Frederick Best, Cable Kurwitz NASA Center for Space Power Texas A&M University Gaj Birur Jet Propulsion Laboratory

Outline

- Introduction
 - The Benefits of Two-Phase Flow
- Description
 - What is ITEMS
 - Schematic
- Hardware
- Conclusion

Introduction

- Two-Phase Flow Versus Single Phase Flow for Space Applications Has Many Advantages
 - Ability to Carry More Energy Per Unit Mass
 - Higher Heat Transfer Coefficients Than Single Phase Flow, Therefore, Small Heat Transfer Equipment
 - Require Less Pumping Power Per Unit Thermal Energy Carried
 - Transfer Energy Isothermally; Reduced Radiator Area
- Reduced Gravity Two-Phase Flow has a Perceived Low Level of Technological Readiness
 - Accurate Thermal-Hydraulic Models
 - Flow Regime Prediction
 - Phase Separation

Two-Phase Flow

- Alpha Magnetic Spectrometer (AMS-2) Tracker Experiment
 - CO2 Two-Phase Thermal Control Loop
- Russian Segment of ISS
 NH3 Two-Phase Thermal Control Loop
- Several LHP/CPL Thermal Systems
- Advanced Life Support Systems

- Integrated ThErmal Management System was proposed by JPL and Texas A&M for Small Spacecraft Thermal Management.
 - Scalable for Small to Large Spacecraft
 - Thermal Bus Configuration to Allow
 Components to Share Thermal Energy
 - Reduce Heater, Pump, and Electrical Power
 - Potential Reduction in Radiator Area

ITEMS

ITEMS

- ITEMS Architecture Allows Freedom in Locating Components
 - Two-Phase Loops Provide Distributed
 Thermal Bus
- Thermal Energy Shared Along Two-Phase Flow Path
 - Heat Dissipating Components Share Energy with Components Requiring Thermal Energy

- Two-Phase Flow Throughout Energy Transport System
 - Reduced Pumping Power
 - Higher Heat Fluxes and Reduced Heat Transfer Equipment Sizes
 - Improved Radiator Performance
 - Near Isothermal Working Fluid Temperature
 - Single Phase Only Required for Phase Separator Operation
 - Replace with Two-Phase Pump

ITEMS Development

- Components
 - Phase Separator
 - Texas A&M Vortex Phase Separator has over 5,000 Parabolas of 0g Operation
 - Selected for Multiple Flight Experiments
 - Can Operate Successfully from All Liquid to All Vapor Input – Act as Accumulator/Heat Exchanger
 - Low Power Consumption
 - Validated Prediction Models
 - Demonstrated Inventory Instrumentation
 - Demonstrated Operation with Eductor Pumps

Vortex Phase Separator

Vortex Phase Separator

- Components
 - Flow Splitter
 - Device that Takes Advantage of the Axisymetric Orientation of Vapor and Liquid to Split a Two-Phase Flow into Separate Flow Streams of Equal Quality but Potentially Different Mass Flow Rates
 - Simple Prototype Operated Successfully in Reduced Gravity
 - Modeling Ongoing

- Instrumentation
 - Void Fraction Sensor
 - Developed by Creare and Successfully Operated in Microgravity with Texas A&M Two-Phase Flow Loop
 - Measure Bulk Void Fraction and Film Thickness Using Difference in Dielectric Values of the Vapor and Liquid
 - Used as a Power Meter in ITEMS System

- Scoping Calculations Done with JPL as Part of the New Millennium Program Resulted in an Overall Reduction of:
 - Spacecraft mass (5%)
 - Required electrical power (20%)
 - Supplemental electric heaters (up to 80%)

Performance	MER Space- craft with traditional thermal control	MER with Proposed ITEMS based thermal control	% Change from tradi- tional design
Spacecraft mass, kg	1000	950	-5%
Supplemental heater, W	80	10	-88%
Power system, W	300	240	-20%
Power system & other related mass, Kg	200	160	-20%
Total space- craft Cost, \$M	\$300M	\$270M*	-10%

Conclusion

- Novel Integrated Thermal Management System Provides a Substantial Increase in System Performance over Existing Thermal Management Configurations

 – Reduced System Mass and Power
- Demonstrated Experience Base at System Level and Component Level
 - AMS-2, ISS Russian Segment
 - TRL-6 Level of Components Used in System