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We consider low-thrust orbit transfers around a central body, where specified changes 
are sought in orbit elements except true anomaly. The desired changes in the remaining 
five elements can be arbitrarily large. Candidate Lyapunov functions are created based on 
analytic expressions for maximum rates of change of the orbit elements and the desired 
changes in the elements. These functions may be thought of as proximity quotients because 
they provide R measure of the proximity to the target orbit. The direction of thrust needed 
for steepest descent to the target orbit is also available analytically. The thrust is shut- 
off if the effectivity of the thrust at  the current location on the osculating orbit is below 
some threshhold value. Thus, the equations of motion can be numerically integrated to 
obtain quickly and simply a transfer to the target orbit. A series of transfers can be easily 
computed to assess the trade-off between propellant mass and flight time. Preliminary 
comparisons to optimal solutions show that the method, while sub-optimal, performs well. 

1 Introduction 

The problem of computing many-revolution, low-thrust orbit transfers around a central body is a difficult 
one; its study began at least as early as the 1950~ ’>~ and continues today. Much of the work has focused on 
finding propellant-optimal trajectories using either indirect or direct techniques or mixtures of the two, as 
recently exemplified by Refs. [3-61, [7,8], and [9,10], respectively. Given the dearth of analytic solutions to 
the optimisation problem, and the difficulty of computing optimal solutions, some attention has also been 
focused on heuristic control laws. The advantage of the heuristics lies in the speed of computation, which can 
be orders of magnitude greater than that for optimisation, while the drawback is that the solutions are non- 
optimal. One category of involves “blending” the instantaneously optimal thrust directions 
for changing each of the orbit elements during each of several phases of the orbit transfer. The precise nature 
of the blending and the delineation of the phases is guided by experience of the mission designer and perhaps 
by optimisation of the parameters in the control scheme. A second category of heuristics13-15 is based on 
Lyapunov feedback control, where a suitable Lyapunov function must be defined by the mission designer. 

In this paper, we extend the Lyapunov feedback approach of Ref. [13], with the aim of providing both 
simple approximations to, and good initial guesses for, propellant-optimal, low-thrust orbit transfers which 
involve specified changes in all orbit elements except true anomaly. In Ref. [13], the candidate Lyapunov 
function, termed the “proximity quotient,” Q, exhibited divergence for some orbit transfers. Here, the 
problem of divergence is addressed, and, in addition, a penalty function method is used to enforce minimum- 
periapsis-radius constraints. The new proximity quotient, Q, is still termed a candidate Lyapunov function, 
because, although convergence is seen in all examples studied thus far, it has not been rigorously proved, due 
to the complexity of the function. As in Ref. [13], the proximity quotient takes into account the analytically- 
known optimal locations on the osculating orbit for changing each of the orbit elements, as well as the 
corresponding optimal rates of change that can be obtained for each element. The decision of whether to 
coast or thrust is based on the effectiveness of thrust in changing the proximity quotient on the osculating 
orbit. The Lyapunov feedback control law based on the proximity quotient (the “Q-law”) has but few 
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input parameters, yet captures the complexity of a wide variety of orbit transfers, including those involving 
multiple coast arcs. 

We present a number of orbit transfers computed using the &-law and compare some of these to optimal 
orbit transfers. As an approximation, the control law provides mission designers with rapid estimates of 
propellant requirements and times of flight, as well as the trade-offs between the two. In providing initial 
guesses for optimisation, the control law would be particularly useful for the case where large numbers of 
revolutions are required. Both continuous and intermittent thrusting is permitted for the transfer, but no 
constraints are placed on when thrusting can occur. When non-zero, the thrust is assumed to be constant, 
and the specific impulse is similarly constant. The &-law, as currently formulated, does not attempt to 
capitalise on the increasing thrust acceleration - the increase will often be of small utility for high specific- 
impulse missions. The current &-law logic is oblivious to thruster characteristics and simply provides a 
thrust direction on the osculating orbit, and an indication of whether to thrust or not. The central body 
is modelled as a point mass, and the initial and final orbits are assumed closed. No perturbing forces are 
considered. 

2 The &-Law Algorithm 

Definition of the proximity quotient, Q 

quantify the proximity of the osculating orbit to the target orbit. Q is defined as follows: 
The proximity quotient, Q, which serves as a candidate Lyapunov function, attempts to judiciously 

for a : = a , e , i , w , R  

where the five orbital elements (a:) are the semimajor axis (a), eccentricity (e), inclination (i), argument 
of periapsis (w) ,  and longitude of the ascending node (0); Wp and the Wa: are scalar weights greater or 
equal to zero; the subscript T denotes the target orbit element value (without subscript, the osculating 
value is indicated); 4, denotes the maximum over thrust angle and over true anomaly on the osculating 
orbit of the rate of change of the orbit element (due to thrust); P is a penalty function; Sa: is a scaling 
function; and d( a:, ET)  is a distance function. The penalty function is used in the present paper to enforce 
minimum-periapsis-radius constraints and takes the form 

P = e x p  k 1 - -  [ ( r 2 i n ) I  

where k is a scalar, rp is the osculating periapsis radius, and rpmin is near or equal to the lowest permissible 
value of rp. The scaling function is used primarily to prevent non-convergence to the target orbit and takes 
the form 

( 1  for a: = e, i, w ,  0 
where m,n, and T are scalars with nominal values of 3, 4, and 2, respectively. The distance function is 
defined as 

a: - oemT 

c0s-l [cos(@ - ET)] 

for a: = a ,e , i  

for a: = w ,  0 
d(a:, ET) = (4) 

where the principal value, namely [0, 7r] is used for the arc cosine. The peculiar form of the distance function 
for w and 0 is used because it provides an angular measure of the distance between two positions on a 
circle using the “short way round” the circle, because it is differentiable with respect to a: [except when 
d(a:, a : ~ )  = w ] ,  and because the sign of the derivative indicates whether a: leads or lags a : ~  based on the 
short way round. 
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Analytic expressions for the kXx 

Analytic expressions are available13 for the maximum rates of change achievable for each of the orbit 
elements both over the true anomaly on the osculating orbit and over the thrust direction. For convenience, 
a summary of the derivations is presented here. We commence with Gauss’s form of the variational equations 
for the orbit:16 

r sin(@ + w )  

r cos(6 + w) 

f h  

f h  

- d o  
dt h sin i 
di 
dt h 

- -  

- - -  

r sin(8 + w )  cos i 
h sin i 

dw 1 
dt eh 

= - [-P cos e fr + (p + r) sin ef,] - f h  - 

da 2a2 
- = - (esinef,. + Efs) 
dt h r 
de 1 
dt h 
_ -  - - { p s i n 8 f T + [ ( p + r ) c o s @ + r e ] f ~ }  

de 
dt 
- 

(7) 

(9) 

where t is time; 0 is true anomaly; p is the semilatus rectum; h is the specific orbital angular momentum; 
r is the radius from the central body, related to the osculating elements through the conic equation r = 
p/(l  +ecosO); and IT,  fs, and fh  are the components of the thrust acceleration in the radial, circumferential 
and angular momentum directions, repsectively. Using the thrust angles a (measured in the orbit plane off 
of the circumferential direction, positive away from the gravitational centre) and p (measured off of the orbit 
plane and perpendicular to it, positive in the direction of the angular momentum), the thrust acceleration 
components are given as: 

fT  = f cospsina 
fe = fCOS,L?COSa 
f h  = f sinp 

The following definition is used for &,,, 

for a: = a,e , i ,R 

Then, using f for the thrust-acceleration magnitude and p for the gravitational parameter of the central 
body, there arises for the semimajor axis: 

a3(l  +e) J - e) 
ax, = 2f 

and for the eccentricity: 
. 2Pf e,, = - 

h 
and for the inclination: 

Pf 
h(J1-e2sin2w-elcoswl) 

8xx = 

and for the argument of periapsis: 

p2 cos2 ex, + O, + rxx)2 sin2 e,, . f J  w, = - 
eh (15) 
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where 

P 
1 +ecosO, rxx = 

and for the longitude of the ascending node: 

Pf 
h sini (& - e2 cos2 w - el sinwl) RXX = 

(We note that Eq. 16 is a corrected version of Eq. 27 in Ref. [13], which contained a typographical error.) 

Discussion of the Q-law and effectivity 

It is clear from the definition of the proximity quotient in Eq. 1 that Q is zero at the target orbit and 
positive elsewhere. Thus, our goal in the orbit transfer is to drive Q to zero. Q may be thought of as a 
“best-case quadratic: time-to-go,” in that it captures the best possible rate of change for each of the orbit 
elements over the osculating orbit - the ratio d(a:, a : ~ ) / d e ~ ~  is the time it would take to reach the target 
value for that ce if this best possible rate of change could be sustained throughout the transfer. We note that 
Q is a function only of the five orbit elements, and not of true anomaly or the thrust angles. The summation 
in Eq. (1) is available analytically since analytic expressions have been derived for each of the dexx. Now, 
the time rate of change of Q is simply -=Es& dQ aQ 

dt a: 
where each of the de are available explicitly from the variational equations (5)-(9). Thus, unlike Q, Q depends 
on the thrust angles. At any point on the transfer, we choose the thrust angles, cy, and /3,, which make Q 
most negative: 

Q, = minQ ff,B (20) 

Q, is always less zero. The angles an and ,Bn that minimise Q are available analytically. The Q-law uses 
these thrust angles, thereby ensuring that Q is being sent towards zero as quickly as possible at each instant. 
From the functional form of Q, we see that reducing Q might involve not only reducing d(a:, E T ) ,  but also 
increasing de,. Sacrificial changes in one orbit element can thus be made [increasing d(a:l, &IT)], if other 
elements can then be changed more easily (increasing de22z5). This sort of balancing between orbit elements 
is akin to the classic example of a large plane change for a circular orbit: The propellant-optimal way to 
accomplish this is to enlarge the orbit, making the plane change easier, and then to shrink the orbit back to 
its original size. 

One complication that is difficult to address analytically is that of convergence. Although we can always 
apply thrust so as to reduce Q, since Q, < 0, we have not proved that doing so will always drive the orbit 
elements to their target values. For example, if we replace the scaling coefficient of Eq. 3 with Sa = 1, we 
see that Q becomes zero not only at the target orbit, but also at a = 00, which would prevent some initial 
orbits from converging to  the target orbit (converging instead to a = 00). However, for the nominal Q of 
Eq. 1, convergence has been seen over all of the wide range of orbit transfers studied numerically so far. 

While the thrust angles an and /3,, ensure the optimal rate of reduction of Q at the current true anomaly, 
they do not provide any information about how effective the thrust is, as compared with other locations on 
the osculating orbit. Thus, it is natural to define the effectivity of the thrust at the current true anomaly as 

where 
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A mission designer may then chose to prevent the spacecraft from thrusting if the effectivity is below some 
cut-off value, qcut. Broadly speaking, the greater the cut-off, the greater the expected propellant savings and 
the longer the expected flight time. An analytic expression is not available for Grin, and so this value must 
be computed numerically - an approximate value is normally sufficient, and so the computational burden 
is very slight. 

Using the Q-law as a feedback algorithm 

In this paper, the orbit transfers are computed by numerically integrating the variational equations 5-9 
and the mass-flow-rate equation, where Eq. 8 is replaced by the variational equation for p ,  where the thrust 
angles are determined by the &-law, and where the decision of whether to apply thrust or not is based on 
the Q-law effectivity cut-off. A mission designer specifies the thrust, the specific impulse, initial values for 
(a, e, i, w, R, e), and final values for the orbit elements of interest (except 8, of course). For any element, 
e, whose final value is free, the corresponding weight, We,  in Eq. 1 is set to zero. The remaining We are 
set to non-zero values, nominally unity. A minimum periapsis radius constraint is imposed by setting the 
penalty-function weight, Wp, to be non-zero, nominally unity. The associated parameters k and rpmin in Eq. 
2 are normally set in concert with each other - the size of k determines how steeply the exponential barrier 
rises at rp = rpmin. The numerical integration is performed using a 5th-6th-order Runge-Kutta algorithm, 
with fixed step size in true longitude. 

Due to the use of the classical orbit elements, the &-law and the variational equaitons have singularities 
at zero-inclination and at zero-eccentricity. Thus, initial and target orbits are always specified to be outside 
of a small region surrounding the singularities. As a rather coarse approximation, in the unlikely event that 
during the numerical integration the inclination (in radians) or eccentricity try to drop below their 
values are artificially frozen at this value until their rates of change become positive. 

3 Results 

Transfers between five pairs of initial and final orbits are studied and in some instances compared to 
optimal orbit transfers. (The term orbit transfer is here sometimes used to refer to a particular trajectory 
joining an initial and final orbit, and sometimes to refer simply to the pair of orbits to be joined by some 
as-yet undetermined trajectory.) Table ?? lists the orbit transfers and their associated thrust characteristics 
and central body. As is evident from the table, the transfers become increasingly complex, involving larger 
changes in elements and more-constrained target orbits. In each case, the trade-off between propellant mass 
and flight time is investigated by varying the effectivity cut-off. For Earth p = 398600.49km3/s2, and for 
the asteroid Vesta, p = 17.8km3/s2. The standard acceleration due to gravity is taken as 9.80665m/s2. 

Unless otherwise noted, nominal values are used for the Q-law parameters: Zero and unity are used 
for the W e  (depending on whether the target value of an element is free or fixed); m,n,r are taken as 
3,4,2, respectively; and Wq is unity when a periapsis constraint is imposed, zero otherwise. The minimum 
permitted length of a thrust arc is 10" in true longitude (over-riding vcut, if need be), to prevent thrust-on-off 
chatter around 77 = qCut. Unless otherwise noted, the initial true anomaly is taken as zero. 

Case A 

Case A is essentially a simple coplanar, circleto-circle orbit transfer from low Earth orbit to geostationary 
orbit. No periapsis constraint is imposed during the transfer, as the natural dynamics do not decrease the 
periapsis altitude. A s  expected, the vcut = 0 case yields the shortest flight-time for the &-law, as thrust is 
applied continuously. The trajectory, shown in Fig. ??, is roughly a circular spiral. According to Edelbaum's 
averaging analysis2, the optimal AV for the minimum-time transfer between two coplanar circular orbits is 
the difference in circular orbit speeds (from which the minimum time can be computed). 

At large vcut values, the transfer trajectory takes a rather different form, opting to emulate a Hohmann 
transfer by performing multiple burns around periapsis or around apoapsis. The trajectory for the case of 
vcut = 0.968 is shown in Fig. ??. Fig. ?? plots the osculating apoapsis radius, ra, versus osculating periapsis 
radius, rp,  for both the vcut = 0 and vcut = 0.968 cases. In'the former, the osculating orbit is seen to 
remain close to circular, while in the latter, the maintenance of low rp until T, becomes supersynchronous is 
dramatically evident. 
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Data for the &-law transfers are listed in Table ?? alongside corresponding numbers for the Edelbaum 
transfer and an impulsive Hohmann transfer (assuming circular coplanar orbits). The minimum-time &-law 
transfer is seen to be close to Edelbaum’s transfer, and the multi-burn &-law transfer is seen to be close to 
the flight time and AV of the Hohmann transfer. 

It is worth noting that for some qcut values, the phasing of the final approach to the target orbit is 
disadvantageous, which causes a dip in flight-time and propellant-mass performance. The poor phasing 
causes the spacecraft to arrive at apoapsis when both a and e are just above their target values, in which 
case the effectivity is very low, and only a very narrow range of thrust directions can reduce &. These qcut 
values can be sreened out, or the poor performance can be rectified by adjusting other &-law parameters 
such as the weights or the initial true anomaly. 

by 
&-law V1.004 

Table 1 Case A Orbit transfer 
Solved I TOF AV Propellant Revs I Comments 

(days) (km/s) Mass (kg) 
14.60048 4.5257 41.4953 90.38 etaqcut=O (Min. TOF) 

Vcl - vc2 
Hohmann 

152.389 3.9524 36.5739 666.02 etaqcut=0.968 
14.4199 4.4654 40.9820 assume circ. orbits 

Case B 

Case B, a transfer from a slightly-inclined geostationary transfer orbit to geostationary orbit, is slightly 
more complex than Case A, in that three elements have target values rather than just two. Again, no 
periapsis constraint is imposed as none is needed. The trade-off between final mass and flight time, shown 
in Fig. ??, is generated by varying the effectivity cut-off upwards from zero. Two optimal trajectories are 
available4 for comparison, computed using orbit averaging and the calculus of variations. One is a propellant- 
optimal, minimum-flight-time transfer, and the other is a propellant-optimal, fixed-time transfer. The final 
mass and flight time for these transfers is plotted in Fig. ?? alongside the &-law curve. It is seen that the 
&-law curve passes close to the two optimal solutions. 

Case C 

Case C is a transfer from a low-eccentricity ellipse to a coplanar, high-eccentricity, larger ellipse. Again 
no periapsis constraint is imposed. The &-law trade-off between final mass and flight time is shown in 
Fig. ?? alongside several propellant-optimal, fixed-time transfers. The propellant-optimal transfers were 
computed using the optimisation software named Mysticg!’ , which is based on the static/dynamic control 
(SDC) a lg~r i thm.~  SDC best fits into the direct method category, although, unlike other direct methods, 
the explicit time dependence of the optimisation problem is not removed by parametrisation. The ratcheting 
behaviour of the &-Yaw curve is due to hanging thrust arcs - very short thrust arcs that bring us to the 
target orbit, but which appear after a long coast arc. Hanging thrust arcs occur when the thrust is turned off 
(on account of the particular effectivity cut-off value being used), just befor the target orbit is reached. The 
spacecraft must then coast until the effectivity cut-off is high enough again to permit thrusting, whereupon 
a very brief burst of‘ thrust is sufficient to reach the target orbit. The exact flight times and final masses 
where the ratchet steps occur are highly dependent on the initial true anomaly and on the weights used in 
the &-law. Taking the ratcheting behaviour into account, we again we see that the &-law “curve” passes 
close to the propellant-optimal solutions. 

7 

Case D 

Case D is a roughly-circle-to-circle orbit transfer around the asteroid Vesta, involving a small plane 
change. The periapsis radius penalty function is used with Wp = 1, k = 100, and rpmin =300km. A 
propellant-optimal, fied-time solution for this transfer is presented in Ref. ?. The &-law trade-off between 
final mass and flight time is shown in Fig. ?? rf pw$m+ m le a$dedjl 
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Case E 

Case E is a transfer from a geostationary transfer orbit to a retrograde, Molniya-type orbit. [i & y q  L A  
be .ciJ&Gt] 

4 Conclusions 

Based on Gauss’s form of the variational equations, and exploiting analytic expressions for the optimal 
thrust direction and location on the osculating orbit for changing each of the orbit elements except true 
anomaly, we have developed a candidate Lyapunov function for performing low-thrust orbit transfers using 
Lyapunov feedback control. The algorithm has been applied to a wide range of orbit transfers, and compares 
favourably to optimal transfers. t F - 5 9 4  

16 k c  ad&&/] 

Acknowledgements 

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under 
a contract with the National Aeronautics and Space Administration. 

7 
American Institute of Aeronautics and Astronautics 



References 

‘Lawden, D. F., “Optimal Programming of Rocket Thrust Direction,” Astronautica Acta, Vol.1, 1955, pp.41- 
56. 

2Edelbaum, T. N., “Optimum Power-Limited Orbit Transfer in Strong Gravity Fields,” AIAA Journal, vo1.3, 
No.5, May 1965, pp.921-925. 

3Kechichian, J .A., “Optimal Low-Earth-Orbit-Geostationary-Earth-Orbit Intermediate Acceleration Orbit 
Transfer,” J. Guidance, Control, and Dynamics, V01.20, No.4, July-Aug. 1997, pp.803-811. 

4Geffroy, S. and Epenoy, R., “Optimal Low-Thrust Transfers with Constraints - Generalization of Averaging 
Techniques,” Astronautica Acta, Vo1.41, No.3, 1997, pp.133-149. 

‘Bishop, R.H. #and Azimov, D.M., “Analytical space trajectories for extrema1 motion with low-thrust exhaust- 
modulated propulsion,’’ J. Spacecraft and Rockets, Vo1.38, No.6, Nov-Dec 2001, pp.897-903. 

‘Whiting, J.K., “Three-dimensional low-thrust trajectory optimization, with applications,” 39th 
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2003-5260, Huntsville, Alabama, 

7Kluever, C. A. and Oleson, S. R., “A Direct Approach for Computing Near-Optimal Low-Thrust Transfers,” 
AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 97-717, Sun Valley, Idaho, Aug. 4 7 ,  1997. 

‘Chilan, C.M. and Conway, B.A., “Optimal Low-Thrust Supersynchronous-to-Geosynchronous Orbit Trans- 
fer,” Paper AAS 03-632, AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Montana, 03-07 Aug. 2003. 

’Whiffen, G. J .  and Sims, J. A., “Application of a Novel Optimal Control Algorithm to Low-Thrust Trajectory 
Optimization,” AAS/ AIAA Space Flight Mechanics Meeting, AAS Paper 01-209, Santa Barbara, California, Feb. 11- 
15, 2001. 

“Whiffen, G.J.. “Optimal Low-Thrust Orbit Transfers around a Rotating Non-Spherical Body” AAS/AIAA 
Space Flight Mechanics Meeting, AAS Paper 04-264, Maui, Hawaii, Feb. 8-12, 2004. 

‘lKluever, C. A., “Simple Guidance Scheme for Low-Thrust Orbit Transfers,” J .  Guidance, Control, and 
Dynamics, V01.21, No.6, Nov. 1998, pp.1015-1017. 

12Gefert, L. P. and Hack, K. J., “Low-Thrust Control Law Development for Transfer from Low Earth Orbits 
to High Energy Elliptical Parking Orbits,” AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 99-410, 
Girdwood, Alaska, Aug. 1999. 

13Petropoulos, A.E., “Simple Control Laws for Low-Thrust Orbit Transfers,” AAS Paper 03-630, AAS/AIAA 
Astrodynamics Specialist Conference, Big Sky, Montana, 03-07 Aug. 2003. 

‘*Ilgen, M.R., “Low thrust OTV guidance using Liapunov optimal feedback control techniques,” AAS/AIAA 
Astrodynamics Specialist Conference, AAS Paper 93-680, Victoria, Canada, 16-19 Aug 1993. 

15 Chang, D.E., Chichka, D.F., Marsden, J.E., “Lyapunov functions for elliptic orbit transfer,” AAS/AIAA 
Astrodynamics Specialist Conference, AAS Paper 01-441, Quebec City, Canada, July 30-Aug. 2 2001. 

16Battin, R. H.. An Introduction to the Mathematics and Methods of Astrodynamics, 1st ed. 4th printing, 
AIAA, New York, 1987, pp.488-489. 

July 20-23, 2003. 

8 
American Institute of Aeronautics and ‘Astronautics 



bpi?- 
%. 

Low-Thrust Orbit Transfers Using Candidate Lyapunov Functions 
with a Mechanism for Coasting 

Anastassios E. Petropoulos* 
Jet Propulsion Laboratory, California Institute of Technology 

Pasadena, California 911 09-8099 I ~ 

We consider low-thrust orbit transfers around a central body, where ;pecified changes 
are sought in orbit elements except true anomaly. The desired changes in the remaining 
five elements can be arbitrarily large. Candidate Lyapunov functions are created based on 
analytic expressions for maximum rates of change of the orbit elements and the desired 
changes in the elements. These functions may be thought of as proximity quotients because 
they provide a measure of the proximity to the target orbit. The direction of thrust needed 
for steepest descent to the target orbit is also available analytically. The thrust is shut- 
off if the effectivity of the thrust at the current location on the osculating orbit is below 
some threshhold value. Thus, the equations of motion can be numerically integrated to 
obtain quickly and simply a transfer to the target orbit. A series of transfers can be easily ’ 
computed to assess the trade-off between propellant mass and flight time. Preliminary 
comparisons to optimal solutions show that the method, while sub-optimal, performs well. 

1 Introduction 

The problem of computing many-revolution, low-thrust orbit transfers around a central body is a difficult 
one; its study began at least as early as the 1950s’~~ and continues today. Much of the work has focused on 
finding propellant-optimal trajectories using either indirect or direct techniques or mixtures of the two, as 
recently exemplified by Refs. [3-61, [7,8], and [9,10], respectively. Given the dearth of analytic solutions to 
the optimisation problem, and the difficulty of computing optimal solutions, some attention has also been 
focused on heuristic control laws. The advantage of the heuristics lies in the speed of computation, which can 
be orders of magnitude greater than that for optimisation, while the drawback is that the solutions are non- 
optimal. One category of  heuristic^^^-'^ involves “blending” the instantaneously optimal thrust directions 
for changing each of the orbit elements during each of several phases of the orbit transfer. The precise nature 
of the blending and the delineation of the phases is guided by experience of the mission designer and perhaps 
by optimisation of the parameters in the control scheme. A second category- of h e u r i s t i ~ s l ~ - ~ ~  is based on 
Lyapunov feedback control, where a suitable Lyapunov function must be defined by the mission designer. 

In this paper, we extend the Lyapunov feedback approach of Ref. [13], with the aim of providing both 
simple approximations to, and good initial guesses for, propellant-optimal, low-thrust orbit transfers which 
involve specified changes in all orbit elements except true anomaly. In Ref. [13], the candidate Lyapunov 
function, termed the “proximity quotient,” Q, exhibited divergence for some orbit transfers. Here, the 
problem of divergence is addressed, and, in addition, a penalty function method is used to enforce minimum- 
periapsis-radius constraints. The new proximity quotient, &, is still termed a candidate Lyapunov function, 
because, although convergence is seen in all examples studied thus far, it has not been rigorously proved, due 
to the complexity of the function. As in Ref. [13], the proximity quotient takes into account the analytically- 
known optimal locations on the osculating orbit for changing each of the orbit elements, as well as the 
corresponding optimal rates of change that can be obtained fzr each element. The decision of whether to 
coast or thrust is based on the effectiveness of thrust in changing the proximity quotient on the osculating 
orbit. The Lyapunov feedback control law based on the proximity quotient (the “Q-law”) has but few 
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input parameters, :yet captures the complexity of a wide variety of orbit transfers, including those involving 
multiple coast arcs. 

We present a miinber of orbit transfers compted .;sing the Q-law and compare some of these to optimal 
orbit transfers. As an approximation, the control law provides mission designers with rapid estimates of 
propellant requirements and times of flight, as well as the trade-offs between the two. In providing initial 
guesses for optimisation, the control law would be particularly useful for the case where large numbers of 
revolutions are required. Both continuous and intermittent thrusting is permitted for the transfer, but no 
constraints are placed on when thrusting can occur. When non-zero, the thrust is assumed to be constant, 
and the specific impulse is similarly constant. The Q-law, as currently formulated, does not attempt to 
capitalise on the increasing thrust acceleration - the increase will often be of small utility for high specific- 
impulse missions. The current &-law logic is oblivious to thruster characteristics and simply provides a 
thrust direction on the osculating orbit, and an indication of whether to thrust or not. The central body 
is modelled as a point mass, and the initial and final orbits are assumed closed. No perturbing forces are 
considered. 

I 

2 The Q-Law Algorithm 

Definition of the proximity quotient, Q - 
The proximity quotient, Q, which serves as a candidate Lyapunov function, attempts to judiciously 

quantify the proximity of the osculating orbit to the target orbit. Q is defined as follows: 

2 

Q := (1 + WPP) Cwesa: (d(zxy)) , 
E ‘  

for E = a,  e, i, w ,  R 

where the five orbital elements (E) are the semimajor axis (a), eccentricity (e), inclination (i), argument 
of periapsis (w) ,  and longitude of the ascending node (a); Wp and the WE are scalar weights greater or 
equal to zero; the subscript T denotes the target orbit element value (without subscript, the osculating 
value is indicated); kX denotes the maximum over thrust angle and over true anomaly on the osculating 
orbit of the rate of change of the orbit element (due to thrust); P is a penalty function; Sa: is a scaling 
function; and d ( E ,  E T )  is a distance function. The penalty function is used in the present paper to enforce 
minimum-periapsis-radius constraints and takes the form 

c- 

P = e x p  k l-- ( r 2 i n ) l  

where k is a scalar, rp is the osculating periapsis radius, and ~~~i~ is near or equal to the lowest permissible 
value of T ~ .  The scaling function is used primarily to prevent non-convergence to the target orbit and takes 
the form 

for ~ = e , i , w , R  

where m, n, and T are scalars with nominal values of 3, 4, and 2, respectively. The distance function is 
defined as 

E - oemT for a: = a, e, i  
(4) { cos-’ [cos(E - ET)]  for = w ,  a 

d( e, ET) = 

where the principal value, namely [0,7r] is used for the arc cosine. The peculiar form of the distance function 
for w and R is used because it provides an angular measure of the distance-between two positions on a 
circle using the “short way round” the circle, because it is differentiable with respect to (E [except when 
d ( ~ ,  ET) = 4, and because the sign of the derivative indicates whether E leads or lags ET based on the 
short way round. 
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Analytic expressions for the kX 
Analytic expressions are available13 for the maximum rates of change achievable for each of the orbit 

elements both over the true anomaly on the osculating orbit and over the thrust direction. For convenience, 
a summary of the derivations is presented here. We commence with Gauss's form of the variational equations 
for the orbit? 

T sin(8 + w )  - fh 

f h  

- - dfl 
dt hsini 
di 
dt h 

T cos(e + w )  - - - 

1 T sin(8 + w) cos i = - [-p cos 8 fr + (p + T )  sin e fo] - f h  
dw 
dt eh h sin i 

dt h T 

- 

- da = - 2a2 (esinefT +-fe)  P 

de 1 
= - {psino fr + [(p + T )  cose +re] fe>  

dt h 
- 

h 1  
- - + [Pcosdf, - (p+r)sin8fe] 

df3 
dt r2 
- _  

where t is time; 0 is true anomaly; p is the semilatus rectum; h is the specific orbital angular momentum; 
T is the radius from the central body, related to the osculating elements through the conic equation T = 
p/(l+ecos8); and f T ,  fe, and fh are the components of the thrust acceleration in the radial, circumferential 
and angular momentum directions, repsectively. Using the thrust angles a (measured in the orbit plane off 
of the circumferential direction, positive away from the gravitational centre) and p (measured off of the orbit 
plane and perpendicular to it, positive in the direction of the angular momentum), the thrust acceleratizn 
components are given as: 

The following definition is used for de,,, 

for a: = a, e, i, fl 

Then, using f for the thrust-acceleration magnitude and p for the gravitational parameter of the central 
body, there arises for the semimajor axis: 

and for the eccentricity: 

and for the inclination: 

'and for the argumeat of periapsis: 

. 2Pf ex, = - 
h 

Pf 
2xx = h (d1- e2sin2w - elcoswl) 
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where 

L J L 

P 
1 + e cos e,, Txx = 

and for the longitude of the ascending node: 

(18) 
Pf 

hsini (41 - e2 cos2 w - el sinwl) 
h,, = 

(We note that Eq. 16 is a corrected version of Eq. 27 in Ref. [13], which contained a typographical error.) 

Discussion of the Q-law and effectivity 

It is clear from the definition of the proximity quotient in Eq. 1 that Q is zero at the target orbit and 
positive elsewhere. Thus, our goal in the orbit transfer is to drive Q to zero. Q may be thought of as a 
“best-case quadratic time-to-go,” in that it captures the best possible rate of change for each of the orbit 
elements over the osculating orbit - the ratio d(@, a e ~ ) / & , ,  is the time it would take to reach the target 
value far thzt ae if this best possible rate of change could be sustained throughout the transfer. We note that 
Q is a function only of the five orbit elements, and not of true anomaly or the thrust angles. The summation 
in Eq. (1) is available analytically since analytic expressions have been derived for each of the k,,. Now, 
the time rate of change of Q is simply -=Czk dQ 89 

dt ae 
(19) 

where each of the de are available explicitly from the variational equations (5)-(9). Thus, unlike Q, Q depends 
on the thrust angles. At any point on the transfer, we choose the thrust angles, an and /In, which make Q 
most negative: 

Qn = m i n d  
%P 

Qn is always less zero. The angles an and fin that minimise 0 are available analytically. The Q-law uses 
these thrust angles, thereby ensuring that Q is being sent towards zero as quickly as possible at each instant. 
From the functional form of Q, we see that reducing Q might involve not only reducing d(ae, E T ) ,  but also 
increasing k,. Sacrificial changes in one orbit element can thus be made [increasing d ( t q ,  G ~ T ) ] ,  if other 
elements can then be changed more easily (increasing &222). This sort of balancing between orbit elements 
is akin to the classic example of a large plane change for a circular orbit: The propellant-optimal way to 
accomplish this is to enlarge the orbit, making the plane change easier, and then to shrink the orbit back to 
its original size. 

One complication that is difficult to address analytically is that of convergence. Although we can always 
apply thrust so as to reduce Q, since Qn < 0, we have not proved that doing so will always drive the orbit 
elements to their target values. For example, if we replace the scaling coefficient of Eq. 3 with Sa = 1, we 
see that Q becomes zero not only at the target orbit, but also at a = m, which would prevent some initial 
orbits from converging to the target orbit (converging instead to a = m). However, for the nominal Q of 
Eq. 1, convergence has been seen over all of the wide range of orbit transfers studied numerically so far. 

While the thrust. angles an and /In ensure the optimal rate of reduction of Q at the current true anomaly, 
they do not provide any information about how effective the thrust is, as compared with other locations on ‘ 
the osculating orbit. Thus, it is natural to define the effectivity of the thrust at the current true anomaly as 

Qn 

Qnn 
q = -  

where 
Qnn = mino, 

8 
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A mission designer may then chose to prevent the spacecraft from thrusting if the effectivity is below some 
cut-off value, qcut. Broadly speaking, the greater the cut-off, the greater the expected propellant savings and 
the longer the expected Sight time. An analytic expression is not available for Qnn, and so this value must 
be computed numerically - an approximate value is normally sufficient, and so the computational burden 
is very slight. 

Using the Q-law as a feedback algorithm 

In this paper, the orbit transfers are computed by numerically integrating the variational equations 5-9 
and the mass-flow-rate equation, where Eq. 8 is replaced by the variational equation for p ,  where the thrust 
angles are determined by the &-law, and where the decision of whether to apply thrust or not is based on 
the 'Q-law effectivity cut-off. A mission designer specifies the thrust, the specific impulse, initial values for 
(a, e, i, w,  0, e) ,  and final values for the orbit elements of interest (except 8 ,  of course). For any element, 
E, whose final value is free, the corresponding weight, WE,  in Eq. 1 is set to zero. The remaining W e  are 
set to non-zero values, nominally unity. A minimum periapsis radius constraint is imposed by setting the 
penalty-function weight, Wp, to be non-zero, nominally unity. 'The associated parameters k and rpmin in Eq. 
2 are normally set in concert with each other - the size of IC determines how steeply the exponential barrier 
rises at rp = rpmin. The numerical integration is performed using a 5th-6th-order Runge-Kutta algorithm, 
with fixed step size in true longitude. 

Due to the use of the classical orbit elements, the Q-law and the variational equaitons have singularities 
at zero-inclination and at zero-eccentricity. Thus, initial and target orbits are always specified to be outside 
of a small region surrounding the singularities. As a rather coarse approximation, in the unlikely event that 
during the numerical integration the inclination (in radians) or eccentricity try to drop below their 
values are artificially frozen at this value until their rates of change become positive. 

3 Results 

Transfers between five pairs of initial and final orbits are studied and in some instances compared to 
optimal orbit transfers. (The term orbit transfer is here sometimes used to refer to a particular trajectory 
joining an initial and final orbit, and sometimes to refer simply to the pair of orbits to be joined by some 
as-yet undetermined trajectory.) Table ?? lists the orbit transfers and their associated thrust characteristics 
and central body. A.s is evident from the table, the transfers become increasingly complex, involving larger 
changes in elements and more-constrained target orbits. In each case, the trade-off between propellant mass 
and flight time is investigated by varying the effectivity cut-off. For Earth /I = 398600.49km3/s2, and for 
the asteroid Vesta, 11 = 17.8km3/s2. The standard acceleration due to gravity is taken as 9.80665m/s2. 

Unless Otherwise noted, nominal values are used for the Q-law parameters: Zero and unity are used 
for the WE (depending on whether the target value of an element is free or fixed); m,n,r are taken as 
3,4,2, respectively; and Wq is unity when a periapsis 'constraint is imposed, zero otherwise. The minimum 
permitted length of i i  thrust arc is 10" in true longitude (over-riding vcUt, if need be), to prevent thrust-on-off 
chatter around q = qcut. Unless otherwise noted, the initial true anomaly is taken as zero. 

Case A 

Case A is essentially a simple coplanar, circle-to-circle orbit transfer from low Earth orbit to geostationary 
orbit. No periapsis constraint is imposed during the transfer, as the natural dynamics do not decrease the 
periapsis altitude. As expected, the qcut = 0 case yields the shortest flight-time for the &-law, as thrust is 
applied continuously. The trajectory, shown in Fig. ??, is roughly a circular spiral. According to Edelbaum's 
averaging analysis2, the optimal AV for the minimum-time transfer between two coplanar circular orbits is 
the difference in circular orbit speeds (from which the minimum time can be computed). 

At large 7;lcut values, the transfer trajectory takes a rather different form, opting to emulate a Hohmann 
transfer by performing multiple burns around periapsis or around apoapsis. The trajectory for the case of 
qcut = 0.968 is shown in Fig. ??. Fig. ?? plots the osculating apoapsis radius, T,, versus osculating periapsis 
radius, rp,  for both the 7;lcut = 0 and qcut = 0.968 cases. In'the former, the osculating orbit is seen to 
remain close to circular, while in the latter, the maintenance of low rP until T,  becomes supersynchronous is 
dramatically evident. 
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Data for the &-.law transfers are listed in Table ?? alongside corresponding numbers for the Edelbaum 
transfer and an impulsive Hohmann transfer (assuming circular coplanar orbits). The minimum-time &-law 
trmsfer is seen to ?,e close to Edelbaum’k tramfer, m d  the multi-burn Q-law transfer is seen to be close to 
the flight time and AV of the Hohmann transfer. 

It is worth noting that for some qcut values, the phasing of the final approach to the target orbit is 
disadvantageous, which causes a dip in flight-time and propellant-mass performance. The poor phasing 
causes the spacecraft to arrive at apoapsis when both a and e are just above their target values, in which 
case the effectivity is very low, and only a very narrow range of thrust directions can reduce Q. These qcut 
values can be sreened out, or the poor performance can be rectified by adjusting other &-law parameters 
such as the weights or the initial true anomaly. 

Solved 

&-law V1.004 

u c 1  - uc2 
Hohmann 

by 
TOF AV >Propellant Revs Comments 

(days) (km/s) Mass (kg) 
14.60048 4.5257 41.4953 90.38 etaqcut=O (Min. TOF) 
152.389 3.9524 36.5739 666.02 etaqcut=0.968 
14.4199 4.4654 40.9820 assume circ. orbits 

Case B 
Case B, a transfer from a slightly-inclined geostationary transfer orbit to geostationary orbit, is sIightly 

more complex than Case A, in that three elements have target values rather than just two. Again, no 
periapsis constraint is imposed as none is needed. The trade-off between final mass and flight time, shown 
in Fig. ??, is generated by varying the effectivity cut-off upwards from zero. Two optimal trajectories are 
available4 for comparison, computed using orbit averaging and the calculus of variations. One is a propellant- 
optimal, minimum-flight-time transfer, and the other is a propellant-optimal, fixed-time transfer. The final 
mass and flight time for these transfers is plotted in Fig. ?? alongside the &-law curve. It is seen that the 
&-law curve passes close to the two optimal solutions. 

Case C 

Case C is a transfer from a low-eccentricity ellipse to a coplanar, high-eccentricity, larger ellipse. Again 
no periapsis constraint is imposed. The &-law trade-off between final mass and flight time is shown in 
Fig. ?? alongside several propellant-optimal, fixed-time transfers. The propellant-optimal transfers were 
computed using the optimisation software named Mysticg> - , which is based on the static/dynamic control 
(SDC) a lg~r i thm.~  SDC best fits into the direct method category, although, unlike other direct methods, 
the explicit time dependence of the optimisation problem is not removed by parametrisation. The ratcheting 
behaviour of the &-law curve is due to hanging thrust arcs - very short thrust arcs that bring us to the 
target orbit, but which appear after a long coa& arc. Hanging thrust arcs occur when the thrust is turned off 
(on account of the particular effectivity cut-off value being used), just befor the target orbit is reached. The 
spacecraft must then coast until the effectivity cut-off is high enough again to permit thrusting, whereupon 
a very brief burst of thrust is sufficient to reach the target orbit. The exact flight times and final masses 
where the ratchet steps occur are highly dependent on the initial true anomaly and on the weights used in 
the &-law. Taking the ratcheting behaviour into account, we again we see that the &-law “curve” passes 
close to the propellant-optimal solutions. 

? 

. 

Case D 

Case D is a roughly-circle-to-circle orbit transfer around the asteroid Vesta, involving a small plane 
change. The periapsis radius penalty function is used with Wp = 1, k = 100, and rpmin =300km. A 
propellant-optimal, fixed-time solution for this transfer is presented in Ref. ?. The &-law trade-off between 
final mass and flight time is shown in Fig. ?? rf pwr€y+ h i ,  -4d4-q 
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. 
C a s e  E 

Case E is a transfer from a geostationary transfer orbit to a retrograde, Molniya-type orbit. [ z , & y ~ y  L A  
b.2 -A&&] 

4 Conclusions 

Based on Gauss’s form of the variational equations, and exploiting analytic expressions for the optimal 
thrust direction and location on the osculating orbit for changing each of the orbit elements except true 
anomaly, we have developed a candidate Lyapunov function for performing low-thrust orbit transfers using 
Lyapunov feedback control. The algorithm has been applied to a wide range of orbit transfers, and compares 
favourably to optimal transfers. 
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