SPL

Verifying Al Plan Models

Prepared for the 2004
Software Assurance
Symposium (SAS)

Status report on:
Model Checking of
Artificial Intelligence
based Planners

Even the best laid plans need to be verified

Margaret Smith — Pl
Gordon Cucullu
Gerard Holzmann
Benjamin Smith

Overview

Goal: Using model checking, and specifically the SPIN model
checker, retire a significant class of risks associated with the use of
Artificial Intelligence (Al) Planners on Missions

— Must provide tangible testing results to a mission using Al technology.

- ﬁg%%d be possible to leverage the technique and tools throughout

FY04 Activities:

— ldentify and select candidate risks

— Develop and demonstrate technique for testing Al
Planners/artifacts on:

* Atoy problem (imaging/downlinking) — demonstrate tangible
results with an abstracted clock/timeline

* Areal problem (DS4/ST4 Champollion Mission) — demonstrate,
using DS4 Al input models, that Spin can determine if an Al input
model permits the Al planner to select ‘bad plans’.

ldentified Candidate Risks for Missions using Artificial
Intelligence based Planners

* Mission Data Systems (MDS) was our target project when we submitted
our proposal.
— Alarge number of JPL Al community are working on the MDS project.

* Interviewed the MDS project personnel/JPL Al experts to discover risks.

* Ranked risks according to:
— Feasibility:
Can the risk be addressed using model checking?
» Are the necessary resources available?

— Importance:
How concerned is the development team about the risk?

— Commonality:

Can the results potentially be applied to other NASA Al planners or is the concern
specific to MDS?

* These high ranking risks (close to 1, and circled in green on next two
slides) will be addressed in our task:
* How do you know that an Al input model is consistent with only
good plans and not with bad plans?

* How does the planner/scheduler react when two goals fail
simultaneously?

cuf\"e'm
foct

Step 1: Identify Candidate Risks for Missions using Atrtificial
Intelligence based Planners

Commonality

Risk Feasibility Importance Rank
Each elaborator has its own | 5 - Appropriate 5 - Goal elaborators
thread of execution with the | application for model 3 are specific to the
potential for race conditions. | checking, but the MDS 4
absence of design Planner/Scheduler
documentation for MDS implementation.
makes is difficult to derive
Spin models.
Is the empty goal network 5 — Appropriate 5 - Goal networks are
safe? Is it possible to application for model specific to the MDS
transition through unsafe checking, but the 2 Planner/Scheduler
configurations on the way to | absence of design implementation. 4

a ‘safe’ spacecraft state?

documentation for MDS
makes is difficult to derive
Spin models.

How does the
planner/scheduler react
when two goals fail
simultaneously?

1 - Multiple goal failures
can be modeled in
Promela quite easily.

1 - This is a common
concern for all Al
planners.

Key:

D - Risks we selected and will attempt to retire through this task

Candidate Risks - 2

Risk Feasibility Importance | Commonality | Rank
1 — highest 1 — highest 1 — highest 1-best
5 - lowest 5 - lowest 5 - lowest 5-worst
Does the MDS implementation | 5 — Potential application 5-MDS
meet it's requirements? for model checking, but Requirements and
the absence of design 3 implementation are 4
documentation for MDS specific to the MDS
will make it more difficult Planner/Scheduler
to derive Spin models. implementation.
If a plan exists will the planner | 5 — Spin analyses 1 — This is a common
find it in a reasonable amount | possibilities, and will not 3 concern for Al

of time?

perform likelihood or
performance analyses.

planners.

How do you know that an Al
input model is consistent with
only good plans and not with
bad plans?

1 — Al input models can
be expressed in
Promela.

1 - This is a common
concern for all Al
planners.

Key:

O - Risks we selected and will attempt to retire through this task

Consequences of a bad plan
Wasted Resources

How to get
from A to B

o e -

g 04 ¥ Wod}
42b 0} MmoH

UOISSI|\ JO SSOT
ue|d peq e jJo sedusanbasuo)

Toy Problem: Imaging and Downlinking
Demonstration of

Activity Image { I* image taking activity */
i = 10, 00 Casper Model
size = dur;
use ssr size; I* image has to be put in ssr memory */ P
¥ Goal: 4 images should
be downloaded
Activity DL { I* downlink activity */ in 4 downlink windows
dur = [100, 1000]; ©
vol = dur;
use ssr -vol; * downlinking frees up memory */

state DLWIN = open; /* DL window has to be open */
b i
property: An image taken

state DLWIN = (open, closed); should eventually be
resource ssr = [0,10000];

downlinked

I* goals: */ /\\
Image 1 [5,10]; /* startimage between timepoint 5 and 10 — duration 100 */ "—‘—',—“'jJ { B
Image 2 [100,110]; /* start image between timepoints 100 and 110 — duration 100 */ A desired/implied
image 3 [500,800]; . characteristic of imaging,
: | but one that can not

4 [900,10007; .
i o] be expressed directly in
DL 1 [200,300]; /* downlink window scheduled between 200 to 300 timepoints */ | the Al input model
DL 2 [500,600]; L B

DL 3 [800,900];
DL 4 [1100,1200];

Imaging and Downlinking model (continued-1)

Without abstraction: model clock explicitly, consider range of image
lengths, consider range of image start times

Image 1
Image 3 Image 4

] | Poss |
Image 2 f Imz;f'g _ngr't time o ==
| . IS be
i “:——+ 115 500 g 1 Tme
y
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

With abstraction: use time intervals instead of time points, consider
worst case image lengths and worst case image start times

Wors“’ case 516 ;
Image 1 Image 2 1ime of Tmad Image 3 Image 4
> | > | i at 00 | e
lv v 3
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
1° e | | | | | | I | |
Bl o e, R e |

Imaging and Downlinking model (continued-1)

Error trace
found by Spin
model checker:

With this set of constraints it is possible for
Image 4 to remain in the SSR at the end of
the final downlink window

100 200 300 400 500 600 700 800 900 1000 1100 1200
10
o [y | | | | | I |
imaging Image 1] Image 2 | Image 3 | Image 4
SSR ERROR
S Image1 ; Image 3
contents | ©MPly | imagel |, oco image2 empty Image 3 I 5
Downlink | Bl R DL 2 m m
fixed
downlink ! | ! : : :
windows I ! I : : :
o o o
I Image 1 I Image?2 | ! nothing 1 I Image3 |}
I downlinking :downlinking= ; downlinked | :downlinking=
- | [l T TTTTTTT Fommmo)
|
v v v v v Vv

144 states

22 KB memory

10

Checking DS4

A Real Problem

Deep Space 4 (DS4) /Champollion: A Planned launch - 2003
comet lander and sample return

technology demonstration mission to ::> Landed phase - 2006
Tempel 1 (cancelled). Sample return - 2010

DS4 Requirements and a CASPER/ASPEN Al model are
available

Goals for landed phase:
* Imaging
« Analysis of sub-surface samples involving:
— Moving the drill to a ‘hole’
— Dirilling
— Mining for a sample
— Moving the sample to an oven
— Depositing the sample in an oven
— Heating the sample and taking measurements

Challenge: check DS4 Al model to determine if a bad plan

can be generated. 1

DS4 model elements ‘

Goals:
3 Samples
2 Images

Activities:
Imaging

rilling
Mining
Moving drill
Depositing sample
Oven experiment
Data compression
Data uplinking

Sample
includes
these
activities

State variables:
oven1 & oven 2 ‘
(states: off-cool, on, off-warm, failed)
camera (states: off, on)
Drill location (states: hole 1, 3, or 7)

Resources:

2 ovens

1 camera

1 robotic arm with drill

Power (renewable)

Battery power (non-renewable)
Memory (non-renewable)

Goals are satisfied by performing Activities.

Activities are constrained by Resource availability and State variables
Example: an oven must be in the ‘off-cool’ state in order to be selected for an oven

experiment.

Activities can change the values of State variables if no other activities have the

lock and if the state transition is legal.

Example: The oven experiment must be able to turn the oven to ‘on’.

12

Defining good and bad plans

* A good plan contains all 5 memory using
activities:
— 3 samples
— 2 images
« Therefore, a bad plan is a plan that does not
contain 3 samples and 2 images
* |s it possible that this model permits bad plans?

— How would the modeler test that the model can only
produce good plans?

13

Standard Testing of an Al model

1. Construct the model from Science
or other requirements.

2. Inspect the model for correctness
against requirements.

3. Input the model to the Al planner
and ask for a specified number of

try again

plans.
4. Manually inspect plans to identify
bad plans
bad all good
plan(s) plans(s)

Adjust constraints
and other model
elements to exclude
bad plans. | | 14

End testing

Using Spin to exhaustively
check for bad plans

Each activity is represented as an independent Promela
(the language of Spin) proctype

All proctypes are instantiated in a non-divisible step.

Activity/proctypes include their constraints for:
— resource use and reservations
— state variable values
— other activities that must occur before, during or after activity in
guestion.
If a activity/proctype’s constraints are met, the activity
may proceed (be scheduled).

In a Spin verification, all possible
interleavings/schedulings are explored.
— the timeline (clock) is abstracted to intervals or not included at all
if possible
— the assumption is that the scheduling window is long enough to
accommodate all possible orderings of activities. 16

Representing Al model elements in Promela
Example CASPER/ASPEN model for taking a picture

Requests (goals)

take_picture take1 {
start_time = 7h;
file = “IMAGE1”;

no_permissions =
(“delete”);

}

take_picture take2 {
start_time = 18h;
file = “IMAGE1”;

no_permissions =
(“delete”);

)

Resources

Resource civa {// camera
type = atomic;

h

Resource comm {
type = atomic;

b

Resource data_buffer {
type = depletable;
capacity = 30;
min_value = 0;

&

Activity take_picture {
RawlmageSize rwis1;
string file;
start_time = [10, infinity];
duration = [1m,10m];
reservations =

comm, data_buffer use 5,
civa,
civa_sv must_be “on”;

}

State_variable civa_sv {

states = (“on”, “off”,
“failed”);

default_state = “off”;

}

17

Representing Al model elements in Promela
Example Promela model for taking a picture

.

m

m

o

unsigned data_buffer : 3 = 4;

type = { on, off, failed, ... };

bool civa = 1; /* atomic resource: 1 is available, 0 is in use */
unsigned count : 3; /* # of memory using activities scheduled */

type civa_sv = off;

chan mutex_civa = [2] of {pid}; /* queue for reservations */

\

/it {)

atomic {

run take_picture();
run take_picture();

}

v Y,

proctype take_picture() { \

[* civa_sv must be on and civa must be available */
atomic { (((civa_sv == on) || empty(mutex_civa)) \
&& civa && ((data_buffer - 1) >= 0)) ->

if :: (civa_sv I= on) -> civa_sv = on :: else fi;

mutex_civa!_pid; /* ‘must_be’ so reserve civa var */

data_buffer = data_buffer - 1;

civa = 0; /* camera in use */

plan!picture; /* take picture */

count = count + 1; /* variable needed for property * }

d_step {
civa = 1; /* picture complete - give back camera */

\ mutex_civa??eval(_pid); } /
}

18

sample

image
compress data
uplink

oven1

oven2

camera

drill location

power use

memory use

A good plan for DS4

Is when all goals (in green) are met

- uplink

m°n off-warmm on | off-warm [ZIY]

on ot R
Lot o B

Iaalovem hole7 oven2 m: oven1

=
//\/\

15

IS when all goals (in green) are met

sample

image
compress data
uplink

oven1

oven2

camera

drill location

power use

memory use

A plan

uplink

on | oftvar I on | orwarr: R
TREETE ofcoo
on [

IﬂEIoven‘I hole7 oven2 W oveni

,,/\/\

19

Property for exposing bad plans

All plans must include all five

7 Never Claim for C:/mhs/proj/MAP/AI_models /me

#define p1
ftdefine p2
/

goals (3 samples, 2 images) |=*¢

7 Timeline Editor - C:/mhs/

S2: 0
all memory }

both ovens in using activities

default state completed
) 4 e L 4 r
1 2

: p2 -» goto acceptS1
2 hue
od;
acceptS1:
do
=z pl-»goto 52
wlp
od;
full compliance if reached®/

[count == 5] /* all memary using activities completed */ =
((ovenl_sv == off_cool) && (oven2_sv == off_cool]) /* both ovens in default state *

=10 x|

L |

Graphical Automaton for C:,.i’mhs,t"p@

KEY:
pl all memory using activities completed
p2 both ovens in default state

SeeTewt | Dismiss

b4

»

20

A bad plan found by Spin
only 4 goals (in green) are met

sample

image

compress data |compress|

uplink

uplink

oveni on | off-warm [EliZ21dl on

] oticool |

oven2 T s R S T 1 TR e G o |

camera m

on o d—_—

drill location

oven 1

oveni

power use

R f“w

memory use

-

21

Fix constraints and recheck

* Added a constraint to the Al
model that ‘compression’
may only be performed if the
data buffer is non-empty

* Rechecked property using
Spin
— an exhaustive check shows that
all plans contain the five goals.

22

Al Model Testing Process using Spin

Construct the model from
Science or other
requirements.

. Inspect the model for
correciness against
requirements.

. Formulate ‘good plan’
properties

. Express model in Promela
and exhaustively check
using Spin.

L plan no errors
(error trace)
Adjust constraints an
other model elements :
End testing

to exclude bad plans.

23

Next Steps

* Working with the former DS4/ST4 Vdevelopment team to
- discover additional properties types that we can check.

* Will explore the possibility of automated conversion
from Promela models to CASPER/ASPEN models.

 Will explore a applying this technique to a project that
IS actively using CASPER/ASPEN:
— 3 Corner Sat |
— Earth Orbiter 1

24

Backup

25

CASPER / ASPEN

ASPEN: Automated Scheduling and Planning Environment

A modular, reconfigurable application framework, capable of supporting a wide
varlety of planning and scheduling applications, that includes:

» an expressive modeling language
* aresource management system
« atemporal reasoning system

« and a graphical interface

CASPER: Continuous Activity Scheduling Planning Execution and Re-planning
- Supports continuous modification and updating of a current working plan in
light of changing operating context
» Applications:
— Autonomous Spacecraft — 3CS
— Autonomous Spacecraft — TS-21
— Rover Sequence Generation
— Distributed Rovers
— CLEar (Closed Loop Execution and Recovery)

26

