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Nulling in TPF-I

• For deep null require electric 
fields with
– equal amplitudes
– opposite phases

• simultaneously at each 
wavelength and polarization

• Single-mode filter makes it 
easier 
– Removes all spatial effects
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Why Do Adaptive Nulling

Include a compensator to actively control 
amplitude and phase for each polarization and 

wavelength at low bandwidth
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Parallel high-order compensator design
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Phase and Amplitude Control

• Deformable mirror allows independent control of 
piston and tilt at each wavelength and 
polarization

Phase control with piston*: Amplitude control with tilt*:

* Side view, shown for single wavelength & polarization



Development activates

• Proof-of-concept experiment (λ = 0.8 to 0.9 µm)
– Less expensive optics and detectors
– Relaxed/scaled requirements
– Demonstrate feasibility of the design
– Gain experience with the control system
– Status: Complete – all requirements met/exceeded.

• Results presented at SPIE 05 Annual Meeting, San Diego.

• Mid-IR experiment (λ = 8 to 12 µm)
– Requirements traceable to flight needs for phase and 

intensity control
– Demonstrate to functionality of the design



Requirements
# Requirement mid IR Flight

1 Wavelength range of operation 8 – 12 µm 7-17µm

2 Metrology wavelength 1.319 µm 0.5 - 2 µm

3 # independent spectral degrees of freedom > 5 > 5

4 # independent polarization states 1 2

5 Null depth across the band < 10-5 < 10-5

6 Amplitude correction range > 5% > 5%

7 Amplitude precision / stability (1 σ) < 0.12% < 0.1%

8 Phase correction range > 1 µm > 2 µm

9 Phase precision / stability (1 σ) < 5 nm < 1 nm

10 Throughput reduction < 50 % < 50 %

11 Polarization isolation NA > 50 dB



Simplified Experimental Setup

Source

Spectrometer

Adaptive
Nuller

Reference

Beam
Splitter

Mirror Single mode fiber

Beam
Splitter

Mirror

• Mach-Zehnder type interferometer
• Reference is a “fixed” version of the adaptive nuller.
• Laser metrology to maintain a stable difference between the two arms.



Intensity Correction
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• Block each arm and measure the spectrum
• Calculate the difference/sum = % difference
• Positive = more light in the adaptive nuller arm



Intensity Dispersion Stability
• TPF plans to use the adaptive nuller in a “quasi-static” mode.
• Once adjusted, it will need to hold through the measurement without drifting.
• Correction is made once at T=0, RMS of intensity dispersion  is measured 

over time.
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Things left to do
• Phase dispersion adjustment.

– Phase dispersion is measured with spectral fringes
– Optical path difference needs to be stabilized during spectral 

measurement.
– Fine-tuning optical metrology, we expect results soon.

• Cross-coupling effects
– Intensity causes phase error, and vise versa.
– Would converge after 4-5 iterations in the near-IR.

• Measure null improvement.
– Also requires the optical path difference be stabilized during 

measurement
• Improvements to spectrometer

– Linear mercury-cadmium-telluride array.
• Much faster than single pixel scanning spectrometer

– All reflective optics (Remove germanium lens)
• More throughput

– New single mode fiber
• Even more throughput.



Summary

• Adaptive nulling eases requirements on optics 
and beam combiner
– Realistic manufacturing tolerances
– Does not require a highly symmetric beam combiner

• Design for a parallel high-order compensator
– Based on a deformable mirror actuator

• Mid-IR experiments in progress
– Intensity correction working well.
– Metrology to stabilize path for phase correction.
– Examine the cross-coupling effects, make null 

measurements.
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Near-IR Intensity dispersion
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• Due to difference in coated optics.
• Still need to generate intensity dispersion in mid-IR



Deformable Mirror
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1      2       3      4       5       6        7       8 • Tilting every other 

actuator
• 8 actuators to 

control the 
spectrum

• MEMS deformable mirror from 
Boston Micromachines.

• 140 actuators (12x12 – 4 corners)
• 3mm square continuous 

membrane
• ~1.8µm travel per actuator



Phase Measurement

• Final output is residual phase 
versus wavelength

• Measured residual agreed with 
calculated residual for a BK7 
window in one arm.Residual dispersion 

from ~4 mm of BK7
Residual dispersion 
from ~4 mm of BK7

• Based on a Hilbert transform.
• Measure spectrum with path 

offset from null
– Fourier transform
– Filtering
– Inverse Fourier transform
– Remove linear part (OPD)



Long term stability – near-IR
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• TPF plans to use the adaptive nuller in a “quasi-static”
mode.

• Once adjusted, it will need to hold through the 
measurement without drifting.

• Mean and peak/valley of each spectral measurement is 
plotted over time to show stability.



Null Improvement – near-IR
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Mid-IR components

• Using ceramic heater as source
• Transmissive optics replaced with appropriate 

materials (ZnSe)
• Wollaston prism tested separately.

– CdSe is the only birefringent material
– Manufactured by Cleveland Crystals 
– Cost ~ $27k each.
– Test sample had good agreement with our Zemax 

model.

• Built a mid-IR spectrometer
– Grating and single pixel mercury cadmium telluride 

detector on a computer controlled translation stage
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