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Summary. Clustering algorithms can identify groups in large data sets, such as star 
catalogs and hyperspectral images. In general, clustering methods cannot analyze 
items that have missing data values. Common solutions either fill in the missing 
values (imputation) or ignore the missing data (marginalization). Imputed values 
are treated as just as reliable as the truly observed data, but they are only as good as 
the assumptions used to create them. In contrast, we present a method for encoding 
partially observed features as a set of supplemental soft constraints and introduce 
the KSC algorithm, which incorporates constraints into the clustering process. In 
experiments on artificial data and data from the Sloan Digital Sky Survey, we show 
that soft constraints are an effective way to enable clustering with missing values. 

1 Introduction 

Clustering is a powerful analysis tool that divides a set of items into a number 
of distinct groups based on a problem-independent criterion, such as maximum 
likelihood (the EM algorithm) or minimum variance (the k-means algorithm). 
In astronomy, clustering has been used to organize star catalogs such as POSS- 
I1 (Yo0 et al., 1996) and classify observations such as IRAS spectra (Goebel 
et al., 1989). Notably, the Autoclass algorithm identified a new subclass of 
stars based on the clustering results (Goebel et al., 1989). These methods can 
also provide data compression or summarization by quickly identifying the 
most representative items in a data set. 

One challenge in astronomical data analysis is data fusion: how to combine 
information about the same objects from various sources, such as a visible- 
wavelength catalog and an infra-red catalog. A critical problem that arises 
is that items may have missing values. Ideally, each object in the sky should 
appear in both catalogs. However, it is more likely that some objects will not. 
The two instruments may not have covered precisely the same regions of the 
sky, or some objects may not emit at  the wavelengths used by one of the 
catalogs. Missing values also occur due to observing conditions, instrument 
sensitivity limitations, and other real-world considerations. 
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Clustering algorithms generally have no internal way to handle missing 
values. Instead, a common solution is to  fill in the missing values in a pre- 
processing step. However, the filled-in values are inherently less reliable than 
the observed data. We propose a new approach to  clustering that divides 
the data features into observed features, which are known for all objects, and 
constraining features, which contain missing values. We generate a set of con- 
straints based on the known values for the constraining features. A modified 
clustering algorithm, KSC (for “K-means with Soft Constraints”), combines 
this set of constraints with the regular observed features. In this paper, we 
discuss our formulation of the missing data problem, present the KSC algo- 
rithm, and evaluate it on artificial data as well as data from the Sloan Digital 
Sky Survey. We find that KSC can significantly outperform data imputation 
methods, without producing possibly misleading “fill” values in the data. 

2 Background and Related Work 

Green et al. (2001) (among others) identified two alternatives to handling 
missing values: data imputation, where values are estimated to fill in missing 
values, and marginalization, where missing values are ignored. However, im- 
puted data cannot and should not be considered as reliable as the actually 
observed data. Troyanskaya et al. (2001) stated this clearly when evaluating 
different imputation methods for biological data: “However, it is important to 
exercise caution when drawing critical biological conclusions from data that 
is partially imputed. [. . . ]  [Elstimated data should be flagged where possible 
[. . . ] to avoid drawing unwarranted conclusions.” 

Despite this warning, data imputation remains common, with no mecha- 
nism for indicating that the imputed values are less reliable. One approach 
is to replace all missing values with the observed mean for that feature (also 
known as the “row average” method in DNA microarray analysis). Another 
method is to model the observed values and select one according to the true 
distribution (if it is known). A more sophisticated approach is to infer the 
value of the missing feature based on that item’s observed features and its 
similarity to other (known) items in the data set (Troyanskaya et al., 2001). 
Ghahramani and Jordan (1994) presented a modified EM algorithm that can 
process data with missing values. This method simultaneously estimates the 
maximum likelihood model parameters, data cluster assignments, and values 
for the missing features. Each of these methods suffers from an inability to 
discount imputed values due to their lack of full reliability. 

We therefore believe that marginalization, which does not create any new 
data values, is a better solution. Most previous work in marginalization has 
focused on supervised methods such as neural networks (Tresp et al., 1995) 
or Hidden Markov Models (Vizinho et al., 1999). In contrast, our approach 
handles missing values even we have no labeled training data. In previous 
work, we developed a variant of k-means that produces output guaranteed 
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to satisfy a set of hard constraints (Wagstaff et al., 2001). Hard constraints 
dictate that certain pairs of items must or must not be grouped together. 
Building on this work, we present an algorithm that can incorporate soft 
constraints, which indicate how strongly a pair of items should or should not 
be grouped together. In the next section, we will show how this algorithm can 
achieve good performance when clustering data with missing values. 

3 Clustering with Soft Constraints 

Constraints can effectively enable a clustering algorithm to conform to back- 
ground knowledge (Wagstaff et al., 2001; Klein et al., 2002). Previous work 
has focused largely on the use of hard constraints that must be satisfied by the 
algorithm. However, in the presence of uncertain or approximate information, 
and especially for real-world problems, soft constraints are more appropriate. 

3.1 Soft Constraints 

In this work, we divide the feature set into F,, the set of observed features, 
and F,, the set of features with missing values. We also refer to F, as the 
set of constraining features, because we use them to constrain the results of 
the clustering algorithm; they represent a source of additional information. 

Following Wagstaff (2002), we represent a soft constraint between items 
d, and d3 as a triple: (d$, d j ,  s) .  The strength, s, is proportional to distance in 
F,. We create a constraint (di, d j ,  s)  between each pair of items d,, dJ with 
values for F,, where 

We do not create constraints for items that have missing values. The value 
for s is negative because this value indicates the degree to which di and dj 
should be separated. Next, we present an algorithm that can accommodate 
these constraints while clustering. 

3.2 K-means Clustering with Soft Constraints 

We have chosen k-means (MacQueen, 1967), one of the most common clus- 
tering algorithms in use, as our prototype for the development of a soft con- 
strained clustering algorithm. The key idea is to cluster over F,, with con- 
straints based on F,. 

The k-means algorithm iteratively searches for a good division of n objects 
into k clusters. It seeks to minimize the total variance V of a partition, i.e., the 
sum of the (squared) distances from each item d to its assigned cluster C: 
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Table 1. KSC algorithm 

KSC(lc, D, SC, w) 

1. Let C1 . . . Ck be the initial cluster centers. 
2. For each instance d in D, assign it to the cluster C such that: 

dist(d, Ci)2 +w-) cvd c := argmin ((1 - tu) 
ci L a x  Cvmax 

where CV, is the s u m  of (squared) violated constraints in SC that involve d. 
3. Update each cluster center Ci by averaging all of the points d j  E Ci. 
4. Iterate between (2) and (3) until convergence. 
5. Return the partition {CI . . . Ck}. 

V = dist(d, C)2 

Distance from an item to a cluster is computed as the distance from the item 
to the center of the cluster. When selecting the best host cluster for a given 
item d, the only component in this sum that changes is dist(d, C)2, so k-means 
can minimize variance by assigning d to the closest available cluster: 

C = argmin dist(d, C,)2 
C, 

dED 

When clustering with soft constraints, we modify the objective function 
to penalize for violated constraints. The KSC algorithm takes in the specified 
number of clusters k, the data set D (with F, only), a (possibly empty) 
set of constraints SC, and a weighting factor w that indicates the relative 
importance of the constraints versus variance (see Table 1). 

KSC uses a modified objective function f that combines normalized vari- 
ance and constraint violation values. The normalization enables a straightfor- 
ward specification of the relative importance of each source, via a weighting 
factor w E [0, I]. 

V cv f = (1 -w)- +w- 
Vmax Cvmax (3) 

Note that w is an overall weight while s is an individual statement about 
the relationship between two items. The quantity CV is sum of the squared 
strengths of violated constraints in SC. It is normalized by CVmax, the sum of 
all squared constraint strengths, whether they are violated or not. A negative 
constraint, which indicates that di  and dj should be in different clusters, 
is violated if they are placed into the same cluster. We also normalize the 
variance of the partition by dividing by Vmax, the largest possible variance 
given D. This is the variance obtained by assigning all items to a single cluster. 

In deciding where to place item d, the only constraint violations that may 
change are ones that involve d. Therefore, KSC only considers constraints in 
which d participates and assigns items to clusters as shown in Equation 2. 
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(a) Data set 1 (b) Data set 2 

Fig. 1. Three artificial data sets used to compare missing data methods. 

(c) Data set 3 

4 Experimental Results 

We have conducted experiments on artificial data as well as observational data 
from the Sloan Digital Sky Survey. As we will show, KSC in combination with 
constraints can often outperform typical data imputation methods. We will 
compare our approach to three common methods for handling missing data. 

The first method, NOMISSING, does not impute data. Instead, it discards 
all of the features in F,, relying only on the features in F,. In doing so, it may 
discard useful information for the items that do possess values for F,. Since 
our approach also bases its clustering only on features in F,, any difference in 
performance will be due to the effect of including the soft constraints. 

The second approach is MEANVALUE, which replaces each missing value 
with the mean of the observed values for that feature. The third approach is 
PROBDIST, which replaces missing values based on the observed distribution of 
values. For each item d with a missing value for feature f ,  we sample randomly 
from the observed values for f and select one to replace the missing value d.f. 

4.1 Partitioning Artificial Data 

We created three artificial data sets (see Figure 1). In each case, the data set 
contains 1000 items in three classes that form Gaussian distributions. Data 
set 1 consists of three classes that are separable according to feature 1 (along 
the x-axis). Data set 2 consists of the same data mirrored so that the classes 
are separable according to feature 2. Data set 3 is data set 1 except with the 
rightmost class moved up and between the other two classes. In the final case, 
the three classes are not separable with either feature in isolation. 

We have tested each method by generating variants of these data sets that 
contain increasing fractions of randomly missing values. For consistency, we 
only remove values in feature 2 (the y-axis). Figure 2 illustrates the problems 
associated with both imputation methods by showing the resulting data sets 
when 50% of the feature 2 values for items in data set 2 are removed, then 
imputed. MEANVALUE positions all of the imputed data in the middle cluster, 
while PROBDIST thoroughly mixes the data between clusters. 
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(a) MEANVALUE: extra items in 
middle cluster 

(b) PRoBDIST: imputed items 
mixed into all clusters 

Fig. 2. Imputed data for data set 2 when 50% of feature 2's values are missing. 

To create the soft constraints for KSC, we examine each pair of items 
d,, d3. If both have values for feature 2, we create a soft constraint between 
them proportional to their distance in feature 2 (cf. Equation 1): 

s = -Id,.f2 - 4.h (4) 

The constraint is negative because it indicates how likely the two items are 
to be in different clusters. We then cluster using only feature 1, similar to 
NOMISSING, but with the additional constraint information. 

We also need to select a value for w, the weight that is given to the 
constraint information. For data set 1, we know that feature 2 is not very 
useful for distinguishing the clusters, so we set w = 0.01. For data set 2, 
feature 2 is critical, so we set w = 0.99. For data set 3, where both features 
are important, we use the "equal weight" default value of w = 0.5. If the 
importance of F, is unknown, it can be estimated by clustering with several 
different values for w on a small labeled subset of the data. 

To evaluate performance, we compare the resulting partition ( P I )  to  the 
true partition (P2) via the adjusted Rand index (Hubert and Arabie, 1985), 
averaged over ten trials. Let n,j be the number of items that appear in cluster 
i in PI and in cluster j in P2. Then R is the total agreement between Pi and 
P2, and we calculate 

where E[R] = [xi ("i') Cj ("i)] / (5) is the expected value of R and 

is the maximum possible value for R. 
Because data set 1 is readily separable without any information from fea- 

ture 2, we found that performance was identical for all methods at  all fractions 



Clustering with Missing Values: No Imputation Required 

1W 

90 
P 
E BO 
P 

E 
Q 70 

50 

0 0.2 0.4 0.6 0.8 1 
Percent missing values lor feature 2 

-... . .. 
55 

0 0.2 0.4 0.6 0.8 
Percent missing values lor feature 2 

7 

(a) Data set 2 (b) Data set 3 

Fig. 3. Accuracy for all four methods on two artificial data sets (k = 3, 10 trials); 
bars indicate +/- one standard deviation. 

of missing values, at  98.8%. However, we observe dramatic differences for the 
other two data sets (see Figure 3). Performance for NOMISSING is independent 
of the fraction of missing values, because it only uses feature 1 to cluster the 
data. For data set 2, PROBDIST and KSC perform almost identically, though 
they make different kinds of errors. The output of PROBDIST assigns items with 
missing values arbitrarily to one of the three clusters. KSC’s output comes 
to resemble that of NOMISSING when less constraint information is available 
(Le., more values are missing). MEANVALUE outperforms the other methods 
for missing fractions 2 50%, largely by placing the majority of the items all 
into the middle cluster. Although items from the top and bottom clusters are 
not correctly clustered, all of the items in the middle cluster are. This could 
be an artifact of using three clusters. 

We find that KSC and MEANVALUE outperform PROBDIST for data set 3. In 
addition, KSC is much more robust to an increasing fraction of missing values. 
It is consistently the best performer for missing fractions greater than 10%. 
Overall, KSC performs as well or better than discarding or imputing data, 
without generating any potentially misleading data values. The exception to 
this trend is for data where the clusters are not separable in the observed 
features, when little information is available as constraints. 

4.2 Separating Stars from Galaxies 

In addition to our experiments with artificial data, we have also used KSC to 
analyze a portion of the SDSS star catalog. Our data set contains 977 objects: 
354 stars and 623 galaxies. The goal is to produce a partition that separates 
stars from galaxies. Each object is represented by 5 features: brightness (point 
spread function flux), size (Petrosian radius, in arcsec), texture (small-scale 
roughness of object), and two shape features, all observed at 365 nm. To 
obtain this data set, we used the SDSS recommendations to obtain a “clean” 
sample and excluded faint stars (flux of > 20 magnitude) and very bright 
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Method NOMISSING MEANVALUE 
k = 2  80.6 70.6 
k = 3  88.0 82.6 

Kiri Wagstaff 

PROBDIST KSC, w = 0.5 
70.6 68.3 
81.5 84.2 

In both cases, NOMISSING achieved the best performance, suggesting that 
the shape features may not be useful in distinguishing stars from galaxies. 
To test this theory, we ran KSC with w values ranging from 0.1 to 0.9 (see 
Figure 4). We find that shape information can be useful, if properly weighted. 
For w = 0.3,0.4, KSC outperforms NOMISSING, attaining a peak value of 
90.4%. Otherwise, NOMISSING is the best method. There is no general rule for 
selecting a good w value, but existing knowledge about the domain can point 
to a value. 

The large standard deviation for KSC is due to the occasional solution 
that does not satisfy very many constraints. For example, when w = 0.4, four 
of 50 trials converged to a solution that satisfied only 23% of the constraints 
(Rand 62%). The remaining trials satisfied about 46% of the constraints and 
achieved 90% performance. Thus, the constraint information, when satisfied, 
is very useful. MEANVALUE and PROBDIST also have standard deviations of 
about 5.0 (not shown in Figure 4 for clarity). 

5 Conclusions and Future Work 

In this paper, we presented a new approach to the missing value problem for 
clustering algorithms. We have discussed, and demonstrated, the difficulties 
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Fig. 4. Accuracy when clustering SDSS data with different weights for the con- 
straints (k = 3, 50 trials); bars indicate +/- one standard deviation for KSC. 

of data imputation methods that process imputed values as if they were as 
reliable as the actual observations. We presented a new approach that di- 
vides the data features into F,, the observed features, and F,, the features 
with missing values. We generate a set of soft constraints based on distances 
calculated on known values for Fm. A new algorithm, KSC, can apply these 
soft constraints. In experiments with artificial data and the SDSS star/galaxy 
catalog, we have shown that KSC can perform as well as or better than data 
imputation methods. In some cases, knowledge of the relative importance of 
the missing features is necessary. 

In future work, we plan to compare KSC directly to the EM-based algo- 
rithm of Ghahramani and Jordan (1994). Although their goals were different 
(recovering missing data values vs. determining the correct partition), a eom- 
parison would provide further understanding of the applicability of KSC. 

Another consideration is the complexity of the KSC approach. The number 
of constraints is O(n2),  where n is the number of items that possess values for 
features in Fm. Klein et al. (2002) have suggested a technique for propagat- 
ing hard constraints through the feature space, obtaining equivalent results 
with fewer explicit constraints. Although their work was restricted to hard 
constraints, we would like to explore options for extending their method to 
work with soft constraints as well. 
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