
JPL Publication 89-2

An Analysis of Digital
phase-Locked Loops

J. B. Thomas

February 1989

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena. California

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

ABSTRACT

This report focuses on second-order digital phase-locked loops (DPLLs) with uniformly
sampled input, an amplitude-insensitive phase extractor and a conventional loop filter. Feedback to
the number-controlled oscillator (NCO) consists of either phase rate, as in conventional loops, or
both phase and phase rate. The phasehe DPLL outperforms the rate-only DPLL by a substantial
margin at high loop gain. Phase, including integer and fractional cycles, is computed in the
tracking processor rather than by reading the NCO. This approach can provide accurate phase
measurements even when NCO phase is discontinuously updated, as in the DPLL with phase and
rate feedback. Other distinctive features include accurate timing and time-tag computation, and an
averaging algorithm that produces phase values with output rate, noise bandwidth, and time tags
that are independent of tracking loop parameters. Design emphasizes accuracy of output phase and
improved performance at high loop gain. Loop analysis includes pole plots, curves for loop noise
bandwidth, computation of maximum loop gain, plots of dynamic response, and derivation of the
decorrelation interval for the noise on loop output phase. Phase accuracy can be improved in
dynamic applications by computing measured phase as the sum of model phase and residual phase.

. . .
111

CONTENTS

.. 1 . INTRODUCTION 1-1

.. 2 . BASIC CONCEPTS AND DEFINITIONS

... 2.1 HIGH-LEVEL BLOCK DIAGRAM

.. 2.2 SOME DEFINITIONS

... 2.3 PHASE EXTRACTOR

2.3.1 Arctangent Extractor ..

2.3.2 Sine Phase Extractor ...
...................... 2.3.3 Comparison of Sine and Arctangent Extractors

... 2.4 LOOP FILTER

..................................... 2.5 NUMBER-CONTROLLED OSCILLATOR

.. 2.6 NCO FEEDBACK

... 2.7 OUTPUT PHASE

2.7.1 Loop Output ...
.. 2.7.2 Compressing Loop Output

2.8 REAL-TIME CLOCK ...
...................... 2.9 TRACKING-PROCES SOR CONTROL FUNCTIONS

3 . A DPLL WITH RATE-ONLY FEEDBACK .. 3-1

.. 3.1 FUNCTIONAL DESCRIPTION 3-1

3.2 MODEL PHASE ... 3-3

3.3 TRANSFER FUNCTION .. 3-3

... 3.4 DYNAMIC RESPONSE 3-9

3.4.1 Transient Response ... 3-9

... 3.4.2 Steady-State Response 3-12

.................................. 4 . A DPLL WITH PHASE AND RATE FEEDBACK 4-1

4.1 FUNCTIONAL DESCRIPTION .. 4-1

... 4.2 MODEL PHASE 4-1

.. 4.3 TRANSFER FUNCTION 4-3

... 4.4 DYNAMIC RESPONSE 4-3

... 4.4.1 Transient Response 4-7

... 4.4.2 S teady-S tate Response 4-7

5 . SUMMARY AND CONCLUSIONS ... 5-1

REFERENCES ... 6-1

APPENDICES

A . EFFECTIVE DECORRELATION INTERVAL A-1

B . POLYNOMIAL FIT TO LOOP OUTPUT PHASE B-1

Figures

2- 1 .
2.2 .
2.3 .
2.4 .
2.5 .

.............. High-Level Block Diagram of a Digital Phase-Locked Loop

Noise Power Spectrum Following a Sum and Dump Operation
.............. Illustration of an Amplitude-Insensitive Sine Phase Extractor

Schematic Block Diagram of a Number-Controlled Oscillator
Schematic Illustration of the Generation of Three-Level
Counter-rotation Sinusoids ...

.................. Schematic Illustration of Loop Intervals and NCO Phase

Tracking Processor Operations for a Digital Phase-Locked Loop with
... Rate-Only Feedback

Frequency Response of a Digital Phase-Locked Loop with
Rate-Only Feedback ...

.................... . Loop Noise Bandwidth vs Loop Parameter Bandwidth

Root-Locus Plot for a Digital Phase-Locked Loop with Rate-Only
... Feedback: Case A

Tables

3-5. Root-Locus Plot for a Digital Phase-Locked Loop with Rate-Only
Feedback: Case B ... 3-8

3-6. Transient Response After Phase Step for a Digital Phase-Locked Loop
with Rate-Only Feedback

3-7. Transient Response After Phase-Rate Step for a Digital Phase-Locked
Loop with Rate-Only Feedback..

4-1. Tracking Processor Operations for a Digital Phase-Locked Loop
with Phase and Rate Feedback ...

4-2. Frequency Response of a Digital Phase-Locked Loop with Phase
and Rate Feedback

4-3. Root-Locus Plot for a Digital Phase-Locked Loop with Phase and
Rate Feedback: Case A ...

4-4. Root-Locus Plot for a Digital Phase-Locked Loop with Phase and
Rate Feedback: Case B ...

4-5. Transient Response After Phase Step for a Digital Phase-Locked Loop
with Phase and Rate Feedback ...

4-6. Transient Response After Phase-Rate Step for a Digital Phase-Locked
Loop with Phase and Rate Feedback ...

2-1. Summary of Bandwidths in Digital Phase-Locked Loops..
2-2. Observed SNR After RSS vs. True SNR

3-1. Upper Limits for BLT in Digital Phase-Locked Loops

ACKNOWLEDGMENT

I am grateful to L.E. Young, T. P. Yunck, W. J. Hurd, J. M. Srinivasan, T. K. Meehan,
and S. M. Hinedi for their helpful suggestions after reading a draft of this report, to J. Gunckel
for assistance in preparing the figures, and to Diana Meyers for her skill in transforming the draft
into an external report.

SECTION 1

INTRODUCTION

Over the years, digital phase-locked loops (DPLLs) have been designed in a variety
of forms (for example, see references 1 through 3), utilizing various phase extractors, loop filters,
and number-controlled oscillators (NCOs). Assuming uniformly sampled input, this report
focuses on second-order DPLLs with an amplitude-insensitive phase extractor and a conventional
loop filter. NCO feedback consists of either phase rate, as in conventional DPLLs, or both phase
and phase rate. Phase, including integer and fractional cycles, is computed in the tracking
processor rather than by reading the NCO. This approach can provide accurate phase
measurements even when NCO phase is discontinuously updated, as in the DPLL with phase and
rate feedback.

Design of the DPLLs in this report emphasized accuracy of output phase and
performance at high loop gain. Even though emphasis was also placed on algorithm efficiency,
minimizing computation and memory requirements was given secondary consideration relative to
accuracy and performance. Because of the relentless and rapid advance of digital technology,
digital capabilities soon expand to accommodate even the designs that first appear to be beyond
implementation.

Most designs and analyses of DPLLs have assumed low loop gains for several
reasons: (a) loop noise bandwidth increases disproportionately for higher loop gain, (b) loop
instability develops for higher loop gains, and (c) the use of an amplitude-sensitive sine phase
extractor requires a wide gain margin. This report considers loop designs that allow higher loop
gains, and compares the performance of those designs. High loop gain is a desirable option in
applications where a lower limit must be placed on the NCO-update interval, T, but where
dynamics requires a loop bandwidth, BL, such that BLT > 0.1.

In the DPLL designs analyzed in this report, use of one or more of the following
features allows loop gain to be increased beyond the range allowed in other DPLL designs. First,
an amplitude-insensitive phase extractor is used, which avoids the requirement for a large gain
margin. Second, the residual phase from a given interval is used immediately to help update the
NCO for the next interval, with a negligible delay for feedback computation. Third, the NCO is
updated in both phase and rate rather than rate alone.

Maximum loop gain is determined for each DPLL design on the basis of two criteria:
root-sum-square (RSS) transient response and the onset of lingering oscillations. These two
criteria provide a more conservative and realistic method for setting maximum gain than
computation of the point at which a pole of the transfer function crosses the unit circle.

Besides elimination of the gain-margin requirement, another important advantage is
gained by utilizing amplitude-insensitive phase extractors. When an unnormalized sine phase
extractor is used, signal-amplitude fluctuations can change the effective value for loop bandwidth
and damping factor. If the fluctuations are sufficiently large, loop response to dynamics can
deviate substantially from expected performance. Amplitude-insensitive phase extractors, on the
other hand, allow the precise implementation of fixed values for loop bandwidth and damping

factor. When loop bandwidth and damping factor are independent of signal-amplitude
fluctuations, optimal loop constants can be selected for a given application, with the knowledge
they will not vary during a track unless they are reset (for example, on the basis of the most recent
SNR and dynamics). Given the reputation of digital circuitry for exact and controlled
performance, one would expect no less in a DPLL.

Accuracy of measured phase can sometimes be improved in dynamic applications
(i.e., applications with significant tracking errors) by two changes to the classical DPLL. First,
when SNR is adequate, an arctangent phase extractor can be used to extract residual phase, which
avoids the errors due to the nonlinear response of a sine phase extractor. Second, measured phase
for an integration interval can be obtained by adding observed residual phase to model phase so
that the tracking error for the interval is not ignored in the loop output phase. This operation would
remove from loop output phase, for example, the steady-state tracking error generated in a second-
order loop by a constant acceleration.

For an arctangent extractor to perform to expectations, SNR must be at moderate to
high levels. When SNR is low and tracking errors are sufficiently small, a sine extractor could be
preferable. To reduce the adverse effects of amplitude fluctuations, two normalization schemes for
sine extractors are proposed.

Substantial consideration is given to timekeeping in order to emphasize the
importance of time-tag precision. A design is presented for a real-time clock and control of loop
timing.

In the designs considered in this report, the high-speed operations performed at the
input sample rate, such as NCO operations, phase counter-rotation, and accumulation, are camed
out by special-purpose hardware. A tracking processor, which could consist of special-purpose
hardware and/or a microprocessor, performs the less frequent operations such as phase extraction
and loop-filter operations, as well as computations for model phase (integer and fractional cycles),
NCO feedback, sum-interval start and stop times, and output values for phase and time tag.

The noise analysis covers several topics of importance in understanding DPLLs,
including the bandshape of down-aliased noise after the counter-rotation sum, definition of several
DPLL bandwidths, loop bandshapes, and the effective decorrelation interval for the noise on loop
output phase.

Section 2 presents basic definitions and concepts for DPLLs. Based on the z
transform of linearized loop models, the following sections present, for each DPLL design, plots
of transfer-function poles, loop bandpass shapes, and plots of loop noise bandwidth. In addition,
steady-state and transient responses to dynamics are outlined.

SECTION 2

BASIC CONCEPTS AND DEFINITIONS

This section first presents a generalized block diagram of a DPLL and defines the
basic components in a loop. Then, specific designs for each component are described. Details,
such as the number of levels in the digitized input signal and in the counter-rotation phasor, and the
number of bits in phase registers, will not be specified. Since each application has its own
accuracy and design requirements, these numbers can vary considerably from system to system.
General symbols will be employed under the assumption that each quantity would be digitized in
an actual system in a manner that reduces the effects of quantization, such as rounding and
commensurability errors, to a negligible level after averaging and compensating processing have
been applied. For similar reasons, implementation design will not be discussed even though a
number of feasible implementation schemes can be devised for each component.

HIGH-LEVEL BLOCK DIAGRAM

A high-level block diagram for a DPLL is shown in Figure 2- 1. The DPLL has been
divided into two major components: a counter-rotation processor (CP) and a tracking processor
(TP). The CP operations, which are carried out at the input sample rate by special-purpose high-
speed hardware, include NCO operations, a complex multiplication to counter-rotate, and a
complex sum. The TP operations, which are carried out much less frequently (i.e., once each
counter-rotation sum interval) by special-purpose hardware andfor a microprocessor, include a
phase extractor, a loop filter, model-phase computation, computation of NCO feedback,
computation of start and stop times for the sums, and computation of measured phase and time tag.
TP operations can take place either in the dead time between CP sum intervals or concurrent with
CP operations during a sum interval, depending on the nature of the operations. The following
paragraphs contain a more detailed description of both CP and TP operations.

An incoming signal consisting of a tone plus noise is sampled in a quadrature
(complex) mode at a uniform sample rate. (Nonquadrature sampling can be employed if the tone
frequency is high enough to make the sum note average to a negligible level in the counter-rotation
sum described below.) In the CP, the sampled signal is counter-rotated point by point by means of
a complex multiplication with a stream of phasors generated by the NCO on the basis of feedback
supplied by the TP. Over a sum interval, the phase used to generate the counter-rotation phasors is
a linear time function. When the loop is in lock, the complex multiplication counter-rotates both
tone phase and phase rate to nearly zero values. The resulting complex products are then summed
over all points in an interval of length T' to obtain an average counter-rotated phasor for the sum
interval. The sum compresses the data volume and improves SNR so that residual phase can be
more precisely extracted. The two components of the complex result are often referred to as the in-
phase (I) and quadrature (Q) components to denote alignments of 0 and 90 degrees, respectively,
for the NCO phase relative to the input phase.

At the end of a sum interval, the contents of the accumulators are passed to the TP
and the accumulators are set to zero in preparation for the next interval. In the TP, a phase extractor
computes a residual phase from the complex sum. This residual phase is then passed through a
loop filter to estimate the next value for phase rate. The resulting phase rate is then used to compute
model phase for the next interval and to calculate feedback needed to update the NCO for the next
sum interval. Based on the feedback for this interval, the NCO generates a model phasor for each
sample point in the interval. The resulting stream of phasors is multiplied point by point by the
sampled signal, thereby completing the loop.

OUTPUT PHASE

Figure 2- 1. High-Level Block Diagram of a Digital Phase-Locked Loop

INPUT TONE

PLUS NOISE

C

COUNTER-ROTATION PROCESSOR

AID
COMPLEX
MULTIPLY

e i++q
f s

TRACKING PROCESSOR

"I* U Q PHASE
EXTRACTOR

1 I T

A

84

SAMPLE CLOCK

ei($-+m)+q,

fs

1l-r

2

REAL-

U = C
T '

e ' i o m

-A\ A , -
fs

v

t s
LOOP FILTER:

- t s = t s + T ESTIMATE
1 I T PHASE RATE

ROTATION
SlNUSOlDS

TIME
CLOCK

A

fs
ENABLE
LOGIC

FEEDBACK

1 I T
fs = SAMPLE RATE

T = UPDATE INTERVAL

T' = SUM INTERVAL

t -
.
@m 1 I T

L

CALCULATE
, MODEL PHASE

I
F AND FEEDBACK

t s COMPUTE OUTPUT 60
b PHASE AND

t = t s ?

1 I T TIME TAG 1 I T

yf,t 1I-r

NCO:
GENERATE
COUNTER- 4

In the DPLL designs considered in this report, the TP computes the model phase
applied by the NCO and keeps track of integer cycles of phase (with the integer part of the model
phase variable) as well as fractional cycles. (The NCO only tracks fractional cycles.) For every
NCO update interval, the TP increments the start-time variable with the update interval, T, in
preparation for activating the sum for the next interval. (In typical applications, the update interval
and sum interval are set by the TP to fixed values for a whole track.) Utilizing model phase,
residual phase, and the start-time variable, the TP extracts, after the completion of each update
interval, measured phase and time tag for the interval.

Not shown in Figure 2-1 is a final step that "averages" the phase generated by the
DPLL over longer time intervals, thereby decreasing noise and reducing the output rate. Such
averaging is discussed in Section 2.7.2.

2.2 SOME DEFINITIONS

Tracking error refers to the difference of input tone phase and model phase (NCO
phase). Residual phase refers to the phase value output by the phase extractor. Residual phase is
equal to tracking enor plus the effect of noise from the current sum interval.

DPLLs are characterized by a number of bandwidths. As summarized in Table 2- 1,
the bandwidths that will be defined for DPLLs are sum bandwidth, loop parameter bandwidth,
loop noise bandwidth, residual-phase bandwidth, loop-output bandwidth, and compressed-phase
bandwidth.

Sum bandwidth (accumulator bandwidth) is the effective single-sided noise
bandwidth (SSNB) of a sum over an interval of length, T', and is given by ll(2T'). Since the
filter shape for a sum is a sinxlx function with extensive sidelobes, down-aliasing can be applied to
the sidelobes on the basis of the output sample rate (ID) of the sum-and-damp operation. It will
be assumed that dead time between sum intervals is negligibly small in the analysis of this
paragraph so that 'I" = T. Figure 2-2 plots the (sinx/x)2 filter due to the sum, along with the
effective noise spectrum after down aliasing all sidelobes into the sampling bandpass of - 1/(2T) to
1/(2T). It is assumed here that the noise spectrum entering the sum is flat across all significant
sidelobes. Note that, after aliasing, the effective spectrum is perfectly flat across the sampling
bandpass as though it had been filtered with a perfect rectangular baseband filter with a two-sided
bandwidth of 1D. This characteristic of aliased noise will be useful in computing loop noise
bandwidth in subsequent sections. This aliasing result is based on the following relation:

Signal (voltage) amplitude after the CP sum is equal to the RSS of the I and Q
components of the complex sum. Sum SNR, SNRT, is defined as the signal amplitude divided by
the root mean square (RMS) noise arising on either component during the sum interval [i.e., noise
with the sum bandwidth l/(T')].

As the name implies, loop parameter bandwidth, BL, does not physically exist
anywhere in a DPLL circuit, but is only a parameter specified in the computation of loop gain. As

Table 2-1. Summary of Bandwidths in Digital Phase-Locked Loops

T'= sum interval

Bandwidth
Type

Sum BW

Loop-Parameter BW

Loop-Noise BW

Residual-Phase BW

Output-Phase BW

Compressed-Phase BW

T,= compression (averaging) interval

Single-Sided
Bandwidth

1 / (2 ~ ')

BL

B:

B:+ l l (2 ~)

1 / (2 ~) or 6:

- > 1/(2T,)

explained below, loop parameter bandwidth first appears when DPLL loop constants are formu-
lated in a manner similar to analog loops, thereby imparting some parametric meaning to those
constants. Loop noise bandwidth, BY, is defined as in analog loops, namely as the effective
SSNB of model (NCO) phase. When the loop parameter bandwidth is very small compared to
lfl, loop parameter bandwidth is approximately equal to loop noise bandwidth. Loop (voltage)
SNR is equal to the signal amplitude divided by the RMS noise arising on either component from
the loop noise bandwidth.

Residual-phase bandwidth is defined as the SSNB of the noise on the residual phase,
and is equal to the sum of loop noise bandwidth and sum bandwidth. Loop-ourpur bandwidrh is
the effective SSNB of the phase extracted from the loop every update interval and depends on how
such loop output is calcuIated, as explained below. Compressed phase is computed by post-loop
circuitry or software by "averaging" loop output phase over many update intervals (for example,
by a straight average or by a polynomial fit). Compression is applied when the loop output rate is
too high for the intended application. If the compression interval is T,, the resulting data rate will
be l/Ta and the SSNB after compression typically will be on the order of 1/(2TJ. (With a straight
average or a linear fit, the SSNB will be 1/(2Ta) and with a quadratic fit, the SSNB will be
1 .5/(2Ta).)

2.3 PHASE EXTRACTOR

The following subsections analyze and compare two types of phase extractor:
arctangent and sine. It is assumed that the input tone is unmodulated.

2.3.1 Arctangent Extractor

An arctangent extractor obtains residual phase in units of cycles by computing the
phase angle defined by the two complex components of the CP sum. When the tone is
unmodulated, a four-quadrant arctangent is applied to obtain a phase value between -1/2 and +1/2
cycles. With adequate SNR and accurate feedback, residual phase will fall between -1/2 and +1/2
cycles, and extracted phase will be a valid measure of residual phase.

For low sum SNRs (e.g., SNRT = I), residual phase extracted by an arctangent
extractor can be corrupted by cycle ambiguities. When low SNR causes many ambiguities, the
average response of an arctangent extractor changes from a sawtooth shape to a less accurate sine-
like curve.4 As SNR approaches zero, an arctangent extractor loses all sensitivity and its average
response approaches zero, even when BLT is small. For this reason, an arctangent extractor does
not perform well when sum SNR is small. In effect, this characteristic of the arctangent extractor
places a lower limit on the update interval, T, which, in turn, places an upper limit on BL on the
basis of loop instability.

2.3.2 Sine Phase Extractor

A sine extractor obtains residual phase from the quadrature component of the CP
sum, after accounting for tone amplitude in some way. When used in a conventional fashion, sine
extractors rely on calibration and gain control to account for amplitude. Such sine extractors can
suffer from unwanted amplitude variations and therefore require a gain margin.;! As discussed
above, this defect lowers the upper limit for loop gain and can result in poorly determined loop
gain, loop bandwidth, and damping. An ideal sine extractor is defined as being insensitive to
amplitude variations, experiencing a negligible increase in noise due to amplitude normalization,
and generating phase in units of cycles.

An ideal sine extractor can be approximated by using one of several normalization
schemes. For a DPLL to be truly digital, normalization should be carried out digitally and should
not depend on analog calibration and adjustment of amplitude. The most obvious digital normali-
zation scheme is to divide the Q component by the RSS of the I and Q components of the current
interval. With low SNRs, however, noise on such a normalization factor will be too large to allow
approximation of the ideal sine extractor described above.

When amplitude is slowly varying, normalization algorithms can be implemented that
average the results of previous intervals to reduce the effect of noise in the normalization factor.
The algorithms could perform a running average of previous intervals so that each interval is
normalized on the basis of the most recent intervals. Depending on the n a m of the tracking
errors, one of two approaches can be used to compute the normalization factor: noncoherent or
coherent averaging. (Even though these schemes will operate at fairly low SNR, SNR cannot be
extremely low. When SNR is extremely low, it may not be practical to sum over enough past
points to lower noise on the amplitude measurement to an adequate level.)

If tracking errors are large and variable from one update interval to the next, the
noncoherent averaging illustrated in Figure 2-3 can be applied. In the noncoherent approach, the

'

RSS amplitudes from a number of previous sum intervals are averaged to reduce noise on the

N 1

* A, =+C [u: (n- k)+ U& lr)IT NONCOHERENT AVERAGE

N

u,(n-k)12+ [X uQ(n- k)12 An- N
COHERENT AVERAGE

k = l k = l

w")
CYCLES * b

Figure 2-3. Illustration of an Amplitude-Insensitive Sine Phase Extractor

A

An

COMPUTE
AVERAGE

AMPLITUDE*
v L

u, (n)
Wn=- 27~ An

amplitude estimation. If NA intervals are averaged, noise will be improved by the square root of
NA. For example, if 100 previous intervals are averaged, and if the voltage SNR for a sum
interval is SNRT = 3, the 1-sigma noise error on the normalization factor will be about 3% rather
than about 30%. Thus, loop gain, loop bandwidth, and damping will be also accurate to
about 3%.

Note in Figure 2-3 that the average of RSSs does not include the most recent interval.
This omission allows the sum operations to be carried out in parallel with CP operations, thereby
avoiding the need for dead time operations in computing amplitude. Since a large number of
previous intervals (e.g., 100) is needed to obtain a substantial reduction in noise, the omission of
the most recent interval will result in a negligible loss of information.

(At fmt glance, computation of a running average of amplitude would appear to be
prohibitively lengthy. However, computation of the sum can be reduced to a few operations per
update interval if some memory is sacrificed. If 100 points are averaged, for example, the RSS
amplitude for each of the last 100 points can be stored in a 100-point array that is updated by
means of an address pointer. The address pointer is incremented by one for each new point and
"modulo'ed" with 100. When the RSS amplitude for the new point is stored in the array at the
resulting modulo address, the previous amplitude is erased. Before it is erased, this "first sum

' amplitude" is subtracted fiom the amplitude sum and the new amplitude, the "last sum amplitude,"
is added. In this manner, each new value of the amplitude sum requires only a few operations for
each new update interval: 1 addition, 1 subtraction, and a few housekeeping operations. There is
an alternate approach that is less current but does not require the memory array. That approach
would perform a sum over a 100 points and continue to use that same average for the next 100
points while another average is being computed.)

The noncoherent-average approach becomes unreliable when sum SNR is very small
(SNRT c 1) because the RSS amplitude computed for individual sum intervals is then mostly
averaged noise, with greatly reduced sensitivity to true amplitude. For small SNRs (e.g., SNRT =
1 to 3), accuracy of normalization can be improved with an SNR translation table that relates the
observed SNR derived from averaged RSS amplitude with "true" sum SNR based on actual
amplitude. An SNR translation table is shown in Table 2-2 for; true sum SNRs between 0.9 and 5.
To use this table, an observed SNR is computed on the basis of the averaged amplitudes, and used
along with Table 2-2 to estimate the ratio of true SNR ta observed SNR. The resulting ratio is then
multiplied times the noncoherent-average amplitude All, as computed in Figure 2-3, to obtain an
estimate of true amplitude. (It is assumed that a method for estimating observed SNR is
implemented. Since different methods can be implemented for different systems, SNR
computation will not be covered.) When true sum SNR is about 1 or less, the SNR translation
becomes to too inaccurate and the noncoherent approach must be abandoned.

Even lower SNRs (SNRT < 1) can be handled if both the tracking error and
amplitude are slowly varying. In such cases, the I and Q components of the CP sums can be
separately averaged, as illustrated in Figure 2-3, thereby improving SNR through coherent
combination. The RSS of the complex components of the resulting coherent average is computed
for use as a normalization factor. Again, noise is improved by square root of NA. If SNRT is 1
and if 1000 previous intervals are averaged, the 1-sigma error on the normalization factor will be
3%. Thus, loop gain, loop bandwidth, and damping will be also accurate to about 3%. The
computation algorithms presented above for the noncoherent sum can also be applied to the
coherent sum components.

Table 2-2. Observed SNR After RSS vs. True SNR

2.3.3 Comparison of Sine and Arctangent Extractors

Sine extractors can produce a distorted measure of tracking error that can
compromise the accuracy goal for measured phase (see Section 2.7). For example, a sine phase
extractor becomes nonlinear when tracking error exceeds about 30 degrees. An arctangent
extractor, on the other hand, is linear up to 180 degrees, provided SNR is adequate to allow such a
large trackin error. This factor-of-six disadvantage of sine extractors can be overcome in some
applications % y taking advantage of the greater range of sum SNRs allowed by the sine extractor,
as explained below.

SNR t ru elSNRobs

0.600
0.757
0.835
0.878
0.906
0.925
0.938
0.949
0.957
0.963
0.968
0.972
0.974
0.977
0.979

SNRo,
(amplitude)

1 .SO
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00

i

When sum SNR is very low (e.g., SNRT = I), a sine phase extractor will greatly
outperform an arctangent extractor. The superior performance of the sine extractor under these
conditions is a result of the nature of the noise on extracted phase.6 For a sine extractor, noise
from the interval just completed linearly enters the extracted phase as an additive term. When BLT
is set to a small value (e.g., BLT < 0.01), the loop filter, in effect, averages this interval noise to a
small value, without changing the sine response of the extractor, on average. Thus, a sine
extractor can provide reliable tracking for small sum SNRs. This performance is to be contrasted
with the deteriorating response of an arctangent extractor when SNR decreases, as explained
above.

SNRtrue
(amplitude)

0.900
1.325
1.670
1.975
2.265
2.545
2.81 5
3.083
3.350
3.61 0
3.872
4.1 30
4.385
4.640
4.895

Because a sine extractor can handle smaller sum SNRs, the update interval can be set
to much smaller values for that extractor, provided the particular implementation can handle the
greater speed. Given a smaller update interval, one can set the loop parameter bandwidth to a larger

value before experiencing disproportionate increases in loop noise bandwidth and loop instability
due to high loop gain. A larger loop bandwidth leads to smaller tracking errors, which makes the
30-degree limit more feasible. The same loop parameter bandwidth may not be feasible with an
arctangent extractor for the reasons outlined above.

2.4 LOOP FILTER

The loop fdter combines present and past values for residual phase to obtain the next
estimate for phase rate or, more accurately stated, for phase change over an update interval. A
conventional second-order loop filter in a DPLL computes this phase change, in units of cycles, by
means of the formula (for example., see references 2 and 3)

where K1 and K2 are loop constants and & is residual phase for the kth interval in units of
cycles. When expressed in terms of loop parameter bandwidth BL, damping factor, r, and update
interval, T, the first loop constant3 can be expressed as

and the second in terms of the fmt as

K2 is determined by K1 once a damping factor has been selected. K1 will be referred to as the loop
gain. (Note the difference between this definition of loop gain and that of conventional loop gain,
which can be viewed as a factor multiplying both terms in Equation (2.2). K1 is a more useful
definition of loop gain when amplitude-insensitive phase extractors are used.) These definitions of
loop constants assume that the phase variables in Equation (2.2) have consistent units (i.e., that
residual phase and estimated phase change are in units of cycles).

The damping factor is typically set in the range of 2 to 4, where 4 is critically damped.
If r is very large, a first-order loop is obtained. The damping factor can be computed in terms of
the damping ratio, c, from the relation r = 4 c2. BLT can range from very small values (e.g.,
0.001) up to 0.45, depending on the application, as explained below. Given the large range of
BLT relative to that of r, BLT is the dominant factor in the loop gain equation (see Equation (2.3)).
For this reason, the terms loop gain and BLT will be used interchangeably.

This formulation of loop constants parallels the definitions used in analog loops. In
analog implementations, the loop parameter bandwidth BL becomes the usual loop bandwidth. In
digital implementations, BL can be regarded as loop bandwidth in its diverse uses if BLT << 0.1.
For large values of BLT, however, BL underestimates loop noise bandwidth, but is more relevant
in the calculation of dynamic effects.

To obtain a third-order loop filter, the usual double-sum term (K 3 C w) could be
added to Equation (2.2). Such a third-order filter could be implemented in the DPLLs described in
the following sections, but that option will not be analyzed in this report.

2.5 NUMBER-CONTROLLED OSCILLATOR

A schematic block diagram of an NCO is shown in Figure 2-4. A phase register
contains the most recent fractional phase value in the form of an integer. (By dividing this integer
by 2Nb, where Nb is the number of bits in the register, one can obtain the fractional phase in units
of cycles.) A rate register contains the current phase rate in the form of an integer. (To obtain the
phase rate in units of cycles/sample, one can divide this integer by 2Nb.) For each new sample
point, the NCO increments the phase register with the rate register to obtain the next phase value.
The most significant bits (MSBs) of the resulting fractional phase are then used to drive a phasor
generator consisting of a table-lookup or logic circuitry that generates two quantized sinusoids.
The resulting phasor is multiplied by the current complex sample value to counter-rotate the tone.
Phasor generation is illustrated in Figure 2-5 for three-level sinusoids based on the 4 MSBs of a
24-bit fractional-phase register.

As indicated in Figure 2-4, the NCO phase register only tracks fractional phase since
integer cycles have no effect on the table lookup. Integer cycles that appear as overflow when
phase is advanced are discarded.

In the detailed design of an NCO, one must choose a value for the number of bits in
the phase register and choose the number of levels for quantizing sinusoid amplitude. As indicated
above, such choices are highly dependent on the application and will not be specified here. It will
be assumed, however, that errors resulting from quantization and roundoff can be made suffi-
ciently small to meet performance goals of the DPLL. For example, the effects of the harmonics
caused by quantizing the sinusoids can be reduced to a negligible level by the filtering effect of the
counter-rotation sum if the phase rate of the input tone is sufficiently high and is effectively
incommensurate with the sample rate.

2.6 NCO FEEDBACK

Two high-level decisions must be made concerning the NCO feedback: (a) whether to
update only rate in the NCO, or both phase and rate, and (b) how long to make the computation
delay (the delay from the completion of a sum interval to the time that the hardware inserts into the
NCO the feedback derived from the output of that sum interval.)

With regard to decision (a), conventional DPLLs update only the NCO rate, while
maintaining a "continuous" phase function. By updating both phase and rate, however, one can
substantially improve loop performance when a large loop gain (e.g., BLT > 0.1) is used. To
provide comparison between the two approaches, the DPLL designs analyzed in the next two
sections are based on rate-only feedback and phase-and-rate feedback, respectively. NCO phase
behavior for these two options is schematically illustrated in Figure 2-6.

With regard to decision (b), better loop response will be obtained, in general, if the
residual phase from each sum interval is utilized as quickly as possible. The impact of computation
delay is strongly dependent on loop gain. If the application allows use of small values of BLT

. (e.g., 0.01), the adverse effects of computation delay, even when it is as large as an update
interval, can be very small. If loop gain is high, a computation delay can substantially degrade
loop performance.

OVERFLOW

&om s%om TILDE DENOTES LEVEL QUANTIZATION

Figure 2-4. Schematic Block Diagram of a Number-Controlled Oscillator

SlNUSOlD
GENERATOR

A

INTEGER-CYCLE

I

0, 9 cycles A$,, cycles/sample-pt

BINARY BINARY
POINT POINT

NCO
Phase

NCO
Phase

I
Update Interval, T

14
I I
I I
I I
I Sum, T' I a

a I I 14 a
I I

I I
I
la

a;. 0 a am.. . .I. a a a;-
I
I

1-1
I

I I Dead
Time

Rate-only
Feed back

I

Time

U~da te Interval. T

a I I a
a I

I
I .

a Sum, T' I I a .Ir Dl
I I t
I I I
I I I

m a a a a a a a a e m a m Phase and Rate
1-
I
I Dead

Feedback

Time

Figure 2-6. Schematic Illustration of Loop Intervals and NCO Phase

In the analysis that follows, one of two assumptions will be made concerning
computation delay. In the easiest implementation, it is assumed that a whole update interval is used
to cany out feedback computations. This implementation, which has been extensively studied and
used, will restrict loop gain to smaller values than the alternative implementation. In the alternative
implementation, it is assumed that the hardware is fast enough to cany out feedback operations
during a dead time between sum intervals, with a negligible loss of SNR due to the data lost during
the dead time. Because of the dead time, the sum interval, T', will be slightly shorter than the
update interval, T, as illustrated in Figure 2-6.

The choice of phase extractor impacts the decision about the size of computation
delay. As explained in Section 2.3.3, a sine extractor can allow the use of much smaller update
intervals than an arctarlgent extractor. When the update interval is smaller, larger values of loop
bandwidth can be used while keeping BLT small. If BLT is small, the computation delay can be set
equal to a whole update interval without substantially compromising loop performance. This
approach would avoid the development of very fast dead-time hardware and would suffer no loss
of SNR due to lost data.

2.7 OUTPUT PHASE

This subsection first explains computation of phase output by the loop once every
sum interval and then summarizes the step that averages the loop output to obtain a lower rate and
lower noise.

2.7.1 Loop Output

Since the tracking processor can control exactly the phase generated by the NCO,
model phase applied by the NCO at the center of a sum interval can be easily calculated by the
tracking processor. Two options for loop output will be considered: model phase at interval center
and total measured phase at interval center. Total measured phase is computed as the sum of model
phase and residual phase. Conventional DPLLs generate model phase (i.e., "NCO phase") and
neglect the important information contained in the residual phase. Because residual phase is a
measure of the tracking error across a sum interval, it should be utilized unless there are overriding
considerations. An example of the advantage of this procedure is provided by the classical steady-
state phase error that is suffered when a second-order loop tracks a quadratic phase function (e.g.,
an acceleration). By adding residual phase to model phase, the steady-state phase error can be
corrected.

When model phase and residual phase are combined, therefore, tracking error can be
essentially eliminated in the loop output, leaving only system noise to corrupt the output, (If the
DPLL is properly designed and implemented, quantization and roundoff effects can be reduced to a
negligible level.)

One potential disadvantage of this approach is the increase in ~ o i s e bandwidth of the
output observable. The SSNB of model phase is loop noise bandwidth, BL whereas the noise
bandwidth of the total phase observable is sum bandwidth ll(2T'). (When model phase and
residual phase are added, model phase, including its noise, disappears, since residual phase is
equal to total phase m@us model phase. Thus, total-phase noise bandwidth is then equal to sum
bandwidth.) Since 2BLT can be small (e.g., < 0.2), the SSNB of total phase can greatly exceed
the SSNB of model phase.

For applications in which SNR is low, tracking enor is small, and each phase value
output by the loop must have a small total error for some reason, loop parameter ban'dwidth can be
set to a small value (e.g., BLT< 0.1) and model phase can be used as loop output. In high-accuracy
applications in which many loop output values are averaged to obtain output phase (see Section
2.7.2), total phase should be output by the loop.

Another feature of importance for the loop output points is the degree of noise
correlation between output points. If total phase is extracted, there is no correlation between the
noise on the phase values extracted for different update intervals, since noise arising during one
sum interval is unconelated with the noise from any other sum interval. If model phase is
extracted, however, the noise on loop output from adjacent update intervals can be highly
correlated. In this case, the extent of correlation is suc$that, in an interval T. containing many
update intervals, there are, in effect, approximately 2BL Ta independent values of phase with
respect to noise. This result for independent values is denved in Appendix A and has been verified
statistically to good approximation with simulation software, for both small and large loop gains.
The decomlation interval, which wil1ybe defined as the effective interval between statistically
independent points, is equal to 1/(2BL).

2.7.2 Compressing Loop Output

In most applications, the user will want a phase value less frequently than every sum
interval. For example, the loop output rate might be 1000 Hz, while the user wants one phase
value per second. Conventional loops often "compress" the output rate by extracting phase
produced for every Nth sum interval (e.g., by "strobing" the NCO phase) while ignoring the other
values. This approach does not use all the information produced by the loop, and unnecessarily
sets the compressed-phase bandwidth equal to the loop bandwidth. In the compression scheme
described below, it is possible to set the output rate and bandwidth of compressed phase
independently of loop parameters.

This alternate approach, which is most appropriate when the loop output is total
phase, implements an algorithm to "average" loop output phase. Possible averaging approaches
would include a least-squares fit of a polynomial to the phase values from all update intervals in a
specified averaging interval (e.g., 1000 values over a one-second interval). The time tag for
estimated phase would be placed at the center of the averaging interval and could be selected to fall
on the integer second. For reference, a method for fitting a least-squares polynomial is outlined in
Appendix B. In many applications, the averaging algorithm could be tailored to expected phase
dynamics to minimize "modeling" error. For example, the order of a polynomial could be
increased to the level necessary to handle expected phase dynamics.

As mentioned above, when an "averaging" operation is applied to compress many
loop outpbt points to one point, the SSNB noise bandwidth of the averaged phase will be of the
order of 1/(2TJ, where T, is the averaging interval. This same noise bandwidth for the
compre sed data would result for either of the two choices for loop output phase. (It is assumed 8 that 2BL Ta.>> 1 so that the averaging "filter" is dominant.) Thus, if such averaging is applied,
total phase is preferable to model phase, since the same system-noise error is ultimately obtained
and total phase is more accurate with regard to tracking error.

2.8 REAL-TIME CLOCK

Time for the loop is kept by a real-time clock driven by the sample clock. The real-
time clock consists of two integer registers, one containing integer seconds and the other fractional
seconds in units of input sample points. The fractional-second register is incremented by one for
each sample (i.e., for each rising edge of the sample clock). When the number contained in the
fractional-second register reaches the number of samples per second (i.e., f,),. the fractional-second
register is set to zero and the integer-second register is incremented by one. Circuitry is provided to
initialize the real-time clock by synchronizing with an external 1 pps.

2.9 TRACKING-PROCESSOR CONTROL FUNCTIONS

The tracking processor controls the start and stop times for the counter-rotation sum.
Since the computation time for the dead-time operations between sums can be accurately
determined once a system is designed, start/stop control for the sums can be accurately applied to
allow ample time for these operations.

As indicated in Figure 2-1, the start time of the sums is controlled by a start time
variable, 5, that is maintained by the TP. In the example design, the ts variable, in the same way as
the real-time clock, is represented by two integer registers, one for integer seconds and one for
fractional seconds. The fractional-second register is in units of input sample points. For every
update interval, the TP increments the start-time variable by the length of the update interval, in
units of samples per update interval, or fs T, where f, is the sample rate. When the fractional-
second register reaches fs, it is reset to zero and the integer-second register is incremented by one.
In anticipation of the next sum interval, the TP computes the start time for the next interval in
parallel with the CP operations for the current sum and passes the two resulting register values to
the CP.

In the CP, circuitry compares the two start-time registers with the corresponding
real-time-clock registers for every sample-clock cycle. When the real-time-clock registers have
advanced to equal the start-time registers, enabling logic produces a logic signal that activates the
accumulators. The sum is terminated when the number of summed samples reaches a count of
fsT', where T' is the sum interval. Sum interval length (i.e., the integer fsT') can be set by the TP.

Since both start and stop times are exactly controlled (to the exact sample point) by
the TP, the TP can accurately compute the time tag (i.e., the interval center time) for each sum
interval. Accurate time tags are an important goal in DPLL designs. For example, if the phase rate
of the tracked tone is 10 kHz, the time tag must be accurate to the 100-nsec level if the desired
phase accuracy is a millicycle.

In some applications, it would be useful for the tracking processor to vary loop gain
during a track. Based on the concurrently observed SNR of the loop, the tracking processor could
adjust loop gain to the maximum value consistent with that SNR. Such a procedure could be
carried out without losing cycle count or perturbing lock. In this manner, loop dynamic response
would be set to the best level allowed by current SNR. Similarly, for small SNRs, the phase
extractor could be switched from an arctangent to a sine operation.

SECTION 3

A DPLL WITH RATE-ONLY FEEDBACK

3.1 FUNCTIONAL DESCRIPTION

A detailed functional description of traclung-processor operations is shown in Figure
3-1 for a DPLL with rate-only feedback. CP operations are not shown since they are identical to
those shown in Figures 2-1 and 2-4. In each subsection, the TP is first described for a design with
very small computation delay and then differences are noted for a design with a computation delay
of one update interval.

The CP supplies the TP with the complex sum produced by CP operations for the
nth sum interval. The TP extracts the nth residual phase from this sum with an arctangent or sine
extractor. Based on this residual phase and previous residual phase values, the loop filter estimates
the (n+l)th value for phase rate by means of Equation (2.2), in units of cycles per update interval
T.' This phase rate is then divided by the number of sample points per update interval to obtain, for
the (n+l)th interval, phase-rate feedback in units of cycle per sample. To obtain an integer
appropriate for the NCO register, the resulting phase-rate value is multiplied by 2Nb and rounded to
the nearest integer, where Nb is the number of bits in the NCO rate register. The resulting integer
is then loaded into the NCO rate register to set rate for the (n+l)th interval. Updating of the rate
register is canied out "between samples" so that no phase increments are missed, thereby
generating a "continuous" phase function, as schematically illustrated in Figure 2-6. (If a few
phase increments must be skipped and the number is exactly known, the effect can be accounted
for in TP modeling. This possibility will not be considered below.)

As explained above, the start time, which is incremented by fsT each update interval,
controls the activation of the accumulators. Completion of a sum interval is signaled when the
number of summed samples reaches fST, where fs is the sample rate and T' is the sum interval.

NCO-update time and sum start time for each interval are controlled so that a sum
starts on the first point that uses the new update value. The sum stop time is set so that each sum
stops a number of samples short of a full update interval, T. As discussed above, this short dead-
time interval without summing is sacrificed so that the feedback calculations outlined in the
preceding paragraph can be canied out using the residual phase of the interval just completed.
During the dead time, the NCO phase advancer continues to increment phase for each new sample
point on the basis of the old rate, even though the CP sum for that interval has been terminated (see
Figure 2-6).

As discussed above, for accuracy in dynamic applications, measured phase for the
nth interval can be computed as the sum of the nth model phase and the nth residual phase. One
measured phase value is output every update interval, with a time lag at sum interval center.

When the computation delay is equal to one update interval, the above description
changes in two places. First, the loop-filter computation of phase rate (Equation (2.2)) includes
residual phase values up to the (n-1)th rather than to the nth. Second, the sum interval length can
be set equal to the update interval. (It will be assumed that updating of the NCO can be carried out
"between samples" so that there is no need for a dead time.)

SAMPLED

INPUT
fs

a) ALTERNATE IS v,, = 6
fs = INPUT SAMPLE RATE tn, set $. . L. OF SAMPLES PER ln SUM INTERVAL

v = COUNTER-ROTATION SUM INTERVAL n'@ = NOISE OUTPUT
T = UPDATE INTERVAL

1
ED = T [A+:-A$:+~I (T -T')P

Figure 3-1. Tracking Processor Operations for a Digital Phase-Locked Loop with Rate-Only Feedback

a
0
V)
V)
W
0
0
a
P

Z
0
F
2
0
a
ti
W
C z
3
0
0

I

u p , Ug(n)

1 IT

A$: CYCIP~
4

1 I T

s t,,+,, samples
4

1 I T

TRACKING PROCESSOR

* PHASE EXTRACTOR
son =$, -0; + r;', cyc . -

1 I T
-

6$"' 1 I T

PHASE-RATE FEEDBACK:

a+:+ 1 =A$:+ l / ~ T

CYC

A$:+ s cYc/T
ESTIMATE NEXT PHASE RATE:

n

NEXT MODEL PHASE:

1 +&I= $:+ T(A$:+I+A$:)+ eD

NEXT START TIME:

t i+1= f i + ~ ~

$ 1 IT
CYC

TIME TAG:
tn v n

t,,=(t:+~:.)/~

vn, cyc NT = NO. OF SAMPLES PER UPDATE INTERVAL

MEASURED PHIS;!

w,=+3s+,
ij$,,, cyc

1IT

3.2 MODEL PHASE

Since the TP controls the NCO, the TP can calculate exactly, for any time point, the
model (feedback) phase computed in the NCO phase register. The difference equation for
computing model phase at the center of sum interval n+l from model phase at the center of interval
n is given by

where A$: is the nth phase change between intervals given by Equation (2.2). To exactly calculate
the model phase computed by the NCO, the values of phase change used in Equation (3.1) should
be the rounded values corresponding to the actual integers used in the NCO rate register. The
second and third terms on the right of Equation (3.1) represent the phase buildup contributed by
the NCO between interval centers, with half the buildup coming from interval n and half from
interval n+l. The last term corrects for the dead time and is given by

This small correction is important in model computations since it can be cumulative. (When the
computation delay is one update interval and the dead time is zero, this correction is zero.)

As mentioned in Section 2.5, quantization errors introduced in the generation of the
counter-rotation phasors will be averaged to negligible levels, given proper design. For this
reason, the value in the NCO phase register becomes the effective phase applied by the NCO, as
assumed in this subsection.

3.3 TRANSFER FUNCTION

This subsection outlines the a derivation and analysis of the closed-loop transfer
function for a rate-only DPLL with a negligible computation delay. In addition, performance for a
rate-only DPLL with a computation delay of one update interval is presented in terms of loop noise
bandwidth and stability limits.

A recursive difference equation relating input phase, qn, with model phase, @: is
obtained by substituting Equation (2.2) in Equation (3. I), with residual phase, Wn, set equal to
input phase minus model phase. A z transform can be applied to this difference equation to obtain
the closed-loop transfer function that maps input phase to model phase. As usual, a linearized
model of the loop will be assumed. In computing the transfer function, the small correction term,
ED, can be ignored if the dead time is sufficiently small. If the correction term is ignored, the
transfer function for a rate-only DPLL with negligible computation delay becomes

A treatment of transfer functions for rate-only DPLLs can be found in reference 2. .

If the transfer function is evaluated along the unit circle, one obtains the frequency
response of the loop. Figure 3-2 shows the frequency response for several values of normalized

loop parameter bandwidth, BLT, with r set equal to 4. The bandpass shapes for r = 2 are similar
and are not shown.

The frequency response curves can be interpreted as follows. When the loop is in
perfect lock, zero frequency in Figure 3-2 corresponds to the tone frequency. Note that the tracked
tone is subjected to a loop power gain of 1 .O. A sinusoid entering the loop filter at frequency f
relative to the tracked tone will experience the power gain found at frequency fin the plot, provided
lfl is less than 1/(2T). Note that, for high-gain loops, some frequency components can be greatly
amplified relative to the tracked tone. If the sinusoid has a frequency outside the filter range of
- 1/(2T) to 1 / (2T), it must be aliased into the filter range, modulo 1R.

Before a given sinusoid reaches the loop filter, it experiences the filtering effect of
the CP sum. Thus, to obtain the total gain at a given frequency, one ftrst applies the amplitude
decrease caused by the sum filter (sinxjx in Figure 2-2), before down-aliasing, and then down-
aliases into the loop filter passband to apply the amplitude change caused by the loop response in
Figure 3-2. Note that the sum filter can substantially decrease sinusoid amplitude (especially out of
band) before the sinusoid reaches the loop filter.

As explained in Subsection 2.2, and as illustrated in Figure 2-2, the noise spectrum
can be viewed in a simplified way after these operations have been applied to all noise components.
When the sum filter and down-aliasing are applied to all of the components of input noise with a
fiat power spectrum, the effective composite noise spectrum entering the loop filter within the sum
sampling bandpass is a perfectly flat rectangular spectrum between -1/(2T) and +1/(2T).

Loop noise bandwidth is the bandwidth of a rectangular filter that would generate the
same total output noise power as the loop filter, when that rectangular filter is given the same gain
(i.e., 1.0) as the loop filter at zero frequency. Loop noise bandwidth is easily computed from the
frequency response (See Equation (A.7)), and is plotted in Figure 3-3 for r = 2 and r = 4 as a
function of BLT. In this computation, it is implicitly assumed that the effective noise spectrum
entering the loop filter is flat across the sampling bandwidth, as explained in the preceding
paragraph.

In Figure 3-3, the curves of loop noise bandwidth have been marked to indicate
where loop transient response begins to deteriorate as BLT increases. The criteria behind these
limits are explained in the next subsection. For comparison, Figure 3-3 also plots loop noise
bandwidth for a rate-only DPLL with a computation delay of one update interval, T. As one would ,

expect, the loop noise bandwidths for small BLT (i.e., < 0.01) are nearly equal. When BLT = 0.1,
the loop noise bandwidth for the rate-only DPLL with no computation delay is about 2 dB smaller
than for the rate-only DPLL with a computation delay of one update interval.

The paths of the poles of the transfer function for a rate-only DPLL with no
computation delay are shown in Figures 3-4 and 3-5 for r = 2 and r = 4, respectively, as a
function of BLT. (Pole paths are usually plotted versus a factor corresponding to conventional
loop gain in order to assess the effect of unwanted variations in tone amplitude. When an
amplitude-insensitive phase extractor is used, it is more meaningful to vary the loop gain defined in
Subsection 2.4. Such a plot is useful in selecting a loop gain during loop design.) The poles cross
the unit circle at BLT= 0.420 and BLT= 0.439 for r = 2 and r = 4, respectively. Note that pole
movement toward the unit circle is manifested in the frequency response in Figure 3-2 by the bulge
in gain at ff = 0.18 when BLT = 0.3. This bulge, which approaches infinity as BLT approaches
0.439 (the unit circle crossing for r = 4), is what causes loop noise bandwidth to increase
dramatically when BLT > 0.25. (The value fli = 0.18 corresponds to a point on the unit circle that
is rotated 0.18 cycle away from the positive x axis.)

Figure 3-3. Loop Noise Bandwidth vs. Loop Parameter Bandwidth

SECOND-ORDER LOOP IMAGINARY
LINEARIZED MODEL
BL = LOOP PARAMETER BANDWIDTH
T = UPDATE INTERVAL
COMPUTATION DELAY = 0
DAMPING FACTOR OF r = 2

TRANSIENTS

POLES 2 AND 3

POLE 3

Figure 3-4. Root-Locus Plot for a Digital Phase-Locked Loop with Rate-Only Feedback: Case A

IMAGINARY
SECOND-ORDER LOOP
LINEARIZED MODEL
EL = LOOP PARAMETER BANDWIDTH
T = UPDATE INTERVAL
COMPUTATION DELAY = 9
DAMPING FACTOR OF r = 4

OSCILLATIONS TRANSIENTS

POLES 2 AND 3

POLE 1 =

POLE 2 = ----

Figure 3-5. Root-Locus Plot for a Digital Phase-Locked Loop with Rate-Only Feedback: Case B

3.4 DYNAMIC RESPONSE

When phase is a nonlinear function of time, a second-order loop will exhibit
dynamic tracking errors. For the DPLL design presented above, this section presents the transient
response to a step in phase and to a step in frequency and the steady-state response to quadratic
phase variation. Results are presented in detail for a DPLL with negligible computation delay and
are summarized for a DPLL with a computation delay of one update interval.

3.4.1 Transient Response

Software has been written to simulate the transient response of a rate-only DPLL to
input phase characterized by either a phase step or by a frequency step. When BLT is set to small
values, the loop response predicted by this simulation software closely approximates the response
of an analog loop with the same bandwidth and damping, as expected.

Transient response following a phase-step input to a rate-only DPLL with a
negligible computation delay is presented in Figure 3-6 for several values of BLT with a damping
factor of r = 4. For smaller values of BLT, transient errors decrease as BLT increases but then start
to increase for larger values of BLT. In Figure 3-6, note the increase in transient errors and the
increased oscillations when BLT = 0.3. As a measure of transient response, the RSS transient error
following a phase step can be calculated as a function of BLT. Based on this standard, transient
errors following a phase step decrease as BLT increases until BLT reaches about 0.20 and then
begin to increase. Instability, which will be defined as lingering oscillations in transient response
when r = 4, appears when BLT > 0.27.

The corresponding transient response curves for a rate-only DPLL with a
computation delay of one update interval are not presented but the limits on BLT derived from
consideration of dynamic response are shown in Figure 3-3.

These results for transient response can help establish an upper limit for loop gain.
The upper limit to loop gain can be based on one of three criteria, as summarized in Table 3- 1. The
least conservative is the value of BLT at which a pole crosses the unit circle. This upper limit is
sometimes used as crude estimate but is too loose because of excessive loop noise bandwidth and
oscillations as the limit is approached. For the rate-only loops treated in Figures 3-4 and 3-5, this
limit becomes BLT = 0.42 and 0.439, respectively. A more conservative and realistic limit can be
based on the onset of lingering oscillations following a phase step when r = 4. For the rate-only
loop treated in Figure 3-5, this upper limit is BLT = 0.27. The most conservative of the three
criteria is based on RSS transient response following a phase step, as discussed above. For the
rate-only DPLL in Figure 3-5, this criterion would resmct BLT to values less than about 0.20.

Transient response of a rate-only DPLL with a negligible computation delay
following a rate-step input is shown in Figure 3-7 for r = 4 and for several values of normalized
loop parameter bandwidth, BLT. RSS transient response continues to improve well past the
maximum value of BLT = 0.20 suggested by the more stringent phase-step criterion. Note,
however, that transient oscillations are present when BLT= 0.30. For small values of BLT, an
approximate formula can be used to estimate the maximum rate step that a loop can handle. If the
maximum allowed tracking error is 0.5 cycles, the maximum allowed rate step is approximately
given by 2BL. When allowance is made for noise, or the limited range of a sine extractor, the
maximum rate step will be less.

Figure 3-6. Transient Response after Phase Step for a Digital Phase-Locked Loop with Rate-Only Feedback

SECOND-ORDER LOOP
LINEARIZED MODEL
Af = 1 Hz
UPDATE INTERVAL OF T = 0.01 sec
COMPUTATION DELAY 0

- DAMPING FACTOR OF r = 4

SYMBOL B ~ T -

0 0.20

A 0.30

a ALL

TIME, sec

Figure 3-7. Transient Response After Phase-Rate Step for a Digital Phase-Locked Loop with Rate-Only Feedback

Table 3- 1. Upper Limits for BLT in Digital Phase-Locked Loops*

* Second-order loops, negligible computation delay
** Following phase step

L

3.4.2 S teady-S tate Response

When phase is a quadratic function of time, the tracking error (with no noise) will
approach a steady-state value which, after reformulating the results of Reference 2, is given by

where @ is the phase-rate rate in cycles/sec2 and where K2 is given by Equation (2.4). A useful rule
of thumb can be obtained Erom Equation (3.4) by determining the maximum phase-rate rate that can
be tolerated when r = 2 and when the maximum allowed tracking error is 0.5 cycle. In this case,
Equations (2.3), (2.4), and (3.4) yield

Criterion

Pole Breakout

Lingering
Oscillations**

RSS Transients**

Thus, the maximum phase-rate rate is approximately equal to twice the square of the loop
parameter bandwidth, under the stated conditions. In practice in most applications, the maximum
will be substantially less than this upper limit after consideration of the factors mentioned in the end
of preceding subsection.

r = 4

Since steady-state response is independent of computation delay, the same results
apply for a computation delay of one update interval.

r = 2

Update

0.439

0.27

0.2

Update 6

0.420

-

0.2

Update g,4

0.51 8

0.45

0.27

Update $,$

0.549

-

0.29

SECTION 4

A DPLL WJTH PHASE AND RATE FEEDBACK

4.1 EWNCTIONAL DESCRIPTION

A detailed functional description of the tracking processor for a DPLL with rate and
phase feedback and with a small computation delay is shown Figure 4-1. The CP is identical to
that of Figures 2-1 and 2-4 and is not shown. In each subsection, the TP is first described for a
design with very small computation delay and then differences are noted for a design with a
computation delay of one update interval.

The CP supplies the TP with the complex sum produced by CP operations for the nth
sum interval. The TP extracts the nth residual phase, estimates the (n+l)th phase rate and
computes the (n+l)th phase-rate feedback, as described in Section 3.1 for the rate-only DPLL.

Phase computation consists of the two steps shown in Figure 4- 1. First, model
phase at the center of the sum interval is computed, as discussed in the next subsection. Based on
the phase-rate feedback for the (n+l)th interval, this center-interval value is then shifted by a half-
sum interval to obtain feedback phase at the start of the (n+ 1)th interval. (This shift must be based
on half the slightly smaller sum interval, rather than the update interval. Furthermore, even though
Figure 4- 1 does not indicate it, the phase rate used in this computation should be the effective rate
after the rounding required in the conversion to an integer. By using the rounded rate in this
fashion, round-off error buildup in the NCO across a sum interval can be reduced to a negligible
level in average phase for the interval.) The fractional part of the resulting start phase is then
extracted, converted to an integer in the same fashion as phase rate (see Section 3.1), and placed in
the appropriate NCO register.

When both phase and rate are updated, NCO phase will usually be discontinuous at
the update point, as schematically illustrated in Figure 2-6. This figure arbitrarily assumes that the
NCO continues to update phase across the dead time interval. (NCO phase over the dead-time
interval has no consequence in a phase/rate DPLL.) Sum-interval start time and sum length are
computed and controlled as outlined for the rate-only DPLL.

As discussed above, for accuracy in dynamic applications, measured phase for the
nth interval can be computed as the sum of the nth model phase and the nth residual phase. One
measured phase value is output every update interval, with a time tag at sum interval center.

When the computation delay is one update interval, the TP description changes in the
same two places described above for a rate-only DPLL.

4.2 MODEL PHASE

As with the rate-only DPLL, the TP precisely controls the phase generated by the
NCO. The TP calculates the model phase computed in the NCO phase register at the center of each
sum interval. The difference equation for computing model phase at the center of the (n+l)th sum
interval from model phase at the center of nth interval is given by

Figure 4- 1. Tracking Processor Operations for a Digital Phase-Locked Loop with Phase and Rate Feedback

SAMPLED.
INPUT

fs

I NT : NO. OF SAMPLES PER UPDATE INTERVAL
f, = INPUT SAMPLE RATE tn, SeC N:. = No. OF SAMPLES PER 112 SUM INTERVAL
Q*' = NOISE

OUTPUT
T ' = COUNTER-ROTATION SUM INTERVAL
T = UPDATE INTERVAL

Pe

c n 4
U)
W
0 o
Pe
P

z
0
F
3
0
re
Ck
w
C z
3
0
0

_J

U,(n), UQ(n)

1 I T

CYClPt

1 l T

4: + 1' cyc
4

111

ti+l, samples *
1 I T

<
TRACKING PROCESSOR

b PHASE EXTRACTOR
&On =On - Cp ?+IT' CYC

1 I T
-

1 I T

A+:+,
cyclpt

t

1i-r
~$i+l

PHASE-RATE FEEDBACK:

A $ ~ + I = A ~ + ~ / N T

111
w cycm

START-PHASE FEEDBACK:

@:+I= FRAC [$:+ 1 -A@:+I N:.]

d$L1 I cYc/T

1 I T

ESTIMATE NEXT PHASE RATE:
n

A $ ~ + l = K l ~ $ n + K ~ ~ ~ $ K
K

C 1 . c Y c
1 I T

NEXT MODEL PHASE:

@?+I = $ r + ~ $ ' + r
L

NEXT START TIME:
s = fn + NT

I
$rl 1 l T
CYC

TIME TAG:

tn=(ti+~?J#/fs
tn , v n MEASURED P H A S ~ 8On, cyc

Wn= $: + &$, IIT

a) ALTERNATE IS v,, = I$ Wn'cyc 111

where A&* is the (n+l)th phase change, computed according to Equation (2.2). (For the
phaselrate DPLL implementation shown in Figure 4-1, the phase change used in Equation (4.1) is
exactly the value predicted by Equation (2.2), and not the rounded value, as required in Equation
(3.1). Rounding error in computing the integer for the NCO rate register can affect amplitude but
not the composite phase for a sum interval. On the other hand, rounding error in computing the
integer for the NCO phase register does affect composite phase. If desired, this rounding can be
accounted for, but it is generally a very small effect, e.g., 1 p cycle for a 20-bit NCO phase
register.) In comparing Equations (3.1) and (4.1), note that, when both phase and rate are
updated, model phase can receive the full benefit of the most recent estimate of phase rate, in
contrast to the rate-only DPLL. Since phase is updated each interval, no dead-time correction is
necessary in the calculation of model phase.

4.3 TRANSFER FUNCTION

This subsection outlines an analysis of the closed-loop transfer function for a
phasehate DPLL with a negligible computation delay. In addition, performance for a phaseirate
DPLL with a computation delay of one update interval is presented in terms of loop noise
bandwidth and stability limits.

A recursive difference equation relating input phase, Qn, with model phase, $:, is
obtained by substituting Equation (2.2) in Equation (4. I), with residual phase, @,,, set equal to
input phase minus model phase. A z transform can be applied to this difference equation to obtain
the closed loop transfer function that maps input phase to model phase. Again, a linearized model
of the loop will be assumed. The closed-loop transfer function for a phasehte DPLL with a
negligible computation delay becomes

In analogy with the earlier example, one can compute from this function loop
frequency responses, loop noise bandwidths, and root-locus plots, as shown in Figures 4-2
through 4-4. As seen in Figures 4-3 and 4-4, a pole of the transfer function for a phaselrate DPLL
punches through the unit circle at fT = 0.5, and at a significantly higher value of BLT (> 0.5) than .
for a rate-only DPLL. Furthermore, the pole paths for a phasefrate DPLL generally stay more in
the interior of the unit circle. Consequently, the loop noise bandwidth is significantly lower for a
phaselrate DPLL when BLT > 0.15, as shown in Figure 3-3. For example, when BLT = 0.2,
r = 2, and the computation delay is zero, the loop noise bandwidth for the phaselrate design is
1 dB lower than for the rate-only design. A comparison of Figures 3-2 and 4-2 shows that the
frequency response for a phasehate DPLL is less singular than for a rate DPLL for large BLT.
Similar comparisions can be made for DPLLs with a computation delay of one update interval, as
exemplified by loop noise bandwidth in Figure 3-3.

4.4 DYNAMIC RESPONSE

Dynamic response of a phasefrate DPLL is presented below for the same input phase
functions as the rate-only loop.

Figure 4-2. Frequency Response of a Digital Phase-Locked Loop with Phase and Rate Feedback

SECOND-ORDER LOOP IMAGINARY
LINEARIZED MODEL
BL = LOOP PARAMETER BANDWIDTH
T = UPDATE INTERVAL
COMPUTATION DELAY = 0
DAMPING FACTOR OF r = 2

TRANSIENTS

POLES 1 AND 2

BLT = 0.6

Figure 4-3. Root-Locus Plot for a Digital Phase-Locked Loop with Phase and Rate Feedback: Case A

SECOND-ORDER LOOP IMAGINARY
LINEARIZED MODEL
BL = LOOP PARAMETER BANDWIDTH
T = UPDATE INTERVAL
COMPUTATION DELAY = 0
DAMPING FACTOR OF r = 4

/

TRANSIENTS

I

POLES 1 AND 2

1

0.3

OSCILLATIONS

Figure 4-4. Root-Locus Plot for a Digital Phase-Locked Loop with Phase and Rate Feedback: Case B

4.4.1 Transient Response

Simulation software for a phasehate DPLL has been used to determine loop response
to phase dynamics. Loop response to a phase step is presented in Figure 4-5 for several values of
BLT, a damping factor of 4, and negligible computation delay. As one would expect, transient
errors decrease with increasing BLT as long as BLT is small, but begin to increase for larger values
of BLT. In Figure 4-5, note the increase in transient errors for BLT = 0.4. More detailed
simulations indicate that RSS transient error after a phase step will decrease as BLT increases until
BLT reaches about 0.27 whcn r = 4 (or about 0.29 when r = 2). Lingering oscillations for r = 4 do
not begin until BLT > 0.45. This indicates that there is a considerable range of relative stability
above BLT = 0.27, provided the application can tolerate the greatly increased loop noise
bandwidth.

These upper limits for BLT in a phasehate DPLL are summarized in Table 3- 1. The
loose upper limits based on pole crossings are 0.549 and 0.518 for r = 2 and 4, respectively. The
more conservative limit based on lingering oscillations is 0.45 for r = 4. The most conservative
limits, based on RSS transient response after a phase step, are 0.29 and 0.27 for r = 2 and 4,
respectively .

Similar limits can be set for a phasehate DPLL with a computation delay of one
update interval. The limits on BLT set by the transient-response criteria are shown in Figure 3-3.

Loop response to a phase-rate step is shown in Figure 4-6 for several values of BLT,
r = 4, and negligible computation delay. As BLT increases, RSS transient response after a rate step
continues to improve until BLT > 0.45, which is well pasf the maximum value of BLT = 0.27
provided by the more stringent phase-step criterion. The approximate formula used in subsection
3.4.1 to estimate a maximum phase-rate step for a rate-only DPLL also applies to a phasehate
DPLL.

4.4.2 Steady-State Response

The steady-state response of a phasehate DPLL to quadratic phase behavior is the
same as the response of a rate-only DPLL, as outlined above.

Figure 4-5. Transient Response After Phase Step for a Digital Phase-Locked Loop with Phase and Rate Feedback

0.1

SECOND-ORDER LOOP
SYMBOL B ~ T

0.05

U1
W
J
0 *
0

pe"
0
K
K 0
w -g--8 A B I

0 0 0 0 s e o o v u
a

0 0

z n - a o o a o &
2
0

-
a
K
I-

-

-
-0.05 -

-

-

-
-

-

-
-

-

-
q LINEARIZED MODEL 0.05

A $ = 0.1 CYCLE
COMPUTATION DELAY = 0 0 0.2

0 DAMPING OF r = 4 A 0.3

0 0.4
- ALL

0
a

0
0 10

\
5 q 15 20 STEP #
I I 1

TIME, sec

0.03
U) w
A
0 >
0

cr"
0

0.02
u

e CJ w
Z
3
0
4
Pe

+ 0.01

0-

Figure 4-6. Transient Response After Phase-Rate Step for a Digital Phase-Locked Loop with Phase and Rate Feedback

SYMBOL BLT
SECOND-ORDER LOOP -

- -
LINEARIZED MODEL q 0.1
Af = 1 Hz 0 0.2
UPDATE INTERVAL OF T = 0.01 sec

- COMPUTATION DELAY = 0 A 0.3 -
DAMPING FACTOR OF r = 4 V 0.5

ALL -
-

q O 0 0

0 q

- q -

q

- q
-

0 O 0
- 0 -

A 0

A 0
0

- a A
A 0

v O 0
O n o -

A
v V A A

m y v v v
O o o *

R A A A R O o O n n n n A
"

0.05 0.1 0 0.1 5 0.20 0.25

SECTION 5

SUMMARY AND CONCLUSIONS

This report has analyzed digital phase-locked loops (DPLLs) consisting of two major
components: a counter-rotation processor (CP) and a tracking processor (TP). The CP operates at
the input sample rate to generate counter-rotation phasors, to counter-rotate the input tone, and to
accumulate the counter-rotated tone over a sum interval. The TP, which carries out its computa-
tions much less frequently (once per sum interval), extracts residual phase; estimates phase rate;
calculates model phase, NCO feedback and sum-interval start time; and computes output phase and
the associated time tag.

Distinctive features of the DPLL designs in this report include accurate timing and
time-tag computation, accurate computation of measured phase by the tracking processor through
modeling (including integer cycles), removal of the tracking error in measured phase through use
of residual phase, updating of the NCO in phase as well as rate, amplitude-insensitive phase
extractors, and an averaging algorithm with a selectable output rate and bandwidth that are
independent of tracking loop parameters.

Two DPLL designs have been analyzed in terms of pole plots, loop noise band-
width, maximum loop gain, and dynamic response. Both designs are based on a conventional
loop filter, but one updates only the rate of the NCO, while the other updates both phase and rate.
For each, the computation delay is set either to a negligibly small value or to one update interval.
Maximum loop gain has been determined for these DPLLs on the basis of two criteria: RSS
transient response or the onset of lingering oscillations. These two criteria provide a more
conservative and realistic method for setting maximum gain than computation of the point at which
a pole of the transfer function crosses of the unit circle.

The phaselrate DPLL can operate at substantially higher loop gains than the rate-only
DPLL. When the computation delay is negligible, normalized loop parameter bandwidth in the
phaselrate DPLL can be increased to about BLT = 0.27 before transient response following a phase
step begins to deteriorate. In contrast, the corresponding transient response of a rate-only DPLL
begins to deteriorate when BLT reaches about 0.2. If lingering oscillations following a phase step
are taken as the criterion for instability, BLT can be increased to 0.45 for a phaselrate DPLL when
r = 4, but only to 0.27 for the rate-only DPLL. For high loop gains, the phaselrate DPLL has
lower loop noise bandwidth. For example, when BLT = 0.2, the loop noise bandwidth of the
phaselrate DPLL is 0.5 to 1 dB smaller than for a rate-only DPLL. These results indicate that a
phaselrate DPLL will outperform a rate-only DPLL by a substantial margin at high loop gain.

When the computation delay is one update interval, the phaselrate DPLL still
substantially outperforms the rate-only DPLL at higher loop gains. With regard to phase-step
transient response, BLT can be increased to 0.12 for the phaselrate DPLL but only to 0.09 for the
rate-only DPLL. The lingering-oscillation test limits BLT to 0.18 for the phaselrate DPLL, but to
0.14 for the rate-only DPLL. When BLT = 0.1, loop noise bandwidth is about 0.6 dB smaller for
a phaselrate DPLL than for a rate-only DPLL.

In order to have well-defined, constant values for loop bandwidth and damping, only
amplitude-insensitive phase extractors have been considered. Two types of amplitude-insensitive
phase extractors have been analyzed: arctangent and sine. In applications with adequate SNR, an
arctangent extractor can be used with high accuracy over a wide range of residual phase. When .
SNR is low, a sine extractor can outperform an arctangent extractor. If a sine extractor is used and
if amplitude is slowly varying, normalization schemes can be implemented that largely eliminate

sensitivity to amplitude fluctuations, without a substantial amplification of noise. Since sine
extractors can allow smaller values for sum interval, design flexibility with regard to loop
parameter bandwidth and computation delay can be improved by using such an extractor.

Phase accuracy can be improved in dynamic applications by computing measured
phase as the sum of model phase and residual phase. This operation removes the tracking error. A
precise time tag can be supplied with each phase value by implementing a real-time clock driven by
the sample clock and by exact control of sum-interval start/stop times in terms of this real-time
clock.

The noise analysis has covered several topics of importance in understanding DPLLs,
including the bandshape of down-aliased noise after the CP sum, defmition of several DPLL
bandwidths, and the effective decorrelation interval for loop output phase.

SECTION 6

REFERENCES

1. W.C. Lindsey and C.M. Chie, "A Survey of Digital Phase-locked Loops," Proc. IEEE 69,
No. 4, pp. 410-431 (April 1981).

2, S. Acquirre and W.J. Hurd, "Design and Performance of Sampled Data Loops for Subcarrier
and Carrier Tracking," TDA Progress Report 42-79, Jet Propulsion Laboratory, Pasadena,
California, pp. 8 1-95 (July, 1984).

3. S. Acquirre, W.J. Hurd, R. Kumar, and J. Statman, "A Comparison of Methods for DPLL
Loop Filter Design," TDA Progress Report 42-87, Jet Propulsion Laboratory, Pasadena,
California, pp. 1 14- 124 (July, 1986).

4. F.M. Gardner, Phaselock Techniques, 2nd ed., Wiley and Sons, New York, p. 129, (1979).

5 . G.H. Purcell, private communication, 1988.

6. W.J. Hurd, private communication, 1987.

APPENDIX A

EFFECTIVE DECORRELATION INTERVAL

This appendix derives an expression for the effective decorrelation interval of the
noise on loop output phase by computing the variance of the average of N values of such noise.
For every update interval of length, T, the loop produces an output phase value. This appendix
assumes the output phase is model phase rather than total phase. (Total phase noise is uncorrelated
between update intervals.) Let qk be the phase noise on the phase value extracted from the kth
update interval. An N-point average of such noise values is given by .

and its variance by

For zero-mean noise, the variance becomes

If R(n) is the autocorrelation function for the q i s , with R(0) = 1, the variance reduces to

where < is the variance of qr When N is very large, a change of sum indices gives

The autocorrelation function can be expressed in terms of its frequency components
in the form

where I H (~) I ~ is the closed-loop frequency response, as illustrated in Figures 3-2 and 4-2 for
several loop configurations. The denominator has been included to normalize the autocorrelation
function to R(0) = 1. Noise components outside of the sampling passband have been down-
aliased into the sampling passband so that the (sinx/x)* response of the sum filter has collapsed
into a flat response within the sampling passband (see Subsection 2.2). If the noise power
spectrum entering the counter-rotation sum is flat, then this formulation leaves only the loop
frequency response, as indicated in Equation (A.6), to determine noise power spectrum across the
sampling passband.

Since loop noise bandwidth is given by

the normalized autocorrelation function becomes

With the use of Equation (A.8), the sum in Equation (AS) becomes

where the sum and integral have been interchanged and the following relation has been used:

(A. 10)

Without loss of generality, it has been assumed that N is odd. As N becomes very large, one can
show

where 6(f) is the Dirac delta function. Thus, since IH(0)I2 = 1, the autocorrelation sum reduces to

(A. 12)

when Equation (A.ll) is substituted in Equation (A.9).

When this result is substituted in Equation (AS), the variance of the mean becomes

,.

which is equivalent to

(A. 13)

(A. 14)

when total averaging time (T, = NT) is substituted. The variance of an average can be formulated
as the variance of each sample, divided by the effective number of independent points.Thus,
Equation (A. 14) shows that the effective number of independent points is given by

and the effective decorrelation interval by

This result is independent of the shape of the loop transfer function, H(f).

(A. 15)

(A. 16)

The result in Equation (A.14) can also be derived in a simpler, but less informative,
fashion, on the basis of noise bandwidths. Tht$ouble-sided noise bandwidth for the model phase
generated at each update interval is equal to 2BL. An unweighted average of these phase values
over time interv Ta will apply a double-sided filter of bandwidth Ifla. Thus if l/Ta is much d smaller than 2B,, averaging will reduce the noise power by the ratio of these two bandwidths, as
predicted in Equation (A. 14).

APPENDIX B

POLYNOMIAL FIT TO LOOP OUTPUT PHASE

For reference, this appendix outlines a well-known method for carrying out an
unweighted least-squares fit of a polynomial to a sequence of measured quantities. Assume the
loop output values for phase and time tag (y,, b) are to be fit over a particular averaging interval
with center value 7, and width T, (Successive averaging intervals are separated by T, such that -
t j+l = t + T3. If the time tag for the estimated parameters is to be 5, then the fit polynomial is
gven by

where pl, p2, ... are the Np parameters to be estimated. The sensitivity partials are given by

Let the parameter vector be defined by

and the observable vector by

The observable vector includes only phase points measured within the interval, with reinitialized
indexing. It can be shown that the unweighted least-squares solution for the parameter vector is
then given by

The matrix (ATA)-' is referred to as the covariance matrix. The fit includes only those points for
which

'lo 3

Since the reference time, 5, is at the center of the fit interval, system-noise error in estimated phase
is minimized. The reference times can be selected by the user to occur at convenient points (e.g.,
on integer seconds). The estimated phase quantities at time $ are obtained directly from the
estimated parameter vector:

va(Tj) = PI

Wa(Tj) = P,

$a(rj) = 2 ~ 3 (B. 10)

and so on.

If the random (system-noise) error on the loop output phase is uncorrelated from
point to point, and has a constant variance of 4 within the fit interval, then the variance of the
noise on the estimated parameters can be obtained from the covariance matrix:

(B. 11)

(B. 12)

(B. 13)

and so on. (As explained in Section 2.7.1, noise will be uncorrelated between points when total
phase is extracted from the loop). These equations accurately propagate uncorrelated random
errors through the least-squares fit but do not account for deviations of actual phase dynamics from
the assumed polynomial form. Care must be taken in each application to choose the fit-interval
length and the fit function so that such fitting errors are sufficiently small.

Since the random error on estimated phase can be easily calculated for a linear fit, that
case will be used as an illustration. The ATA matrix becomes

(B. 14)

where A&, I h- Tj. If the loop output points are symmetrically distributed about 5, then

and the covariance matrix becomes

According to Equation (B. 1 I), the enor on estimated phase then becomes

(B. 15)

(B. 16)

(B. 17)

Thus, as would be the case for a straight average, the single-sample variance is divided by the
number of points to obtain the variance of the fit phase. This result is easily expressed in terms of
bandwidths. If the loop output rate is 1/T, then N, = Ta/ T and

T 0'w,=4- (B. 18)
T a

As discussed in Sections 2.2 and 2.7.1, the double-sided noise bandwidth is 1/T when loop output
is total phase and when T = T'. For this case, therefore, Equation (B.18) indicates that the linear
fit reduces the double-sided noise bandwidth from l/T to lfl, Fits of higher-order polynomials
will result in a compressed-phase bandwidth greater than l/Ta. For example, an ATA analysis
similar to the preceding derivation shows that the compressed-phase bandwidth resulting from a
quadratic fit is equal to 1.5/T,.

In S/W implementation of the fitting steps, not all calculations have to be performed at
the end of each averaging interval as implied by these equations. The sums needed to obtain ATA
and ATv can be "pumped" as each phase value is output by the loop. This would leave the matrix
inversion and a vector multiplication to obtain Equation (B-6) for the interval-end computations.

