When this exceeds an internally set time an event is generated to the ftSubsystem state machine that commands it to 
sequence the fringe tracker to stop tracking. 

It is important for consumers to process incoming telemetry data quickly so as not to tie up the limited resources of the 
Telemetry Server. This is accomplished through the use of an AsynchronousDispatcher to handle telemetry distribution 
with a separate pool of threads. 

4.1.5 Derived Classes 

Figure 4, above, shows the set of derived classes in the IF Sequencer. These are the NullerSubsystem, 
VSquaredSubsystem high-level automation (observation mode state machines) and the fdltargsubystem, ftsubsystem 
and katSubsystem mid-level automation (for direct sequencing control of RTC Gizmos). More are being developed as 
needed. The fdltargSubsystem delivers pre-computed sidereal targets (delays settings) to update fast delay line 
positions and control them; the ftSubsystem controls the fringe tracker and the katSubsystem controls the (Keck) angle 
trackers. Each of these implements a specialized state machine (subsystem) class (e.g. fdltargsubsystem is an example 
shown in Fig. 6b) that is derived from the base state machine (Fig. 6b) implemented within the SequencerSubsystem 
class. Derived classes automatically contain the basic state chart functionality. 
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updates 

Fig. 6 Hare1 State charts (a.) base state machine implementation, (b.) fast delay line target generator state 
machine (note b. inherits a.). 

The base state machine (Fig 6a) contains five states within a NOMINAL composite state to provide standard behavior 
to all derived state machine objects. The only default behavior in each of these five states is to push a structured 
telemetry item providing information about current state, last state and status messages about operation, to an external 
software component such as a GUI that has subscribed. The external WARNING and FAULTED states are used to 
handle exception behavior. Faults are propagated to higher and lower-level state machines as necessary. 

Derived classes define custom CORBA IDL interfaces by inheriting from SequencerSubsystem-I. An example of this 
is shown in Fig. 7 for the fdltargsubsystem class. Recall that Sequencersubsystem-I inherits from ManagedObject, 
as shown in Fig 5. Thus SequencerSubsystem-I provides all the methods in the interfaced defined by “JPL RTC 
Toolkit” managed objects in addition to defining the On, Off, ReInit, Halt, Simulateon, and Simulateoff 
methods as controls of its basic (Fig. 6a) state machine behavior. The On, Ofl, ReInit, Halt methods generate 
Rhapsody events that cause corresponding state transitions; the SimulateOn or Simulateoff methods turn on and off, 
respectively, a simulation test mode implemented in every derived state machine object. The idea of the simulation 
mode is to provide a capability for testing every state machine object in a stand alone unit test way independent of (and 
without connection to) the real time system. 

Because each state machine object is loaded and instantiated by the RTC CPU Manager the Rhapsody generated state 
machine objects do not have specific knowledge about how they are related. Rhapsody events are passed from state- 
machine to state-machine by an inverse invocation scheme thus each state machine must have a pointer to the state 
machine it wish to send an event to. This means that direct associations from state machine to state machine for the 
purposZs of sendyng events has not been established and must be. Within our UML we create a static class diagram 
view similar to that of Fig. 4 but this time it defines associations allowed by type. To establish instance linkages 
another IDL method called LinkSubsystems is implemented. Linksubsystems accepts a sequence of managed object 
Ids, which specifies a number of other objects that must be referenced. A reference to each object is looked up in the 
cpu manager’s ObjectManager class and saved in a Rhapsody attribute. The caller of Linksubsystems can also be 
configurable so that the hooking up of object instances becomes fully configurable as well (typically the caller is a GUI 
program or startup script). 
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4.2 Delay Line Target Generator State Machine Object (fdltargsubsystem) 

Perhaps the simplest mid-level state machine class implemented is the fdltargsubsystem (shown in Fig. 7), thus it is 
useful to examine the implementation. An instance of fdltargsubsystem is a flexible state machine that can control 
single or multiple pairs of fast delay lines. The primary purpose of fdltargsubsystem is to compute and update FDL 
delay target positions every three seconds so that fringe tracking can be maintained on a sidereal target (star) moving 
across the sky. This functionality is implemented in Fig. 6b; there is also a set of IDL methods (not shown in Fig. 6b or 
7) that allow fundamental commanding (e.g. Idle, Track, etc.) of the FDL RTC Gizmo. The input to the 
fdltargsubsystem class is a catalog record of coordinates for the desired observation that is generated by a planning 
program called getCa17. 

On():void 
Off():void 
Relnit():void 
Halt():void 
SirnulateOn():void 
SirnulateOff():void 
LinkSubsysterns(RTC::Mana edOb'ect IdSequenceType The1dSeq):void 

<<CORbAI nt]erface>> 
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Idle(long DelayLine1ndex):void 
Calc():void 

<<CORBAlnterface>> I 
/ 

Telem 
Suppli 
lnstan 

Fig. 7 Fast Delay Line Target Generator (fdltargsubsystem) static class diagram 

While fdltargsubsystem example is perhaps one of the simplest state machine implementations in IF Sequencer 
observations cannot be made with the instrument without at least one instance of this state machine running. The state 
machine implementation (Fig. 6b) adds only two states; CALC and ZERO-FDL. The CALC state updates delay target 
values for specific star position and executes RTC Gizmo CORBA target update operations. This is repeated every 
three seconds as denoted by the tm(3000) in Fig. 6b, which is an internal Rhapsody timer thread event that causes a 
3000 millisecond delay. The ZERO-FDL state is use to send zero targets to both FDLs effectively parking them at mid 
range. 

5. LESSONS LEARNED 

During the past several years that we have been exposed to CASE tool technology we "think" a few things have been 
learned along the way. What follows is a list of lessons learned from our efforts to date, there are without question 
more to be learned about this technology! 

1. It is hard to integrate multiple infrastructures and even harder to integrate them into a CASE environment. 
Although Rhapsody had hooks for adding external infrastructure dependencies this was by no means easy to figure 
out. Corollary: On new CASE tool development projects do not mix, and reverse engineering is hard. 
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2. 

3. 

4. 

5. 
6. 

7. 
8. 
9. 

10. 

“Old programming habits die hard,”$ It is hard to get use to the graphicalkoding UML methodology of the CASE 
tool environment if you have been a line-by-line coder for years. Corollary: Tool is powerful and useful but 
learning curve steep. 
Maintainability of code is “vastly” improved. Because C++ code is coupled to UML graphical model it is more 
understandable. The use of UML is this manner automatically limits the amount of reverse engineering of code 
requiredheghe software life cycle. 
A CASE&@olsr&’l strength lies in its ability to stan$r&ze software development across a large team of engineers. 
However, using Rhapsody as an individual does benefits; the state machine-based design of classes is well- 
suited to development of ‘nterferometer sequencers, however, files sizes of auto generated code get large fast and 
this leads to long compiles $ imes. Corollary: Standardized auto-generated code leads to better infrastructure! 
Version control of UML\models between only a few developers problematic. 
One of the original attractive features of Rhapsody was animation of state machine functionality but this never was 
completely functional ow~ola r i s  operating system so the more traditional gdb was used for debugging. Corollary: 
Features in tool may look good during sales demo but be careful. 
When starting one should evaluate and not guess at a CASE tool to use; there are lots of choices today. 
Consider a process for development and then a tool. 
Templates where not included with Rhapsody case tool so we implemented them externally and hooked them into 
tool. This is a kludge and confusing to a new developer. This effectively defeats rule 3 above. 
The urge to use many of Rhapsody’s framework features has sometimes overwhelmed the wiser inclination to use 
more standardized tools such as the STL (C++ Standard Template Library). 

i-. ~ 

~ -- 

6. CONCLUSION 

The main difference between interferometer sequencers comes down to multiplicities of baselines and instrument 
subsystems. The IF Sequencer subsystem (state-machine) classes are highly configurable and meet this requirement. 

The IF Sequencer simply orchestrating subsyste$s,* we do not have particular hard real-time requirements for timing 
performance. Thus we believe that while the CASE tool approach is superior to hand coding, we tend to feel that a 
compiled solution is not warranted. Perhaps this application would more properly reside in an auto-generated 
interpreted language implementation. With a scripting language, the designer will be rewarded with less time compiling 
changes. Currently run-time configuration is our only means to minimize the amount of compile time required. 

h ;\ / -\h 

Error detection and recovery is an interesting problem; our current design implements an error scheme that is 
recoverable via operator intervention only. This was atthe users request and inevitably there will be AI planning and 
fault recovery methods used on the Interferometer sequencing problem in the future. 

Rhapsody is an excellent tool, especially for state machine design. Except for having to compile, the problem fits nicely 
into the infrastructures provided by I-logix and the “JPL RTC Toolkit”. 
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