
The Effects of Fault Counting Methods on Fault Model Quality

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA 9 1 109-8099
Allen.P.Nikora@jpl.nasa.gov

Abstract
Over the past several years, we have been devel-

oping software fault predictors based on a system’s
measured structural evolution. We have previously
shown there is a signiJcant linear relationship be-
tween code chum, a set of synthesized metrics, and the
rate at which faults are inserted into the system in
terms of number of faults per unit change in code
chum. A limiting jbctor in this and other investiga-
tions of a similar nature has been the absence of a
quantitative, consistent, and repeatable definition of
what constitutes a fault. The rules for fault definition
were not sujiciently rigorous to provide unambiguous,
repeatable fault counts.

Within the framework of a space mission software
development eflort at the Jet Propulsion Laboratoiy
(JPL) we have developed a standard for the precise
enumeration of faults. This new standard permits so@-
ware faults to be measured directly JLom configuration
control documents. Our results indicate that reason-
able predictors of the number of faults inserted into a
software system can be developed JLom measures of
the system’s structural evolution.

We compared the new method of counting faults
with two misting techniques to determine whether the
fault counting technique has an effect on the quality of
the fault models constructed fiom those counts. The
new fault definition provides higher quality fault mod-
els than those obtained using the other de3nitions of
fault.

KEYWORDS: defect content estimation tech-
niques, fault prediction, software measurement, soft-
ware modeling.

John C. Munson
Chief Science Officer

Lexington, MA 02421
jmunson@cylant.com

Cylant, Inc.

1. Introduction
Over the past several years, we have been investi-

gating relationships between measurements of a soft-
ware system’s structural evolution and the rate at which
faults are inserted into that system [Muns98, Niko98,
NikO031. Measuring the structural evolution of a so%
ware system has proven to be a well-defined task that
can easily be automated. Unfortunately, it has not been
as easy to measure the number of faults inserted into the
system - there has been no quantitative definition of just
precisely what a software fault is. In the face of this
difficulty it is hard to develop meaningful associative
models between faults and code attributes. Since code
attributes are collected at the module level, we strive tu
collect information about faults at the same granularity.

We have recently developed a quantitative defini-
tion for software faults that allows automated identifi-
cation and counting of those faults at the module level
[MunsO2]. Using this definition, we have identified
strong relationships between measured structural
change to a software system and the number of faults
inserted into that system [Nikd3]. The results ob-
tained in collaboration with the Mission Data System
(MDS), a space mission software technology develop-
ment effort at JPL [Dvo99] indicate that our technique
of counting faults can be used to develop fault models
with good predictive power. However, there are other
ways of counting software faults besides the technique
we proposed. In this paper, we describe three other
fault-counting techniques and compare the models re-
sulting from the application of two of those methods to
the models obtained from the application of our pro-
posed definition.

2. Related Work
Over the past several years, researchers have de-

veloped a number of fault predictors based on measur-
able characteristics of a software system. Examples
include the classification methods proposed by
Khoshgoftaar and Allen WosOla] and by Gokhale
and Lyu [Gokh97], Schneidewind’s work on Boolean
Discriminant Functions [Schn97], Khoshgoftaar’s ap-
plication of zero-inflated Poisson regression to predict-
ing software fault content [KhosOl], and Schneide-
wind’s investigation of logistic regression as a dis-
criminator of software quality [SchnOl]. Each of these
has provided useful insights into the problem of identi-
fjmg fault-prone software components prior to test.
However, these studies used different &finitions at
varying levels of precision of what constitutes a fault.
For example, the definition of the ‘%hult” response
variable reported in WosOla] is ‘’the number of faults
discovered in a source file”. The definition used in
[Schn97] and [SchnOl] is the number of Discrepancy
Reports (DRs) written against modules, where the
DRs record observed deviations from requirements.
This definition is repeatable for the system under
study, and is related to a system’s quality. However, it
refers to the number of failures rather than the number
of faults.

Neither do current standards seem to provide quan-
titative definitions for faults. The following definition
of what constitutes a fault is typical of that provided
by current standards: “A manifestation of an error in
software. A fault, if encountered, may cause a failure”
[IEEE88, IEEE831. This establishes a fault as a struc-
tural defect in a software system that may cause the
system to fail, but does not help in determining how
individual faults may be identified or measured.

During a small study on a JPL flight system several
years ago [Niko98], we recognized the importance of
developing a standard, quantitative definition for
faults. In an attempt to define an unambiguous set of
rules for identifying and counting faults, we developed
an empirical taxonomy based on the types of editing
changes we observed in response to reported failures
in the system [Niko97]. We found strong indications
that a system’s measured structural evolution could
predict the fault insertion rate. However, the d e f ~ -
tion of faults that was used was not quantitative. Al-
though the rules provided a way of classifying the
faults, and attempted to address faults at the module
level, they were not sufficient to enable repeatable and
consistent fault counts by different observers.

Four years ago, we started a collaborative effort
with the MDS to address this limitation of the earlier
study. Our main concern was developing a quantitative
definition of faults, so that we could automate what had
been a time-consuming manual activity in the earlier
study, the identification and counting of repaired faults
at the module level. Our hope was that this would pro-
vide us with unambiguous, consistent, and repeatable
fault counts.

For our study, the structural evolution of the MDS
was measured over a period from October 20, 2000,
through April 26, 2002. The system contains over
15000 distinct modules; over the time interval analyzed
studied, there were over 1500 builds of the MDS. The
total number of distinct versions of all modules was
greater than 65,000. Over 1400 problem reports were
included in the analysis; these problem reports provided
the information from which the number of repaired
faults was computed.

3. Problem Statement
The overall objective of our work is to develop prac-

tical methods of predicting software fault content based
on measurable characteristics that can be used by soft-
ware development efforts to help them better manage
the quality of their systems. We searched relationships
between the rate at which faults are inserted into source
code and the measured structural evolution of the
source code. Such a relationship would allow us to
estimate the system’s fault content at any time during
its development. This process, however, is predicated
on our ability to define precisely software faults and to
measure them with a high degree of precision.

The driving force behind modeling the relationship
between software faults and software attributes such as
size is that we can measure software attributes directly,
It is possible to develop stringent standards for measur-
ing source code. Measuring software faults is quite
another matter. Fault measures can either be relatively
fine grained or coarse grained. We will identify three
distinct methods of measuring faults and then model the
relationship of certain software attributes to these dif-
ferent fault measurement strategies.

Although other types of software artifacts could
have been analyzed, source code has two advantages:

0 Measuring its structural attributes is easily auto-
mated.
Since the source code is controlled by a configu-
ration management system, different versions of
the system can be easily and unambiguously
identified. In particular, a baseline against which

all other versions are to be measured can be
easily established.

The objective of this paper, then, is to model the
relationship of specific software attributes with the
fault predictors created using our recently developed
fault counting technique and compare this model with
fault predictors developed using other proposed meth-
ods of counting faults.

4. Structural Metrics Used in this Study
The software attribute measurement data for this

study were obtained from the Darwin system [CylaO3]
that was used to measure and manage metric data on
the target software system. These data were obtained
by checking out each build of the system from the
confguration control system and then applying the
measurement tools incorporated in the Darwin Net-
work Appliance. The Darwin system collected meas-
urement data across the multiple builds of the target
systems.

4.1. Software Attribute Measures
The software attributes that were measured for this

study are shown in Table 1. These measures were
obtained for both the C and the C+c code modules in
the MDS system. The precise definition of each of
these measures and the standard used to measure them
can be found in [MunsOZa].

All measurements were taken at the module level.
For C program elements, a module is a function. For
C U a module is a function or an object.

4.2. Derived Metrics
Our previous work has shown that the metrics

shown in Table 1 are highly correlated [Muns90,
HdlOO]. Using principal components analysis (PCA)
[Di184], we identified the distinct orthogonal sources
of variation and mapped these twelve raw metrics onto
a set of uncorrelated metrics that represent essentially
the same information. We stopped extracting compo-
nents when the eigenvalues associated with a compo-
nent assumed values less than 1. The PCA results are
shown in Table 2. The eigenvalues are shown as the
last row of Table 2 - the sum of all of the eigenvalues
for the 12 original metrics is 12.0. The three domains
together account for approximately 85% of the total
variation observed in the original 12 metrics.

We found three distinct sources of variation in the
twelve original raw metrics that we have labeled as
Domain 1, 2, and 3 in Table 2. Domain 1 is most
closely associated with the control flow attributes re-
lating to the module's control flow graph structure

complexity, as is shown by the relatively high values
(>0.85) of the Nodes and Edges metrics in this table.
Domain 2 is most closely associated with the variety of
data processed by a module and the operations per-
formed; Domain 3 is associated with the number of
distinct paths through the module. The raw metrics
most closely associated with underlying orthogonal
domain are shown in boldface twe in Table 2.

I I

I N, frotaloperatorcount I

is

It is necessary to standardize all original or raw met-
rics so that they are on the same relative scale. For the
th module m;on the j" build of the system there will be
a data vector X; =.x:,,x;z,...,x,:z > of 12 raw metrics for

that module. We standardize each of the k raw metrics

by subtracting the mean zi of the metric k over all
modules in thefh build and dividing by its standard
deviation a: such that 2: = (xi -Z;)/a; represents the
standardized value of the Ph raw metric for the th
module on thefh build.

A by-product of the original PCA of the 12 metric
primitives is a transformation matrix, T that maps the
z-scores of the raw metrics into the reduced space rep-
resented by the three principal compondnts. Let Z
represent the matrix of z-scores shown in Table 2
above for the original problem. We obtain new do-
main metrics, D, using the transformation matrix T as
follows: D = ZT where Z is an n by 12 matrix of z-
scores, T is a 12 x 3 matrix of transformation coeffi-
cients, and D is a n x 3 matrix of domain scores where
n is the number of modules being measured in a par-
ticular build. The matrix, T, for this solution given in
columns 2 through 4 of Table 3. The means and stan-
dard deviations used to compute the z-scores are also
shown in columns 5 and 6 of Table 3.

For each module, there are now three new metrics,
each representing one the three orthogonal principal
components. These domain scores are uncorrelated,
thereby eliminating the problem of multicollinearity
fkom the linear regression models that we wish to de-
velop.

5. Measuring Software Faults
One of the major problems in the analysis of soft-

ware faults and their relationship to measurable soft-
ware attributes is the lack of a standard way of count-
ing faults. Because of this, previous attempts to de-
velop models of software quality are of questionable
value. We define below three different approaches to
fault measurement fkom a very low level token based
measure to a high-level failure report level measure.

5.1. Token-Based Fault Counts
One of the most important considerations in the

measurement of software faults is the ability to scale
the fault. Sometimes a simple operator is at fault; the
developer used a "+" instead of a "-". Other times two
or three statements must be modified, added, or de-
leted to remedy a single fault. Further, some program
changes to fix faults are substantially larger than are
others. We would like our fault count to reflect that
fact. The actual changes made to a code module are
tracked in configuration control systems such as RCS
or CVS [Cede931 as code deltas. We must learn to
classifl the code deltas that we make as to the origin

of the fix. In other words, each repair action for each
module should reflect a specific code fault fix, a design
problem, or a specification problem. If we change any
code module and fail to record each fault as we repair
it, we lose the ability to resolve faults for measurement
purposes.

The important consideration with any fault meas-
urement strategy is that there must be some indication
as to the amount of code that has changed in resolving a
problem in the code. We have regularly witnessed
changes to tens or even hundreds of lines of code re-
corded as a single "bug" or fault. The number of tokens
that have changed to ameliorate the original problem
constitutes a measurable index of the degree of the
change. To simplify and disambiguate further discus-
sion, consider the following definitions.

Definirion: A fault is an invalid token or bag of to-
kens in the source code that may cause a failure
when the compiled code implementing the tokens is
executed.
Deflnirion: A failure is the departure of a program
from its specified hctionalities.
Definition: A defect is an apparent anomaly in the
program source code.

By taking as the fault count the number of tokens that
have changed, we take into account the sue and extent
of the fault.

Each line of text in each version of the program can
be seen as a bag of tokens. When a developer changes
a line of code in response to the detection of a fault, the
tokens on that line will change. New tokens may be
added, invalid tokens may be removed, or the sequence
of tokens may be changed. Enumeration of faults under
this definition is unambiguous and consistent, and can
be automated. This definition of fault eliminates the
errors introduced by existing ad hoc fault reporting
schemes [MunsOZ, Muns02al.

The following example shows this fault measure-
ment process. Consider the following line of C code.

(1) a = b + c ;
There are five tokens on this line of code. They are B1
= {<a>, <=>, , <+>, <e} where B1 is the bag rep-
resenting this token sequence. Now suppose the design,
in fact, required that the difference between b and c be
computed

There will again be five tokens in the new line of code.
This will be the bag B2 = {<a>, e=>, , <->, < e) .
The bag difference is B1 - B2 = {<+>, .e-> }. The car-
dinality of B1 and B2 is the same. There are two to-
kens in the difference. Clearly, one token has changed

(2) a = b - c ;

fi-om one version of the module to another, indicating
one fault.

Now suppose that the problem introduced by the
code in statement (2) is that the order of the operations
is incorrect. It should read:

The bag for this neiw lime of code will be B3 = {<a>,
<=>, <c>, <a, }. The bag difference between (2)
and (3) is B2 - B3 = (}. The cardinality of B2 and B3
is the same. This is a clear indication that the tokens
are the same but the sequence has been changed.
There is one fault representing the incorrect sequenc-
ing of tokens in the source code.

Continuing this example, suppose that we are con-
verging on the correct solution but the calculations are
off by 1. The new line of code will look like this.

This yields a new bag B4 = {<a>, <=>, <1>, <+>,
<c>, c-2,). The bag difference between (3) and
(4) is B3 - B4 = {<I>, <+>). The cardinality of B3 is
five and the cardinality of B4 is seven. Clearly there
are two new tokens, indicating two new faults.

A change may span multiple lines of code. All of
the tokens in all of the changed lines so spanned are
included in one bag, allowing us to determine just how
many tokens have changed in the one sequence.

5.2. Number of Editor Commands
Another way of determining the number of faults is

to count the number of “sed” commands required to
implement the changes made in response to a reported
failure. This is simpler than the technique described
above, yet still provides an unambiguous and repeat-
able count that is related to the number of repair ac-
tions performed.

To count faults in this manner, each version of
each source file to which changes have been made in
response to a given reported failure must be identified.
A differential comparison (“diff’) is then performed
between the version known to be faulty and the ver-
sion implementing the repairs - an example is shown
in Figure 1 (the embedded stream editor, “sed”, com-
mands are indicated in larger boldface type). The
number of embedded “sed” commands is then counted
and recorded as the number of repaired faults. If we
know the starting line of each module within the
source files being compared, we are able to assign the
correct fault count to individual modules. For the ex-
ample shown in Figure 1 , the number of faults repaired
within the source file is counted as 5 , which we then
allocate to each of the three modules in this particular
source file.

(3) a = c - b ;

(4) a = l + c - b ;

53. Number of Modules Changed
An even simpler way of counting faults is to count

the number of modules that have changed in response
to a reported failure. At the bottom of the problem re-
port shown in Figure 2 is a list of the files that were
changed in response to the problem report - for each
source file that was changed, the filename and version
number of the modified file are given (e.g., the first
source file implementing repairs is version 20 of
“MDS-Rep/verification/TestMaster/defaults.dot”). By
analyzing each file, we can identify those modules that
have changed. One fault is counted for each module
that has changed. If the differential comparison shown
in Figure 1 were for a source file containing only one
module, then only one fault would be counted, even
though multiple changes have been made.
20c20,32
c -
>
> template-
> int ILDc Mds::Fw:Car::Lcki::NullType
>::addDspendencyTcConConnedor(cDnat Mds::Fw:lnit::lnitFunctoleasee P unnec-
tor ‘I)

> return 0;

> template cdass Ur
> int lL~U,::addDependencyToConnector(const
Mds::Fw::lnit::lnitFunctw8as& connector)

(return InterfaceListbpend-
encycU>::addbpendency‘ToConnector(carne;
> I

22c34

> (

> }
>

>

c void l n t e r f a c e L i s t D e p e n d e ~ C T ~ P : : ~ d ~ p e ~ ~ T ~ n e c t o r (~ ~
Mds::Fw:lnit::lniffundorBase& connector)

> int I n t e r f a c e l i s t D e p e n d e n ~ c 1 ~ s ~ : : a d d D e p e n
Mds::F~:lne:lnitFunctorease(l connector)
2-38
> return
29,31c42,43

c connedor);

connector)

-

C

C

I

> +
35,39d46
c template<dassU>

Mdr:Fw:lnit::lnitFunctorBase& connector)

2 { l n t e r f e c e l i s I D e p e n d e n o y U > : : a d d D e p e n d e n c y ;

vud I L D s U > : : a d d D e p e n d e n c n ~ ~ c o n s t

- 1

Figure 1 - Differential Comparison of Faulty, Re-
paired Module

5.4. Number of Failure Reports
A popular method of approximating the number of

faults is to simply count the number of failure reports.
At the system level, this technique can work quite well
- in fact, we have shown that there is a high correlation
(> 0.9) between counts of the number of observed fail-
ures and measurements of the amount of structural

change experienced by the system as a whole
[Niko03a]. However, we chose not to include failure
counts in this study because of the problem of scaling
them to the level of individual modules. An individual
failure may result in changes to more than one module,
as shown in Figure 2. To use failure counts at a mod-
ule level, it would be necessary to count a failure re-
port multiple times; specifically, for each module re-
paired in response to that failure report, the number o f
failures for that module would need to be increased by
1 . This assumes that if one of the modules were not
changed, the failure would occur. We were not corn-
fortable making this assumption without a detailed
analysis of the repair actions, which was beyond the
scope of this study.

=-- 91LE m s r : 1 1 1 Y ; w 1 w W d

-a- -. -m .-'lMlY10011*01 w r y
Ye=>.-m I - 1-1 I M "d

- J P - .- u l ~ w m l mm m r m

Y inrrn - - .L -
Figure 2 -Failure Report Identifying Changes

6. The Measurement Baseline
A complete software system generally consists of a

large number of program modules. Each of these
modules is a potential candidate for modification as
the system evolves during development and mainte-
nance. As each program module is changed, the total
system must be reconfigured to incorporate the

changed module. We will refer to this reconfiguration
as a build. For the effect of any change to be felt it
must physically be incorporated in a build.

The first step in the measuring the evolutionary de-
velopment of a software system is to establish a base-
line reference point in the build process. When a num-
ber of successive system builds are to be measured, we
choose one of the systems as a baseline system. All
others will be measured in relation to the chosen sys-
tem.

We must standardize the metric scores in a way that
will not erase the effect of trends in the data. For ex-
ample, let us assume that we were taking measurements
on LUC and that the system we were measuring grew in
this measure over successive builds. We will standard-
ize the raw metrics using a baseline system such that
the standardized metric vector for the i"' module m,' on

the j" build would be

where E: is a vector containing the means of the raw
metrics for the baseline system and .: is a vector of
standard deviations of these raw metrics. Thus, for each
system, we may build an m x k data matrix, Z', that
contains the standardized metric values relative to the
baseline system on build B.

Table 3 - The Measurement Baseline

When we have identified a target build, B, to be the
baseline build we will then compute the three constitu-
ent elements of the baseline. These elements are T" the
transformation matrix for the baseline build, the vector
of metrics means for the baseline build i:, and a vec-

tor C, of standard deviations for this build. For the
B

purposes of this study, the July 1,2001 build was cho-
sen as the baseline build. Table 3 presents the baseline
we used to compute the derived metrics.

7. Measuring Change Activity
In order to describe the complexity of a system at

each build, it is necessary to know which version of
each module was in the program at any point in time.
Consider a software system composed of n modules as
follows: m l ~ m 2 ~ m 3 * * " ~ m n . Not all of the builds will con-
tain precisely the same modules; there will be different
versions of some of the modules in successive system
builds. Details are given in [MunsO2a].

We represent the build configuration in a nomen-
clature that permits us to describe the measurement
process more precisely by recording module version
numbers as vector elements in the following manner:
v' =cVf,v;,vJI,..-V; > . This build index vector will
allow us to preserve the precise structure of each for

posterity. Thus, V,n in the vectorv" would represent

the version number of the i" module that went to n'
build of the system. The cardinality of the set of ele-
ments in the vector V" is determined by the number of
program modules that have been created up to and
including the nth build. In this case the cardinality of
the complete set of modules is represented by the in-
dex value m. This is also the number of modules in
the set of all modules that have ever entered any build.

When evaluating the precise nature of any changes
that occur to the system between any two builds i, and
j , we are interested in three sets of modules. The first
set, M:', is the set of modules present in both builds
of the system. These modules may have changed
since the earlier version but were not removed. The
second set, M:' , is the set of modules that were in the
early build, i, and were removed prior to the later
build, j . The final set, MI;J , is the set of modules that
have been added to the system since the earlier build.
Details of the measurement process are given in
wunsO2a].

With a suitable baseline in place, software evolu-
tion across a full spectrum of software metrics can be
measured. We do this first by comparing average met-
ric values for the different builds. Secondly, we can
measure the changes in the domain metrics, or we can
measure the total ainount of change to the system
across all of the builds to date.

The change in domain score in a single module
between two builds may be measured as the absolute

value of the difference in domain scores on these two
builds. We will call this code churn measure domain
churn. In the case of code churn, what is important is
the absolute measure of the nature that code has been
modified - faults can be inserted by removing code as
well as by adding code.

Let d? represent the zh domain score of the dh
module on build j baselined by build B. The new
measure of domain churn, , for module ma is simply

*;k =Id?- d;kl. That is, the domain churn may be
established by computing the baselined domain scores
for any two builds and then find the absolute difference
between these values. This represents the relative
amount of change activity that there has been on each
of the three domains between any two builds.

Now we wish to characterize, or measure, the com-
plete change to the system over all of the builds f7om
build 0 to build L. Many modules, however, may have
come and gone over the course of the evolution of the
system. We are only interested in the history of the
survivors; those modules that are now in the final build
L. The total domain change activity of the system for
module m, on domain i is the sum of the domain
churn for this module f7om the point of its first intro-
duction to the final build L is given by

L-1 x: = Cx;J+l .
J*

The value of the domain churn Xi for each module is,
of course, dependent on the referent baseline build B.
Note that if module m, were not present on buildsj
and j + l , then X:J+I = 0 . Also, if module m, had been
introduced on buildj+l then x;~+l = I d y l .

8. Relationships Between the Different
Software Fault Counts and Change Ac-
tivity

In this investigation, we computed domain scores all
of the available builds of the MDS system. These do-
main scores were baselined relative to the July 7,2001
build of the system, a build more or less intermediate in
the sequence of builds. Since the initial build is gener-
ally quite incomplete, it is a good idea to change the
baseline as development progresses.

The next step in this investigation was to compute
the fault count for each program module, using infor-
mation available f7om the Internal Anomaly Report
(IAR) system. All changes to the software were tracked
under the CCC Harvest version control system (now

incorporated into Computer Associates’ CM systems -
see [CAO2]). Each change to a program module was
made either as an enhancement or in response to a
particular IAR. If a module code delta was attributed
”to an IAR, then the faults attributed to that change
were calculated using the three different techniques
described in Sections 5.1,5.2, and 5.3.

After establishing each type of fault count for each
incremental module version, the fault counts were
accumulated so that by the f m l build a cumulative
fault count of that type was available for each module
in the final build. The fault counts for modules not in
the final build vanished with the module domain churn
values when the modules disappeared h m the evolv-
ing builds.

To investigate the relationship between the fault
content of models and the domain metrics, we elimi-
nated those modules whose fault count was zero.
There are two very good reasons for eliminating these
modules. First, a zero fault count for a module on the
last build does not imply that there are no faults in this
module. It could very well mean that the faults have
yet to be discovered. Second, approximately 90% of
the modules in the final build have zero fault values.
They would clearly dominate any regression model
that was developed using them.

With the data fiom the remaining modules, we
developed three multiple linear regression models, one
for each type of fault count, with the cumulative fault
count as the dependent variable and the domain churn
values as independent variables. The regression
ANOVAs for these analyses are shown in Table 4.
For each type of fault count, there is a distinct associa-
tion with module change activity as measured by each
of the three distinct fault counts and the module do-
main churn metrics as a measure of code evolution.

The regression models corresponding to the differ-
ent types of fault counts are shown in Table 5 . For the
models corresponding to the fault counts produced by
computing token differences or counting the number of
“sed” commands, Domain 1 is significant. For the
model produced with token differences, Domain 1
dominates, and Domains 2 and 3 do not contribute to
our understanding of the fault introduction process.
The regression coefficients for these terms are not sig-
nificant (p>0.05). For the model produced with fault
counts produced by counting “sed” commands, Domain
2 contributes to our understanding of the fault insertion
mechanism, and indeed dominates the model. Finally,
for the model produced with counts of the number of
modules changed, Domains 2 and 3 are the important
factors in this model. Domain 1 plays no significant
role.

The three regression models, however, are not at all
similar when we examine their predictive quality as
measured by the R2 statistic. This statistic is the ratio of
sums of squares due to regression to the sums of
squares total. Finally, we want to know something
about the relative quality of the regression model that
we have developed. These data are shown in Table 6.
We can see from this table that for the model obtained
fiom fault counts based on token differences (Model l),
the adjusted R2 is approximately 0.61. This means,
roughly, that we can account for approximately 60% of
the variation in the cumulative fault count with the cu-
mulative domain churn for Domain 1. This is a very
respectable value for the limited metric set that the
Darwin tool currently uses. For Models 2 and 3, we
see that we can only account for a considerably smaller
(less than 20%) percentage of the variation in the cumu-
lative fault count with the cumulative churn in Domains

1, 2, and 3. Clearly, Models 2 and 3 are not usehl
predictors.

Table 6 -Model Quality
I Model 1 R I Ad- IStdErrorI

Within the framework of this investigation, it is
evident that we can develop higher quality fault pre-
dictors using fault counts based on token differences
than either of the other types of fault counts described
in Section 5. In the token-based module change
model shown in

Table 5 , the dominant factor was measurable changes
in the control structure of a module. Among the set of
12 metrics used in this investigation, those metrics
most closely associated with the observed variation in
software faults were the control metrics shown in the
first principal component (Domain 1) of Table 2.

9. Discussion and Future Work
We have seen that the method by which faults are

counted can have a significant effect on the fault pre-
dictors developed using those counts. Of the predic-
tors developed as part of this study, the one having the
highest quality was based on the token-based fault
counting technique we developed in m earlier phase of
this work. We have also seen that by using an appro-
priate fault counting technique, predictors with a rela-
tively high degree of accuracy can be developed. For
the predictor developed from fault counts based on
token differences, about 60% of the variation in the
cumulative fault count was explained by our set of
measurements, although the number of measurements
used in the study was rather limited. This is a suffi-
ciently large value for development efforts to start
using these measurements as a management tool.

We have, then, developed a functional definition of
s o h a r e faults that can be applied to source code revi-
sion management systems for the automatic measure-
ment of s o h a r e faults. Further, this definition allows
faults to be unambiguously measured at the level of
individual modules. Since faults are measured at the
same level at which structural measurements are taken,
meaningful models relating the number of faults in-
serted into a s o h a r e module to the amount of struc-
tural change made to that module can be developed.
This measurement process makes it much more practi-

cal to analyze large software systems such as those de-
veloped to support NASA flight missions.

Future work will involve investigation of these rela-
tionships for additional software development efforts at
JPL and other NASA centers. Although fault counts
based on token differences resulted in the highest qual-
ity fault predictor for this study, there is insufficient
data at this point to generalize this conclusion. Detailed
analysis of additional software development efforts is
required before more general conclusions can be
reached. We have started collaborative efforts with
additional projects at P L to perform this investigation;
we have also started working with the Software Assur-
ance Technology Center at the Goddard Space Flight
Center to investigate development efforts at other
NASA centers.

There may be uncontrolled sources of noise, which
we intend to address in future work. For example, de-
velopers might be making enhancements to the system
at the same time they are responding to a reported fail-
ure. In this case, the enhancements would be counted
as repairs made in response to the failure. Addressing
this issue will involve selecting an appropriate subset of
the reported failures and interviewing developers about
the changes made in response to those failures. We will
be careful to select representative failures from all sys-
tem components to control for the noise inserted by
each development team. We will also select reported
failures from different times during the development
effort, to determine whether the number of enhance-
ments reported as fault repair changes over time.
Acknowledgments

The work described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology. This work was sponsored by the National
Aeronautics and Space Administration’s Office of
Safety and Mission Assurance (OSMA) S o h a r e As-
surance Research Program (SARP), which is adminis-
tered by NASA’s IV&V Facility. The authors also
wish to thank the MDS project for the cooperation that
made this study possible. Finally, we thank our col-
leagues who reviewed earlier versions of this paper and
made many helpful suggestions.
References
[CAO2] Computer Associates, “AIlFusion Harvest

Change Manager Features, Descriptions t
Benefits”, Feb. 11,2002, available at:
_htt~://www3.~acom/FileslFactSheet/af harvest
an f d b d f

[Cede931

[Chid941

[CylaO3]

[Di184]

[DvoW]

[Goa971

[Ha11001

[IEEE83]

[IEEE88]

Per Cederqvist, “Version Management with
CVS for C V S 1.1 l.lpl”, available at:
httv://ww w.cvshome.orddocs/manual/.
S. Chidamber, C. Kernerer, “A Metrics Suite
for Object Oriented Design”, IEEE Transac-
tions on Software Engineering, vol. 20, no. 6,
June, 1994, pp. 476-493.
“The Darwin Software Engineering Measure-
ment Appliance“, Cylant, available at:
httu:l/mv.cvlan t.com/
W. Dillon, M. Goldstein, Multivariate Analvsis:
Methods and ADdications, Wiley-Interscience,
1984, ISBN 0471083178
D. Dvorak, R Rasmussen, G. Reeves, A.
Sacks, “Software Architecture Themes In PL’s
Mission Data System”, AIAA Space Technol-
ogy Conference and Exposition, Sep. 28-30,
1999, Albuquerque, NM.
S. S. Gokhale, M. R Lyu, “Regression Tree
Modeling for the Prediction of Software Qual-
ity”, proceedings of the Third ISSAT Interna-
tional Conference on Reliability and Quality in
Design, pp 31-36, Anaheim, CA, March 12-14,
1997
G. A. Hall, J. C. Munson, “Software evolution:
code delta and code chum”, Journal of Systems
and Software 54 (2) (2000) pp. 1 1 1-1 18
“IEEE Standard Glossary of Software Engi-
neering Terminology”, IEEE Std 729-1983,
Institute of Electrical and Electronics Engi-
neers, 1983.
‘WEE Standard Dictionary of Measures to
Produce Reliable Software”, IEEE Ski 982.1-
1988, Institute of Electrical and Electronics
En~neers. 1989.

[KhosOl] T. -khoshgoftaar, “An Application of Zero-
Inflated Poisson Regression for Software Fault
Prediction”, proceedings of the 12th Interna-
tional Symposium on Software Reliability Engi-
neering, pp 66-73, Hong Kong, Nov, 2001.

[KhosOla] T. M. Khoshgoftaar, E. B. Allen, “Modeling
Software Quality with Classification Trees”, in
H. Pham (ed), Recent Advances in Reliability
and Oualitv Endneering, Ch. 15, pp 247-270,
World Scientific Publishing, Singapore, 2001.

[MUns90] J. C. Munson and T. M. Khoshgoftaar, “Regres-
sion Modeling of Software Quality,” Informa-
tion and Software Technology, Vol. 32 No. 2
March 1990, p ~ . 105-1 14.

[Muns98] J. Munson and A. Nikora, “Estimating Rates Of
Fault Insertion And Test Effectiveness In Soft-
ware Systems” Proceedings of the Fourth
ISSAT International Conference on Reliability
and Quality in Design, August 12-14, 1998 pp.

[MunsOZ] J. Munson, A. Nikora, “Toward a Quantifiable
Definition of Software Faults”, Proceedings of
the 13th IEEE International Symposium on Soft-
ware Reliability Engineering, IEEE Press.

[MunsO2a] J. Munson, Software Encrineerine Measurement,
CRC Press, 2002, ISBN 08493 15034.

[Niko97] A. Nikora, J. Munson, “Finding Fault with
Faults: A Case Study”, with J. Munson, pro-
ceedings of the Annual Oregon Workshop on
Software Metrics, Coeur d’Alene, ID, May 11-
13, 1997.

[Niko98] A. P. Nikora, J. C. Munson, “Determining Fault
Insertion Rates For Evolving Software Sys-
tem’’, proceedings of the 1998 IEEE Interna-
tional Symposium of Software Reliability Engi-
neering, Paderbom, Germany, November 1998,
IEEE Press.

[NikoOl] A. Nikora, J. Munson, “A Practical Software
Fault Measurement and Estimation Frame-
work’’, Industrial Presentations proceedings of
the 12th International Symposium on Software
Reliability Engineering, Hong Kong, Nov 27-
30,2001.

mikd)3] A. Nikora, J. Munson, “Developing Fault Pre-
dictors for Evolving Software Systems”, pro-
ceedings of the 9th International Software Met-
ncs Symposium, Sep 3-5, Sydney, Australia

[Nikd33a] A. Nikora, J. Munson, “Understanding the Na-
ture of Software Evolution”, proceedings of the
International Conference on Software Mainte-
nance, Sep 22-26, Amsterdam, The Netherlands.

[Schn97] N. F. Schneidewind, “Software Metrics Model
for Integrating Quality Control and Prediction”,
proceedings of the 8th International Symposium
on Software Reliability Engineering, pp 402-
415, Albuquerque, NM, Nov, 1997.

[SchnOl] N. F. Schneidewind, “Investigation of Logistic
Regression as a Discriminant of Software Qual-
ity“, proceedings of the 7th International Soft-
ware Metrics Symposium, pp 328-337, London,
April, 2001.

263-269.

