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Abstract 
Over the past several years, we have been devel- 

oping software fault predictors based on a system’s 
measured structural evolution. We have previously 
shown there is a signiJcant linear relationship be- 
tween code chum, a set of synthesized metrics, and the 
rate at which faults are inserted into the system in 
terms of number of faults per unit change in code 
chum. A limiting jbctor in this and other investiga- 
tions of a similar nature has been the absence of a 
quantitative, consistent, and repeatable definition of 
what constitutes a fault. The rules for fault definition 
were not sujiciently rigorous to provide unambiguous, 
repeatable fault counts. 

Within the framework of a space mission software 
development eflort at the Jet Propulsion Laboratoiy 
(JPL) we have developed a standard for the precise 
enumeration of faults. This new standard permits so@- 
ware faults to be measured directly JLom configuration 
control documents. Our results indicate that reason- 
able predictors of the number of faults inserted into a 
software system can be developed JLom measures of 
the system’s structural evolution. 

We compared the new method of counting faults 
with two misting techniques to determine whether the 
fault counting technique has an effect on the quality of 
the fault models constructed fiom those counts. The 
new fault definition provides higher quality fault mod- 
els than those obtained using the other de3nitions of 
fault. 
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1. Introduction 
Over the past several years, we have been investi- 

gating relationships between measurements of a soft- 
ware system’s structural evolution and the rate at which 
faults are inserted into that system [Muns98, Niko98, 
NikO031. Measuring the structural evolution of a so% 
ware system has proven to be a well-defined task that 
can easily be automated. Unfortunately, it has not been 
as easy to measure the number of faults inserted into the 
system - there has been no quantitative definition of just 
precisely what a software fault is. In the face of this 
difficulty it is hard to develop meaningful associative 
models between faults and code attributes. Since code 
attributes are collected at the module level, we strive tu 
collect information about faults at the same granularity. 

We have recently developed a quantitative defini- 
tion for software faults that allows automated identifi- 
cation and counting of those faults at the module level 
[MunsO2]. Using this definition, we have identified 
strong relationships between measured structural 
change to a software system and the number of faults 
inserted into that system [Nikd3]. The results ob- 
tained in collaboration with the Mission Data System 
(MDS), a space mission software technology develop- 
ment effort at JPL [Dvo99] indicate that our technique 
of counting faults can be used to develop fault models 
with good predictive power. However, there are other 
ways of counting software faults besides the technique 
we proposed. In this paper, we describe three other 
fault-counting techniques and compare the models re- 
sulting from the application of two of those methods to 
the models obtained from the application of our pro- 
posed definition. 



2. Related Work 
Over the past several years, researchers have de- 

veloped a number of fault predictors based on measur- 
able characteristics of a software system. Examples 
include the classification methods proposed by 
Khoshgoftaar and Allen WosOla] and by Gokhale 
and Lyu [Gokh97], Schneidewind’s work on Boolean 
Discriminant Functions [Schn97], Khoshgoftaar’s ap- 
plication of zero-inflated Poisson regression to predict- 
ing software fault content [KhosOl], and Schneide- 
wind’s investigation of logistic regression as a dis- 
criminator of software quality [SchnOl]. Each of these 
has provided useful insights into the problem of identi- 
fjmg fault-prone software components prior to test. 
However, these studies used different &finitions at 
varying levels of precision of what constitutes a fault. 
For example, the definition of the ‘%hult” response 
variable reported in WosOla] is ‘’the number of faults 
discovered in a source file”. The definition used in 
[Schn97] and [SchnOl] is the number of Discrepancy 
Reports (DRs) written against modules, where the 
DRs record observed deviations from requirements. 
This definition is repeatable for the system under 
study, and is related to a system’s quality. However, it 
refers to the number of failures rather than the number 
of faults. 

Neither do current standards seem to provide quan- 
titative definitions for faults. The following definition 
of what constitutes a fault is typical of that provided 
by current standards: “A manifestation of an error in 
software. A fault, if encountered, may cause a failure” 
[IEEE88, IEEE831. This establishes a fault as a struc- 
tural defect in a software system that may cause the 
system to fail, but does not help in determining how 
individual faults may be identified or measured. 

During a small study on a JPL flight system several 
years ago [Niko98], we recognized the importance of 
developing a standard, quantitative definition for 
faults. In an attempt to define an unambiguous set of 
rules for identifying and counting faults, we developed 
an empirical taxonomy based on the types of editing 
changes we observed in response to reported failures 
in the system [Niko97]. We found strong indications 
that a system’s measured structural evolution could 
predict the fault insertion rate. However, the d e f ~ -  
tion of faults that was used was not quantitative. Al- 
though the rules provided a way of classifying the 
faults, and attempted to address faults at the module 
level, they were not sufficient to enable repeatable and 
consistent fault counts by different observers. 

Four years ago, we started a collaborative effort 
with the MDS to address this limitation of the earlier 
study. Our main concern was developing a quantitative 
definition of faults, so that we could automate what had 
been a time-consuming manual activity in the earlier 
study, the identification and counting of repaired faults 
at the module level. Our hope was that this would pro- 
vide us with unambiguous, consistent, and repeatable 
fault counts. 

For our study, the structural evolution of the MDS 
was measured over a period from October 20, 2000, 
through April 26, 2002. The system contains over 
15000 distinct modules; over the time interval analyzed 
studied, there were over 1500 builds of the MDS. The 
total number of distinct versions of all modules was 
greater than 65,000. Over 1400 problem reports were 
included in the analysis; these problem reports provided 
the information from which the number of repaired 
faults was computed. 

3. Problem Statement 
The overall objective of our work is to develop prac- 

tical methods of predicting software fault content based 
on measurable characteristics that can be used by soft- 
ware development efforts to help them better manage 
the quality of their systems. We searched relationships 
between the rate at which faults are inserted into source 
code and the measured structural evolution of the 
source code. Such a relationship would allow us to 
estimate the system’s fault content at any time during 
its development. This process, however, is predicated 
on our ability to define precisely software faults and to 
measure them with a high degree of precision. 

The driving force behind modeling the relationship 
between software faults and software attributes such as 
size is that we can measure software attributes directly, 
It is possible to develop stringent standards for measur- 
ing source code. Measuring software faults is quite 
another matter. Fault measures can either be relatively 
fine grained or coarse grained. We will identify three 
distinct methods of measuring faults and then model the 
relationship of certain software attributes to these dif- 
ferent fault measurement strategies. 

Although other types of software artifacts could 
have been analyzed, source code has two advantages: 

0 Measuring its structural attributes is easily auto- 
mated. 
Since the source code is controlled by a configu- 
ration management system, different versions of 
the system can be easily and unambiguously 
identified. In particular, a baseline against which 



all other versions are to be measured can be 
easily established. 

The objective of this paper, then, is to model the 
relationship of specific software attributes with the 
fault predictors created using our recently developed 
fault counting technique and compare this model with 
fault predictors developed using other proposed meth- 
ods of counting faults. 

4. Structural Metrics Used in this Study 
The software attribute measurement data for this 

study were obtained from the Darwin system [CylaO3] 
that was used to measure and manage metric data on 
the target software system. These data were obtained 
by checking out each build of the system from the 
confguration control system and then applying the 
measurement tools incorporated in the Darwin Net- 
work Appliance. The Darwin system collected meas- 
urement data across the multiple builds of the target 
systems. 

4.1. Software Attribute Measures 
The software attributes that were measured for this 

study are shown in Table 1. These measures were 
obtained for both the C and the C+c code modules in 
the MDS system. The precise definition of each of 
these measures and the standard used to measure them 
can be found in [MunsOZa]. 

All measurements were taken at the module level. 
For C program elements, a module is a function. For 
C U  a module is a function or an object. 

4.2. Derived Metrics 
Our previous work has shown that the metrics 

shown in Table 1 are highly correlated [Muns90, 
HdlOO]. Using principal components analysis (PCA) 
[Di184], we identified the distinct orthogonal sources 
of variation and mapped these twelve raw metrics onto 
a set of uncorrelated metrics that represent essentially 
the same information. We stopped extracting compo- 
nents when the eigenvalues associated with a compo- 
nent assumed values less than 1. The PCA results are 
shown in Table 2. The eigenvalues are shown as the 
last row of Table 2 - the sum of all of the eigenvalues 
for the 12 original metrics is 12.0. The three domains 
together account for approximately 85% of the total 
variation observed in the original 12 metrics. 

We found three distinct sources of variation in the 
twelve original raw metrics that we have labeled as 
Domain 1, 2, and 3 in Table 2. Domain 1 is most 
closely associated with the control flow attributes re- 
lating to the module's control flow graph structure 

complexity, as is shown by the relatively high values 
(>0.85) of the Nodes and Edges metrics in this table. 
Domain 2 is most closely associated with the variety of 
data processed by a module and the operations per- 
formed; Domain 3 is associated with the number of 
distinct paths through the module. The raw metrics 
most closely associated with underlying orthogonal 
domain are shown in boldface twe in Table 2. 

I I  
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is 

It is necessary to standardize all original or raw met- 
rics so that they are on the same relative scale. For the 
th module m;on the j" build of the system there will be 
a data vector X; =.x:,,x;z,...,x,:z > of 12 raw metrics for 



that module. We standardize each of the k raw metrics 

by subtracting the mean zi of the metric k over all 
modules in thefh build and dividing by its standard 
deviation a: such that 2: = (xi -Z;)/a; represents the 
standardized value of the Ph raw metric for the th 
module on thefh build. 

A by-product of the original PCA of the 12 metric 
primitives is a transformation matrix, T that maps the 
z-scores of the raw metrics into the reduced space rep- 
resented by the three principal compondnts. Let Z 
represent the matrix of z-scores shown in Table 2 
above for the original problem. We obtain new do- 
main metrics, D, using the transformation matrix T as 
follows: D = ZT where Z is an n by 12 matrix of z- 
scores, T is a 12 x 3 matrix of transformation coeffi- 
cients, and D is a n x 3 matrix of domain scores where 
n is the number of modules being measured in a par- 
ticular build. The matrix, T, for this solution given in 
columns 2 through 4 of Table 3. The means and stan- 
dard deviations used to compute the z-scores are also 
shown in columns 5 and 6 of Table 3. 

For each module, there are now three new metrics, 
each representing one the three orthogonal principal 
components. These domain scores are uncorrelated, 
thereby eliminating the problem of multicollinearity 
fkom the linear regression models that we wish to de- 
velop. 

5. Measuring Software Faults 
One of the major problems in the analysis of soft- 

ware faults and their relationship to measurable soft- 
ware attributes is the lack of a standard way of count- 
ing faults. Because of this, previous attempts to de- 
velop models of software quality are of questionable 
value. We define below three different approaches to 
fault measurement fkom a very low level token based 
measure to a high-level failure report level measure. 

5.1. Token-Based Fault Counts 
One of the most important considerations in the 

measurement of software faults is the ability to scale 
the fault. Sometimes a simple operator is at fault; the 
developer used a "+" instead of a "-". Other times two 
or three statements must be modified, added, or de- 
leted to remedy a single fault. Further, some program 
changes to fix faults are substantially larger than are 
others. We would like our fault count to reflect that 
fact. The actual changes made to a code module are 
tracked in configuration control systems such as RCS 
or CVS [Cede931 as code deltas. We must learn to 
classifl the code deltas that we make as to the origin 

of the fix. In other words, each repair action for each 
module should reflect a specific code fault fix, a design 
problem, or a specification problem. If we change any 
code module and fail to record each fault as we repair 
it, we lose the ability to resolve faults for measurement 
purposes. 

The important consideration with any fault meas- 
urement strategy is that there must be some indication 
as to the amount of code that has changed in resolving a 
problem in the code. We have regularly witnessed 
changes to tens or even hundreds of lines of code re- 
corded as a single "bug" or fault. The number of tokens 
that have changed to ameliorate the original problem 
constitutes a measurable index of the degree of the 
change. To simplify and disambiguate further discus- 
sion, consider the following definitions. 

Definirion: A fault is an invalid token or bag of to- 
kens in the source code that may cause a failure 
when the compiled code implementing the tokens is 
executed. 
Deflnirion: A failure is the departure of a program 
from its specified hctionalities. 
Definition: A defect is an apparent anomaly in the 
program source code. 

By taking as the fault count the number of tokens that 
have changed, we take into account the sue and extent 
of the fault. 

Each line of text in each version of the program can 
be seen as a bag of tokens. When a developer changes 
a line of code in response to the detection of a fault, the 
tokens on that line will change. New tokens may be 
added, invalid tokens may be removed, or the sequence 
of tokens may be changed. Enumeration of faults under 
this definition is unambiguous and consistent, and can 
be automated. This definition of fault eliminates the 
errors introduced by existing ad hoc fault reporting 
schemes [MunsOZ, Muns02al. 

The following example shows this fault measure- 
ment process. Consider the following line of C code. 

(1) a = b + c ;  
There are five tokens on this line of code. They are B1 
= {<a>, <=>, <b>, <+>, <e} where B1 is the bag rep- 
resenting this token sequence. Now suppose the design, 
in fact, required that the difference between b and c be 
computed 

There will again be five tokens in the new line of code. 
This will be the bag B2 = {<a>, e=>, <b>, <->, < e ) .  
The bag difference is B1 - B2 = {<+>, .e-> }. The car- 
dinality of B1 and B2 is the same. There are two to- 
kens in the difference. Clearly, one token has changed 

(2) a = b - c ;  



fi-om one version of the module to another, indicating 
one fault. 

Now suppose that the problem introduced by the 
code in statement (2) is that the order of the operations 
is incorrect. It should read: 

The bag for this neiw lime of code will be B3 = {<a>, 
<=>, <c>, <a, <b>}. The bag difference between (2) 
and (3) is B2 - B3 = (}. The cardinality of B2 and B3 
is the same. This is a clear indication that the tokens 
are the same but the sequence has been changed. 
There is one fault representing the incorrect sequenc- 
ing of tokens in the source code. 

Continuing this example, suppose that we are con- 
verging on the correct solution but the calculations are 
off by 1. The new line of code will look like this. 

This yields a new bag B4 = {<a>, <=>, <1>, <+>, 
<c>, c-2, <b>). The bag difference between (3) and 
(4) is B3 - B4 = {<I>, <+>). The cardinality of B3 is 
five and the cardinality of B4 is seven. Clearly there 
are two new tokens, indicating two new faults. 

A change may span multiple lines of code. All of 
the tokens in all of the changed lines so spanned are 
included in one bag, allowing us to determine just how 
many tokens have changed in the one sequence. 

5.2. Number of Editor Commands 
Another way of determining the number of faults is 

to count the number of “sed” commands required to 
implement the changes made in response to a reported 
failure. This is simpler than the technique described 
above, yet still provides an unambiguous and repeat- 
able count that is related to the number of repair ac- 
tions performed. 

To count faults in this manner, each version of 
each source file to which changes have been made in 
response to a given reported failure must be identified. 
A differential comparison (“diff’) is then performed 
between the version known to be faulty and the ver- 
sion implementing the repairs - an example is shown 
in Figure 1 (the embedded stream editor, “sed”, com- 
mands are indicated in larger boldface type). The 
number of embedded “sed” commands is then counted 
and recorded as the number of repaired faults. If we 
know the starting line of each module within the 
source files being compared, we are able to assign the 
correct fault count to individual modules. For the ex- 
ample shown in Figure 1 , the number of faults repaired 
within the source file is counted as 5 ,  which we then 
allocate to each of the three modules in this particular 
source file. 

(3) a = c - b ;  

(4) a = l + c - b ;  

53. Number of Modules Changed 
An even simpler way of counting faults is to count 

the number of modules that have changed in response 
to a reported failure. At the bottom of the problem re- 
port shown in Figure 2 is a list of the files that were 
changed in response to the problem report - for each 
source file that was changed, the filename and version 
number of the modified file are given (e.g., the first 
source file implementing repairs is version 20 of 
“MDS-Rep/verification/TestMaster/defaults.dot”). By 
analyzing each file, we can identify those modules that 
have changed. One fault is counted for each module 
that has changed. If the differential comparison shown 
in Figure 1 were for a source file containing only one 
module, then only one fault would be counted, even 
though multiple changes have been made. 
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Figure 1 - Differential Comparison of Faulty, Re- 
paired Module 

5.4. Number of Failure Reports 
A popular method of approximating the number of 

faults is to simply count the number of failure reports. 
At the system level, this technique can work quite well 
- in fact, we have shown that there is a high correlation 
(> 0.9) between counts of the number of observed fail- 
ures and measurements of the amount of structural 



change experienced by the system as a whole 
[Niko03a]. However, we chose not to include failure 
counts in this study because of the problem of scaling 
them to the level of individual modules. An individual 
failure may result in changes to more than one module, 
as shown in Figure 2. To use failure counts at a mod- 
ule level, it would be necessary to count a failure re- 
port multiple times; specifically, for each module re- 
paired in response to that failure report, the number o f  
failures for that module would need to be increased by 
1 .  This assumes that if one of the modules were not 
changed, the failure would occur. We were not corn- 
fortable making this assumption without a detailed 
analysis of the repair actions, which was beyond the 
scope of this study. 

=-- 91LE m s r : 1 1 1 Y ; w 1 w  W d  
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Figure 2 -Failure Report Identifying Changes 

6. The Measurement Baseline 
A complete software system generally consists of a 

large number of program modules. Each of these 
modules is a potential candidate for modification as 
the system evolves during development and mainte- 
nance. As each program module is changed, the total 
system must be reconfigured to incorporate the 

changed module. We will refer to this reconfiguration 
as a build. For the effect of any change to be felt it 
must physically be incorporated in a build. 

The first step in the measuring the evolutionary de- 
velopment of a software system is to establish a base- 
line reference point in the build process. When a num- 
ber of successive system builds are to be measured, we 
choose one of the systems as a baseline system. All 
others will be measured in relation to the chosen sys- 
tem. 

We must standardize the metric scores in a way that 
will not erase the effect of trends in the data. For ex- 
ample, let us assume that we were taking measurements 
on LUC and that the system we were measuring grew in 
this measure over successive builds. We will standard- 
ize the raw metrics using a baseline system such that 
the standardized metric vector for the i"' module m,' on 

the j" build would be 

where E: is a vector containing the means of  the raw 
metrics for the baseline system and .: is a vector of 
standard deviations of these raw metrics. Thus, for each 
system, we may build an m x k  data matrix, Z',  that 
contains the standardized metric values relative to the 
baseline system on build B. 

Table 3 - The Measurement Baseline 

When we have identified a target build, B, to be the 
baseline build we will then compute the three constitu- 
ent elements of the baseline. These elements are T" the 
transformation matrix for the baseline build, the vector 
of metrics means for the baseline build i:, and a vec- 

tor C, of standard deviations for this build. For the 
B 



purposes of this study, the July 1,2001 build was cho- 
sen as the baseline build. Table 3 presents the baseline 
we used to compute the derived metrics. 

7. Measuring Change Activity 
In order to describe the complexity of a system at 

each build, it is necessary to know which version of 
each module was in the program at any point in time. 
Consider a software system composed of n modules as 
follows: m l ~ m 2 ~ m 3 * * " ~ m n .  Not all of the builds will con- 
tain precisely the same modules; there will be different 
versions of some of the modules in successive system 
builds. Details are given in [MunsO2a]. 

We represent the build configuration in a nomen- 
clature that permits us to describe the measurement 
process more precisely by recording module version 
numbers as vector elements in the following manner: 
v' =cVf,v;,vJI,..-V; > . This build index vector will 
allow us to preserve the precise structure of each for 

posterity. Thus, V,n in the vectorv" would represent 

the version number of the i" module that went to n' 
build of the system. The cardinality of the set of ele- 
ments in the vector V" is determined by the number of 
program modules that have been created up to and 
including the nth build. In this case the cardinality of 
the complete set of modules is represented by the in- 
dex value m. This is also the number of modules in 
the set of all modules that have ever entered any build. 

When evaluating the precise nature of any changes 
that occur to the system between any two builds i, and 
j ,  we are interested in three sets of modules. The first 
set, M:', is the set of modules present in both builds 
of the system. These modules may have changed 
since the earlier version but were not removed. The 
second set, M:' , is the set of modules that were in the 
early build, i, and were removed prior to the later 
build, j .  The final set, MI;J , is the set of modules that 
have been added to the system since the earlier build. 
Details of the measurement process are given in 
wunsO2a]. 

With a suitable baseline in place, software evolu- 
tion across a full spectrum of software metrics can be 
measured. We do this first by comparing average met- 
ric values for the different builds. Secondly, we can 
measure the changes in the domain metrics, or we can 
measure the total ainount of change to the system 
across all of the builds to date. 

The change in domain score in a single module 
between two builds may be measured as the absolute 

value of the difference in domain scores on these two 
builds. We will call this code churn measure domain 
churn. In the case of code churn, what is important is 
the absolute measure of the nature that code has been 
modified - faults can be inserted by removing code as 
well as by adding code. 

Let d? represent the zh domain score of the dh 
module on build j baselined by build B. The new 
measure of domain churn, , for module ma is simply 

*;k =Id?- d;kl. That is, the domain churn may be 
established by computing the baselined domain scores 
for any two builds and then find the absolute difference 
between these values. This represents the relative 
amount of change activity that there has been on each 
of the three domains between any two builds. 

Now we wish to characterize, or measure, the com- 
plete change to the system over all of the builds f7om 
build 0 to build L. Many modules, however, may have 
come and gone over the course of the evolution of the 
system. We are only interested in the history of the 
survivors; those modules that are now in the final build 
L. The total domain change activity of the system for 
module m, on domain i is the sum of the domain 
churn for this module f7om the point of its first intro- 
duction to the final build L is given by 

L-1 x: = Cx;J+l . 
J* 

The value of the domain churn Xi for each module is, 
of course, dependent on the referent baseline build B. 
Note that if module m, were not present on buildsj 
and j + l ,  then X:J+I = 0 .  Also, if module m, had been 
introduced on buildj+l then x;~+l = I d y l .  

8. Relationships Between the Different 
Software Fault Counts and Change Ac- 
tivity 

In this investigation, we computed domain scores all 
of the available builds of the MDS system. These do- 
main scores were baselined relative to the July 7,2001 
build of the system, a build more or less intermediate in 
the sequence of builds. Since the initial build is gener- 
ally quite incomplete, it is a good idea to change the 
baseline as development progresses. 

The next step in this investigation was to compute 
the fault count for each program module, using infor- 
mation available f7om the Internal Anomaly Report 
(IAR) system. All changes to the software were tracked 
under the CCC Harvest version control system (now 



incorporated into Computer Associates’ CM systems - 
see [CAO2]). Each change to a program module was 
made either as an enhancement or in response to a 
particular IAR. If a module code delta was attributed 
”to an IAR, then the faults attributed to that change 
were calculated using the three different techniques 
described in Sections 5.1,5.2, and 5.3. 

After establishing each type of fault count for each 
incremental module version, the fault counts were 
accumulated so that by the f m l  build a cumulative 
fault count of that type was available for each module 
in the final build. The fault counts for modules not in 
the final build vanished with the module domain churn 
values when the modules disappeared h m  the evolv- 
ing builds. 

To investigate the relationship between the fault 
content of models and the domain metrics, we elimi- 
nated those modules whose fault count was zero. 
There are two very good reasons for eliminating these 
modules. First, a zero fault count for a module on the 
last build does not imply that there are no faults in this 
module. It could very well mean that the faults have 
yet to be discovered. Second, approximately 90% of 
the modules in the final build have zero fault values. 
They would clearly dominate any regression model 
that was developed using them. 

With the data fiom the remaining modules, we 
developed three multiple linear regression models, one 
for each type of fault count, with the cumulative fault 
count as the dependent variable and the domain churn 
values as independent variables. The regression 
ANOVAs for these analyses are shown in Table 4. 
For each type of fault count, there is a distinct associa- 
tion with module change activity as measured by each 
of the three distinct fault counts and the module do- 
main churn metrics as a measure of code evolution. 

The regression models corresponding to the differ- 
ent types of fault counts are shown in Table 5 .  For the 
models corresponding to the fault counts produced by 
computing token differences or counting the number of 
“sed” commands, Domain 1 is significant. For the 
model produced with token differences, Domain 1 
dominates, and Domains 2 and 3 do not contribute to 
our understanding of the fault introduction process. 
The regression coefficients for these terms are not sig- 
nificant (p>0.05). For the model produced with fault 
counts produced by counting “sed” commands, Domain 
2 contributes to our understanding of the fault insertion 
mechanism, and indeed dominates the model. Finally, 
for the model produced with counts of the number of 
modules changed, Domains 2 and 3 are the important 
factors in this model. Domain 1 plays no significant 
role. 

The three regression models, however, are not at all 
similar when we examine their predictive quality as 
measured by the R2 statistic. This statistic is the ratio of 
sums of squares due to regression to the sums of 
squares total. Finally, we want to know something 
about the relative quality of the regression model that 
we have developed. These data are shown in Table 6. 
We can see from this table that for the model obtained 
fiom fault counts based on token differences (Model l), 
the adjusted R2 is approximately 0.61. This means, 
roughly, that we can account for approximately 60% of 
the variation in the cumulative fault count with the cu- 
mulative domain churn for Domain 1. This is a very 
respectable value for the limited metric set that the 
Darwin tool currently uses. For Models 2 and 3, we 
see that we can only account for a considerably smaller 
(less than 20%) percentage of the variation in the cumu- 
lative fault count with the cumulative churn in Domains 



1, 2, and 3. Clearly, Models 2 and 3 are not usehl 
predictors. 

Table 6 -Model Quality 
I Model 1 R I Ad- IStdErrorI 

Within the framework of this investigation, it is 
evident that we can develop higher quality fault pre- 
dictors using fault counts based on token differences 
than either of the other types of fault counts described 
in Section 5. In the token-based module change 
model shown in 

Table 5 ,  the dominant factor was measurable changes 
in the control structure of a module. Among the set of 
12 metrics used in this investigation, those metrics 
most closely associated with the observed variation in 
software faults were the control metrics shown in the 
first principal component (Domain 1) of Table 2. 

9. Discussion and Future Work 
We have seen that the method by which faults are 

counted can have a significant effect on the fault pre- 
dictors developed using those counts. Of the predic- 
tors developed as part of this study, the one having the 
highest quality was based on the token-based fault 
counting technique we developed in m earlier phase of 
this work. We have also seen that by using an appro- 
priate fault counting technique, predictors with a rela- 
tively high degree of accuracy can be developed. For 
the predictor developed from fault counts based on 
token differences, about 60% of the variation in the 
cumulative fault count was explained by our set of 
measurements, although the number of measurements 
used in the study was rather limited. This is a suffi- 
ciently large value for development efforts to start 
using these measurements as a management tool. 

We have, then, developed a functional definition of 
s o h a r e  faults that can be applied to source code revi- 
sion management systems for the automatic measure- 
ment of s o h a r e  faults. Further, this definition allows 
faults to be unambiguously measured at the level of 
individual modules. Since faults are measured at the 
same level at which structural measurements are taken, 
meaningful models relating the number of faults in- 
serted into a s o h a r e  module to the amount of struc- 
tural change made to that module can be developed. 
This measurement process makes it much more practi- 

cal to analyze large software systems such as those de- 
veloped to support NASA flight missions. 

Future work will involve investigation of these rela- 
tionships for additional software development efforts at 
JPL and other NASA centers. Although fault counts 
based on token differences resulted in the highest qual- 
ity fault predictor for this study, there is insufficient 
data at this point to generalize this conclusion. Detailed 
analysis of additional software development efforts is 
required before more general conclusions can be 
reached. We have started collaborative efforts with 
additional projects at P L  to perform this investigation; 
we have also started working with the Software Assur- 
ance Technology Center at the Goddard Space Flight 
Center to investigate development efforts at other 
NASA centers. 

There may be uncontrolled sources of noise, which 
we intend to address in future work. For example, de- 
velopers might be making enhancements to the system 
at the same time they are responding to a reported fail- 
ure. In this case, the enhancements would be counted 
as repairs made in response to the failure. Addressing 
this issue will involve selecting an appropriate subset of 
the reported failures and interviewing developers about 
the changes made in response to those failures. We will 
be careful to select representative failures from all sys- 
tem components to control for the noise inserted by 
each development team. We will also select reported 
failures from different times during the development 
effort, to determine whether the number of enhance- 
ments reported as fault repair changes over time. 
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