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Fault Generation Process 
Look for relationships between: 

+ Measurements of a system's structure. 
+ Number of faults inserted during development. 

Recent work 
+ Classification Methods 

Classification Trees [Ghok97] 
Regression Trees [KhosOl a] 

+ Discriminant Functions 
Boolean Discriminant Functions [Schn97] 
Relative Critical Value Deviation [SchnOl a] 

+ Regression Modeling 
Zero-inflated Poisson Regression [KhosOl] 
Logistic Regression [SchnO 1 ] 

+ Limitation - these efforts look at the system at a particular moment in time 
May limit validity of results at other points during development effort 
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Fault Generation Process (cont'd) 
bS' Analyzing SW Evolution 

+ Examines entire developmental history of a 
SW system 

+ Conclusions valid over entire development 
interval analyzed 

+ Measurement requirements 

- Quantifiable notion of software evolution 

Quantitative definition of software fault 
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Characteristics 
Measurement mechanisms must have the following 
characteristics: 
+ Satisfy representation condition [Fen971 

+ Produce accurate, repeatable, consistent 
measurements 

+ Measurements of artifacts, fault counts, 
development process made at same level of detail 

+ Perceived benefit of making measurements must 
exceed cost of making them 
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Measuring Structural Evolution 
Measure change activity between successive versions of the 
system. 
Granularity Issues 
+ Structural evolution is measured at the module level 
+ Every version of every module is measured. 
+ Changes between subsequent versions of a module are 

measured with respect to a chosen baseline. 
Distinct sources of variation identified with Principal 
Components Analysis (PCA) [Dill841 
Measurements are performed automatically outside of the - 

development environment 
+ Minimize impact of measurement activities on developers. 
+ Relies on read access to CM repository. 
+ Accomplished with Darwin network appliance [Cyla03]. 
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Module Attributes 

Standardized definitions were developed for each measurement - see [Cyla03] 7 

Metric 

Exec 

NonExec 

''4 
7 

5' 7 

"4 
5'2 

Nodes 

Edges 

Paths 

MaxPath 

AvePath 

Cycles 

Definition 

Number of executable statements 

Number of non-executable statements 

Total operator count 

Unique operator count 

Total operand count 

Unique operand count 

Number of nodes in the module control flow graph 

Number of edges in the module control flow graph 

Number of paths in the module control flow graph 

The length of the path with the maximum edges 

The average length of the paths in the module control 
flow graph 

Total number of cycles in the module control flow graph 
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Measurement domains resulting from PCA 

Metric 

Exec 

NonExec 

N~ 

V l  

N2 

72 
Nodes 

Edges 

Paths 

MaxPath 

AvePath 

Cycles 
I 

Eigenvalues 

Domain 
I 

1 

.60 

.64 

.28 

.49 

.28 

.35 

.87 

.88 

. I7  

.87 

.86 

.67 

4.79 

2 

.49 

.53 

.64 

.70 

.64 

.90 

.31 

.31 

- . l o  

.35 

.34 

.22 

3.13 

I 

3 

.47 

. I8  

.65 

.07 

.65 

.04 

.27 

.27 

.89 

.29 

.33 

-. 02 
I 

2.24 
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Build i 

Source Cod( 

Measurement 
Tools 

Institute of 
Technology 

Baselined Build 
Domain 
Churn 

Domain 
Deltas 

Build j Baselined Build j 9 
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View of Structural Evolution 
at the Module Level 
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Identifying and Counting Faults Tec""'O" 

Accurate software fault prediction depends on 
precise, measurable definition of a fault 

i Until 2002, no definition of fault in measurable terms 
+ IEEE Standards 

IEEE Std 729-1 983, "IEEE Standard Glossary 
of Software Engineering Terminology" [I EEE831 
IEEE Std 982.1 -1 988, "IEEE Standard 
Dictionary of Measures to Produce Reliable 
Software" [I EEE881 
IEEE Std 1044-1 993, "IEEE Standard 
Classification for Software Anomalies" [I EEE991 

+ ODC [Chi1921 
+ Previous work (Annual Oregon Workshop on 

Software Metrics, May 1 1-1 3, 1997) [Niko97] 
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Fault Enumeration 

Examine changes made in response to 
reported failures 

Base recognition/enumeration of software 
faults on the grammar of the software 
system's language 
Fault measurement granularity in terms of 
tokens that have changed [Muns02] 
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Fault Enumeration (cont'd) 

Consider each line of text in each version of the 
program as a bag of tokens 
+ If a change spans multiple lines of code, all lines 

for the change are included in the same bag 
Number of faults based on bag differences between 
+ Version of program exhibiting failures 
+ Version of program modified in response to 

failures 
Use version control system to distinguish between 
+ Changes due to repair and 
+ Changes due to functionality enhancements and 

other non-repair changes 
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Fault Enumeration: Example 

Example 1 

+ Original statement: a = b + c; 

+ Modified statement: a = b - c; 

'32 = {<a> 7 <=> <b> <-> <c>) 
7 7 7 

+ One token has changed a 1 fault 
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Fault Enumeration: Example 

Example 2 

+ Original statement: a = b - c; 
B3 = {<a> 7 <=> 7 <c> 7 <-> 7 <b>) 

+ Modified statement: a = 1 + c - b; 

+ 2 new tokens representing 2 faults 
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Modeling Fault Content 

Fault models developed from: 

+ Measured structural evolution (cumulative 
amount of change for each module). 

+ Number of faults repaired for each module. 
Analysis indicates that the amount of 
structural evolution is related to the number of 
faults repaired [Niko03]. 



Modeling Results 
California 
Institute of 
Technology 

Regression ANOVA 

Regression Model 

Source 

Regression 

Residual 

Total 

Quality of the Regression Model 

Model 

(Constant) 

Domain I Churn 

Domain 2 Churn 
Domain 3 Churn 

Sum of Squares 

10091 546 

6430656 

16522203 

Mean Square 

3363848 

11483 

df 

3 

560 

563 

Coefficients 

18.24 

21 '63 

-. 59 
.93 

Model 
Summary 

F 

293 

t 

3.5 

17.3 

-.3 
.7 

Sig. 

Pc.01 

Sig. 

Pc.01 

Pc.01 

p>. 0 1 
p>.OI 

R 

.782 

R Square 

-6 1 1 

Adjusted R 
Square 

.609 

Std. Error of 
the Estimate 

107.16024 
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Current and Future Work 
Determine whether the fault insertion rate changes over time 
Identify which types of faults correspond to which types of 
change. 
Expand the number of projects to obtain larger measurement 
baseline. 
+ Collaborating with GSFC SATC to infuse measurement 

techniques 
Enlarge the set of structural measurements taken by network 
appliance (e.g., include CDK 00 measures [Chid94]). 
Include effect of measurable development process 
characteristics in fault models 
Integrate measurement of system execution profile to estimate 
+ Test effectiveness 
+ Risk of exposure to residual faults 

Technology 
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Current and Future Work (cont'd) 

R Estimate amount of noise in fault counts 

+ Not all changes associated with a PR may actually 
be repairs 

+ "Pocket PRs" 

Not a significant issue for this development 
effort because of how CM is set up and 
discipline of development team 

May be issue for other efforts 

+ Unequal test coverage - some components may 
be more heavily tested, finding more faults 
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Current and Future Work (cont'd) 

Resolve known fault counting inaccuracies 
4 Example 1 - adding operatorsloperands 

Original faulty statement: a = b + c; 
Repaired statement: a = b - c + d; 
Bag difference: I<->, cd>) 
3 tokens added or changed, however 

4 Example 2 - token reordering 
Original faulty statement: a = b - c; 
Repaired statement: a = c - b; 

- Bag difference: {} 
Number of reordered tokens cannot be accurately determined 

Develop training materials for practitioners 
4 Measurement user's guide 
4 Measurement tutorials 

21 
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Discussion and Conclusions 

At least for the data with which we have worked, a 
software component's fault burden is related to the 
measured amount of change during its development. 
Practical techniques for measuring structural 
evolution and the number of repaired faults have 
been developed and are available for use on "real" 
development efforts. 
+ Allows development of fault models that can 

provide additional information to help decide 
where to deploy fault identification and repair 
resources (e.g., test staff, additional inspections). 
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