
California
Institute of
Technology

Developing Fault Models for
Space Mission Software

Allen P. Nikora John C. Munson

Jet Propulsion Laboratory, Computer Science Department

California Institute of University of Idaho
Technology Moscow, ID

Pasadena, CA jmunson@cs.uidaho.edu

Allen.P.Nikora@ipl.nasa.nov

The work described in this paper was carried out at the Jet Propulsion
Laboratory, California lnstitute of Technology. This work is sponsored by the
National Aeronautics and Space Administration's Office of Safety and Mission
Assurance under the NASA Software Program led by the NASA Software IV&V
Facility. This activity is managed locally at JPL through the Assurance
Technology Program Office (ATPO).

JPL
California
Institute of
Technology

Outline

tl. Goal

Measurement Requirements
+ Measuring Structural Evolution
+ Identifying and Counting Faults

Modeling Fault Content

Current and Future Work

Discussion and Conclusions
References and Further Reading

4P JPL
California
Institute of Goal: Improve Understanding of TechnOiOgy

Fault Generation Process
Look for relationships between:

+ Measurements of a system's structure.
+ Number of faults inserted during development.

Recent work
+ Classification Methods

Classification Trees [Ghok97]
Regression Trees [KhosOl a]

+ Discriminant Functions
Boolean Discriminant Functions [Schn97]
Relative Critical Value Deviation [SchnOl a]

+ Regression Modeling
Zero-inflated Poisson Regression [KhosOl]
Logistic Regression [SchnO 1]

+ Limitation - these efforts look at the system at a particular moment in time
May limit validity of results at other points during development effort

a JPL
California
Institute of Goal: Improve Understanding of TechnOiOgy

Fault Generation Process (cont'd)
bS' Analyzing SW Evolution

+ Examines entire developmental history of a
SW system

+ Conclusions valid over entire development
interval analyzed

+ Measurement requirements

- Quantifiable notion of software evolution

Quantitative definition of software fault

JPL

Required Measurement
California
Institute of
Technology

Characteristics
Measurement mechanisms must have the following
characteristics:
+ Satisfy representation condition [Fen971

+ Produce accurate, repeatable, consistent
measurements

+ Measurements of artifacts, fault counts,
development process made at same level of detail

+ Perceived benefit of making measurements must
exceed cost of making them

JPL
California
Institute of
Technology

Measuring Structural Evolution
Measure change activity between successive versions of the
system.
Granularity Issues
+ Structural evolution is measured at the module level
+ Every version of every module is measured.
+ Changes between subsequent versions of a module are

measured with respect to a chosen baseline.
Distinct sources of variation identified with Principal
Components Analysis (PCA) [Dill841
Measurements are performed automatically outside of the -

development environment
+ Minimize impact of measurement activities on developers.
+ Relies on read access to CM repository.
+ Accomplished with Darwin network appliance [Cyla03].

6

JPL
California
Institute of
Technology

Module Attributes

Standardized definitions were developed for each measurement - see [Cyla03] 7

Metric

Exec

NonExec

''4
7

5' 7

"4
5'2

Nodes

Edges

Paths

MaxPath

AvePath

Cycles

Definition

Number of executable statements

Number of non-executable statements

Total operator count

Unique operator count

Total operand count

Unique operand count

Number of nodes in the module control flow graph

Number of edges in the module control flow graph

Number of paths in the module control flow graph

The length of the path with the maximum edges

The average length of the paths in the module control
flow graph

Total number of cycles in the module control flow graph

JPL
California
Institute of Principal Components of Raw Metrics TechnOiOgy

Measurement domains resulting from PCA

Metric

Exec

NonExec

N~

V l

N2

72
Nodes

Edges

Paths

MaxPath

AvePath

Cycles
I

Eigenvalues

Domain
I

1

.60

.64

.28

.49

.28

.35

.87

.88

. I7

.87

.86

.67

4.79

2

.49

.53

.64

.70

.64

.90

.31

.31

- . l o

.35

.34

.22

3.13

I

3

.47

. I8

.65

.07

.65

.04

.27

.27

.89

.29

.33

-. 02
I

2.24

JPL
California

The Measurement Process
Build i

Source Cod(

Measurement
Tools

Institute of
Technology

Baselined Build
Domain
Churn

Domain
Deltas

Build j Baselined Build j 9

View of Structural Evolution
at the System Level

California
Institute of
Technology

l>a rcvi n
1 \,,,,I,..~~:. h ,h l , , l , i ~ , , r i t~ .n . ,~ , , l ,q l .,,, , Darwin Portal
I i I Navigation Graph of Code Churn and Code Delta for the project , I
I I D antin Main
I fdms - project - 1b.

Manager

Information I I ~ " " " ~ " ~ " " ' " ~ " ~ ' ' ~ " I I
Tester
Information

Education

Proiect Manager

View Avadable
Databases

Feedback

#'
0 - 4 ' . .,'tap/chut3nlr552i .datM using I:? * -

a . . r 1 + 1 3 1 . t ' 1 . 1 1:: t , . . I . . I . . 1 . . I I
I Date I
Click here for help

View of Structural Evolution
at the Module Level

- -- - - . . - - .- p~ ---

onst char *attStr. TAG-
-- - .

ositionEsrLnatorTraits::Thread::updateStateVariabl
Tmgt:.RTEpoch& stop, const Mds::Fw.Zlter::Gre
st Mds::Rd::Mars::Commorx:SimpleAirDragModel..

spacecraft-mass, double avg-we-thrust)

hDragModeParameterEstunatorTr;ats Threa
--

~arachute%sbmatoErarts Thread predxt.5ta.t
- - - - - - -

~lm~le~o&oslho&strmator~r& Thread changed(const ~ d s Fw Cm-fC
Mds Ew Dm Vhis ConstItemVectorRef changedItems) I
--- -

JPL
California
Institute of
Technology

JPL
California
Institute of

Identifying and Counting Faults Tec""'O"

Accurate software fault prediction depends on
precise, measurable definition of a fault

i Until 2002, no definition of fault in measurable terms
+ IEEE Standards

IEEE Std 729-1 983, "IEEE Standard Glossary
of Software Engineering Terminology" [I EEE831
IEEE Std 982.1 -1 988, "IEEE Standard
Dictionary of Measures to Produce Reliable
Software" [I EEE881
IEEE Std 1044-1 993, "IEEE Standard
Classification for Software Anomalies" [I EEE991

+ ODC [Chi1921
+ Previous work (Annual Oregon Workshop on

Software Metrics, May 1 1-1 3, 1997) [Niko97]

JPL
California
Institute of
Technology

Fault Enumeration

Examine changes made in response to
reported failures

Base recognition/enumeration of software
faults on the grammar of the software
system's language
Fault measurement granularity in terms of
tokens that have changed [Muns02]

JPL
California
Institute of
Technology

Fault Enumeration (cont'd)

Consider each line of text in each version of the
program as a bag of tokens
+ If a change spans multiple lines of code, all lines

for the change are included in the same bag
Number of faults based on bag differences between
+ Version of program exhibiting failures
+ Version of program modified in response to

failures
Use version control system to distinguish between
+ Changes due to repair and
+ Changes due to functionality enhancements and

other non-repair changes

JPL
California
Institute of
Technology

Fault Enumeration: Example

Example 1

+ Original statement: a = b + c;

+ Modified statement: a = b - c;

'32 = {<a> 7 <=> <-> <c>)
7 7 7

+ One token has changed a 1 fault

JPL
California
Institute of
Technology

Fault Enumeration: Example

Example 2

+ Original statement: a = b - c;
B3 = {<a> 7 <=> 7 <c> 7 <-> 7)

+ Modified statement: a = 1 + c - b;

+ 2 new tokens representing 2 faults

JPL
California
Institute of
Technology

Modeling Fault Content

Fault models developed from:

+ Measured structural evolution (cumulative
amount of change for each module).

+ Number of faults repaired for each module.
Analysis indicates that the amount of
structural evolution is related to the number of
faults repaired [Niko03].

Modeling Results
California
Institute of
Technology

Regression ANOVA

Regression Model

Source

Regression

Residual

Total

Quality of the Regression Model

Model

(Constant)

Domain I Churn

Domain 2 Churn
Domain 3 Churn

Sum of Squares

10091 546

6430656

16522203

Mean Square

3363848

11483

df

3

560

563

Coefficients

18.24

21 '63

-. 59
.93

Model
Summary

F

293

t

3.5

17.3

-.3
.7

Sig.

Pc.01

Sig.

Pc.01

Pc.01

p>. 0 1
p>.OI

R

.782

R Square

-6 1 1

Adjusted R
Square

.609

Std. Error of
the Estimate

107.16024

JPL
California
Institute of

Current and Future Work
Determine whether the fault insertion rate changes over time
Identify which types of faults correspond to which types of
change.
Expand the number of projects to obtain larger measurement
baseline.
+ Collaborating with GSFC SATC to infuse measurement

techniques
Enlarge the set of structural measurements taken by network
appliance (e.g., include CDK 00 measures [Chid94]).
Include effect of measurable development process
characteristics in fault models
Integrate measurement of system execution profile to estimate
+ Test effectiveness
+ Risk of exposure to residual faults

Technology

a JPL
California
Institute of
Technology

Current and Future Work (cont'd)

R Estimate amount of noise in fault counts

+ Not all changes associated with a PR may actually
be repairs

+ "Pocket PRs"

Not a significant issue for this development
effort because of how CM is set up and
discipline of development team

May be issue for other efforts

+ Unequal test coverage - some components may
be more heavily tested, finding more faults

JPL
California
Institute of
Technology

Current and Future Work (cont'd)

Resolve known fault counting inaccuracies
4 Example 1 - adding operatorsloperands

Original faulty statement: a = b + c;
Repaired statement: a = b - c + d;
Bag difference: I<->, cd>)
3 tokens added or changed, however

4 Example 2 - token reordering
Original faulty statement: a = b - c;
Repaired statement: a = c - b;

- Bag difference: {}
Number of reordered tokens cannot be accurately determined

Develop training materials for practitioners
4 Measurement user's guide
4 Measurement tutorials

21

JPL
California
Institute of
Technology

Discussion and Conclusions

At least for the data with which we have worked, a
software component's fault burden is related to the
measured amount of change during its development.
Practical techniques for measuring structural
evolution and the number of repaired faults have
been developed and are available for use on "real"
development efforts.
+ Allows development of fault models that can

provide additional information to help decide
where to deploy fault identification and repair
resources (e.g., test staff, additional inspections).

References and Further Reading

JPL
California
Institute of
Technology

R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, M.-Y. Wong,
"Orthogonal Defect Classification - A Concept for In-Process Measurement", IEEE
Transactions on Software Engineering, November, 1992, pp. 943-946.
Per Cederqvist, "Version Management with CVS for CVS 1 I 1 I I , available at
http:/lwww.cvshome.or~/docs/manuall

S. Chidamber, C. Kemerer, "A Metrics Suite for Object Oriented Design", IEEE
Transactions on Software Engineering, vol. 20, no. 6, June, 1994, pp. 476-493.

"The Darwin Software Engineering Measurement Appliance", Cylant,
http://www.cylant.coml

William R. Dillon, Matthew Goldstein, Multivariate Analysis: Methods and Applications,
Wiley-lnterscience, August 1984, ISBN: 0471 0831 78

D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks, "Software Architecture Themes In JPL1s
Mission Data System", AlAA Space Technology Conference and Exposition, September
28-30, 1999, Albuquerque, NM.
Norman E. Fenton, Shari Lawrence Pfleeger; Software Metrics: A Ri~orous and Practical
Approach (2nd ed.), 1997, PWS Publishing Company, Boston, MA, ISBN 0534954251

S. S. Gokhale, M. R. Lyu, "Regression Tree Modeling for the Prediction of Software
Quality", proceedings of the Third ISSAT International Conference on Reliability and
Quality in Design, pp 31-36, Anaheim, CA, March 12-14, 1997
"IEEE Standard Glossary of Software Engineering Terminology", IEEE Std 729-1983,
Institute of Electrical and Electronics Engineers, 1983. 23

JPL References and Further Reading Institute California of

Technology

(cont'd)
[IEEE88] "IEEE Standard Dictionary of Measures to Produce Reliable Software1', IEEE Std 982.1-

1988, Institute of Electrical and Electronics Engineers, 1989.

[IEEE93] "IEEE Standard Classification for Software Anomalies", IEEE Std 1044-1993, Institute
of Electrical and Electronics Engineers, 1994.

[KhosOl] T. Khoshgoftaar, "An Application of Zero-Inflated Poisson Regression for Software
Fault Prediction", proceedings of the 12th lnternational Symposium on Software
Reliability Engineering, pp 66-73, Hong Kong, Nov, 2001.

[KhosOla] T. M. Khoshgoftaar, E. B. Allen, "Modeling Software Quality with Classification Trees",
in H. Pham (ed), Recent Advances in Reliability and Quality Engineering, Chapter 15,
pp 247-270, World Scientific Publishing, Singapore, 2001.

[MunsSO] J. C. Munson and T. M. Khoshgoftaar, "Regression Modeling of Software Quality,"
Information and Software Technology, Vol. 32 No. 2 March 1990, pp. 105-1 14.

[Muns98] J. Munson and A. Nikora, "Estimating Rates Of Fault Insertion And Test Effectiveness
In Software Systems" Proceedings of the Fourth ISSAT International Conference on
Reliability and Quality in Design, August 12-1 4, 1998 pp. 263-269.

[Muns02] J. Munson, A. Nikora, "Toward a Quantifiable Definition of Software Faults",
Proceedings of the 13th IEEE International Symposium on Software Reliability
Engineering, lEEE Press.

[Muns03] J. Munson, Software Engineering Measurement, CRC Press, 2003, ISBN 0849315034 .

[Ni ko971 A. Nikora, J. Munson, "Finding Fault with Faults: A Case Study", with J. Munson,
proceedings of the Annual Oregon Workshop on Software Metrics, Coeur d'Alene, ID,
May 1 1-1 3, 1997. 24

JPL References and Further Reading Institute California of

Technology

(cont'd)
[Niko98] A. P. Nikora, J. C. Munson, "Determining Fault Insertion Rates For Evolving Software

Systems", proceedings of the 1998 IEEE lnternational Symposium of Software Reliability
Engineering, Paderborn, Germany, November 1998, IEEE Computer Society Press.

[NikoOl] A. Nikora, J. Munson, "A Practical Software Fault Measurement and Estimation
Framework", Industrial Presentations proceedings of the 12th lnternational Symposium
on Software Reliability Engineering, Hong Kong, Nov 27-30, 2001 .

[Niko03] A. Nikora, J. Munson, "Developing Fault Predictors for Evolving Software Systems", to
appear in the proceedings of the gth lnternational Symposium on Software Metrics
(Metircs2003), Sydney, Australia, Sep 3-5, 2003

[Niko03a] A. Nikora, J. Munson, "Understanding the Nature of Software Evolution", to appear in the
proceedings of the lnternational Conference on Software Maintenance, September 22-
26, 2003, Amsterdam, The Netherlands

[Schn97] N. F. Schneidewind, "Software Metrics Model for Integrating Quality Control and
Prediction", proceedings of the 8th lnternational Symposium on Software Reliability
Engineering, pp 402-415, Albuquerque, NM, Nov, 1997.

[SchnOl] N. F. Schneidewind, "Investigation of Logistic Regression as a Discriminant of Software
Quality", proceedings of the 7th lnternational Software Metrics Symposium, pp 328-337,
London, April, 2001.

[SchnOla] N. F. Schneidewind, A. P. Nikora, "Predicting Deviations in Software Quality by Using
Relative Crritical Value Deviation Metrics". proceedings of the lo th lnternational
Symposium on Software Reliability Engineering, pp 136-1 46, Boca Raton, FL, Nov 1-4,

