
0.0 Abstract

The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and

renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in

the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries.

Since this magnificent observatory has a limited lifetime, maximizing science viewing

efficiency (ie, maximizing time spent executing activities directly related to science

observations) was the key operational objective.

The strategy employed for maximizing science viewing efficiency was to optimize

spacecraft flexibility, adaptability, and use of observation time. The selected approach

involved implementation of a multi-engine sequencing architecture coupled with non-

deterministic spacecraft and science execution times. This approach, though effective,

added much complexity to uplink operations and sequence development.

The Jet Propulsion Laboratory (JPL) manages Spitzer’s operations. As part of the uplink

process, Spitzer’s Mission Sequence Team (MST) was tasked with processing

observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated,

constraint-checked, and modeled review and command products which accommodated

the complexity of non-deterministic spacecraft and science event executions without

increasing operations costs. The MST developed processes, scripts, and participated in

the adaptation of multi-mission core software to enable rapid processing of complex

sequences. The MST was also tasked with developing a Downlink Keyword File (DKF)

which could instruct Deep Space Network (DSN) stations on how and when to configure

themselves to receive Spitzer science data. As MST and uplionk operations developed,

important lessons were learned that should be applied to future missions, especially those

missions which employ command-intensive operations via a multi-engine sequence

architecture.

This paper describes the roles and functions of the SPITZER MST, its operational

interfaces, processes, tools, and lessons learned.

1.0 Introduction

The Spitzer Space Telescope is the fourth and final of NASA’s great observatories.

Spitzer takes images and spectra in the infra-red wavelengths of 3 to 180 microns.

Spitzer (see Figure 1) consists of a spacecraft, a 0.85 – meter telescope, and three very

sensitive, cryogenically cooled science instruments which conduct observations in the

infra-red (Figure 1). Spitzer’s three cryogenically cooled instruments are the Infrared

Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Imaging

Photometer for Spitzer (MIPS) (Figure 1).

 Figure 1.
 Spitzer Observatory

The Infrared Array Camera (IRAC) conduct observations at near- and mid-infrared

wavelengths. The Infrared Spectrograph (IRS) provides both high- and low- resolution

spectroscopy at mid-infrared wavelengths. The Multi-band Imaging Photometer (MIPS)

provides imaging and some, limited spectroscopic data at far-infrared wavelengths.

Because infrared light is generated primarily by heat, keeping these instruments

extremely cold make them most sensitive to infrared light.

Launched from Cape Canaveral, Florida, on August 25, 2003, the mission was to be

executed in three phases; a 60 day In-Orbit Checkout (IOC) followed by a 30 day

Science Verification (SV), and a 2.5 year (minimum requirement) Nominal Operation.

Spitzer’s Uplink Process had to take on the tools, processes, and procedures required to

support these mission phases while simultaneously meeting the mission’s science

viewing efficiency requirements.

1.1 Challenges

The three different mission phases were distinctly different, and so strategies and

sequence architecture would have to be developed to handle all three. Software, tools,

processes, and procedures had to be able to handle all three mission phases, be adaptable

enough to handle real-time updates during nominal operations, and most of all be able to

achieve the mission’s 90 percent science viewing efficiency requirement. (Science

viewing efficiency is defined as time spent executing activities directly related to science

observations. Spitzer’s target goal is 90 percent science viewing efficiency. So for each

24 hour day, our goal is to spend approximately 21.5 hours obtaining data directly related

to science observations (engineering calibrations, the slew to Earth and downlink of data,

idle time, etc occurs during the other 2.5 hours). To meet these challenges, Spitzer

needed to develop a sequence architecture to support the IOC and the Nominal Operation

phases and at the same time meet science viewing and spacecraft requirements. Spitzer

needed to operate in a more non-deterministic manner to remove the inefficiencies built

in by deterministic operations and slewing. Spitzer needed to generate the mission

software, tools, processes, and the procedures to efficiently build mission sequences

within this multi-phase, highly efficient operations environment. And Spitzer needed to

accomplish these objectives within project costs.

The first challenge had to do with the sequence types, if the sequences were going to be

relative or absolute timed sequences; mini, background or stored sequences and how the

sequences were going to execute on board the spacecraft. The second challenge was, that

what kind of tools and processes we were going to require, to be able to build these

sequences with less hassle and in less time.

These challenges will be discussed later in this document in more details.

1.2 Background

The key to handling Spitzer’s different mission phases and achieving its science viewing

efficiency requirement was to optimize spacecraft flexibility, adaptability, and use of

observation time. So the flight and uplink system was designed to accommodate non-

deterministic spacecraft and science execution times. Much on-board flexibility was

needed to load and run programs in order to achieve logical and event-oriented decisions

which cannot be achieved using just absolute-time tagged calls. This onboard-flexibility

was achieved by using virtual machines to enable a multi-engine onboard sequence

architecture. Each virtual machine represented one sequence engine and executes time-

tagged instructions capable of invoking complex functions.

A virtual machine provides the basics of a computing environment. Each virtual machine

employs simulated memory locations, simulated registers, a stack pointer, and an

instruction pointer. Adopting this architecture for the underlying sequence capability

simplifies software design and provides a great deal of flexibility for creating and running

programs.

The number of virtual machines is sized to address the need for simultaneous threads of

execution. One thread of execution may run per virtual machine, but an arbitrary number

of functions may be run on any one machine. Cross-machine function calls maintain

pointer and stack information on the calling virtual machine. Global data is visible to all

functions and sequences.

Spitzer eventually selected twelve virtual machines to address the anticipated needs for

simultaneous threads of execution. One thread of execution may run per virtual machine.

The time clock in each Spitzer VM updates every 0.1 seconds.

2.0 Lessons Learned

2.1 Sequence Architecture

Spitzer’s multi-engine virtual machine architecture is unique. The “master” sequence is

built as an absolute-timed SASF file and controls the behavior of the overall sequence

load by spawning or calling slave sequences at appropriate times. The master sequence

also calls absolute-timed engineering calibrations and downlink activities. There may be

one or many master sequences per week, but only one master may be executing at a time.

Slave sequences may contain all the commands to execute their activities, or they may

call blocks from the block library, or they may call one or more AORs, IERs, or other

activities chained together. If the slave and its associated AOR(s), IER(s), and SER(s)

will not fit into one VM module, the slave will call one or more slave library. The slave

library contains only single use activities at the AORs/IER level. As with the slaves, the

slave library issues AOR(s) and IER(s) chained together. Spitzer also uses a set of

functions called sequence blocks, which are parameterized, reusable relative sequences.

Parameterization allows execution of the block to occur differently with each use. Blocks

may accept parameters, return values, or both. Blocks are loaded on board and may be

used by the master or slave sequences in AORs, IERs, or SERs. As mentioned above,

VM engines are used for two distinct purposes; one is to store functions and data, and the

other one is to execute threads of processing (Figure 3). Functions can only be stored on

one engine and may be executed on multiple engines simultaneously. Slave sequences

may contain all the commanding necessary for the execution of their activities or they

may call blocks from the block library and slaves from the slave library (Figure 2).

 Figure 2

As also mention above, the sequence architecture on-board consists of 12 virtual

sequence engines. A sequence engine, or virtual machine (VM), can be loaded with a

sequence, and can execute while other VMs are being loaded and executed.

Figure 3

12 VM Architecture
File System

D:/tmp

D:/seq

Fault Protection LibraryFault Protection Library

Master

Master

Science Slaves

Science Slave Libraries

OET Use

Engineering Block Library

Science Block Library

Focal Plane Survey Library

Spare

PAP Sequences

Spare

VM1

VM2

VM3

VM4

VM5

VM6

VM7

VM8

VM9

VM10

VM11

VM12

e.mod h.mod

a.mod b.mod c.mod d.mod e.mod f.mod g.mod h.mod i.mod

g.mod

a.mod

b.mod

M M S S SS

Science Block Update

e.mod e.mod

Slave Replacement

PAP
Load n Go

c.mod

d.mod f.mod h.mod

i.mod

Load n Go

As an example, let us consider how the architecture would work to execute a nominal

science load (a more detailed discussion of nominal science operations is included

below). The master sequence is loaded on virtual machine number 2 or 3 (for this

example, let’s select virtual machine number 2). The absolute-timed master sequence

plays operations cop for the week. It executes absolute-timed engineering events as

required for spacecraft safety and downlinks as DSN viewperiods become available.

Between these absolute-timed events are Periods of Autonomous Operation (PAOs).

Each PAO is approximately 11.5 hours to 12 hours long and is constructed mostly of

relative-timed slave sequence(s) which issue commands, relative-timed slave libraries,

AOR, IER, and SER activities, or stored on-board blocks. The master spawns the PAO

slave sequence(s) off to virtual machine 4. The first activity in the slave begins, calling

an AOR from the slave library that in turn calls a block. The PCS slew complete indicator

global variable tells these activities when observatory slews are completed and observing

can begin. By studying statistical variations in the slews, the Spitzer operations teams

have been able to update the slew model to better predict the exact time for slew

completion.

The slave or slave library activities (AORs, IERs and SERs) are tied together so that the

second activity will start as soon as the first activity is completed. When the first activity

completes, the next activity starts, calling its own blocks, etc.

A slave concludes with one of three prevailing conditions. In the first condition, the

slave will complete before the next slave (or downlink if at end of the PAO) begins and

there will be “dead” time. The only negative result for this condition is that viewing

efficiency will not be completely optimized. In the second condition, the

slave will complete as predicted and the next slave (or downlink activity) will start

immediately. This condition is optimal in that no science data is lost and viewing

efficiency is optimized. In the third condition, the slave will not have completed and will

need to be killed before the next slave (or downlink) can start. In this condition,

statistical variations have worked against you and the slews in the slave average longer

that expected. When a slave is killed, a halt command kills the executing slave sequence

and performs a clean up before the downlink activity starts.

For downlink, Spitzer turns its HGA to earth and dumps its science and engineering data

and possibly its reaction wheel momentum data as well. When the contact is complete,

the master sequence controls the return to observing by spawning another slave sequence

onto VM 4.

Near the end of the week, the next master sequence and its associated slaves and slave

libraries are uplinked. As its last activity before completion, the current master sequence

kicks off the next master sequence onto VM3 and then expires.

2.1.1 Requirements

In addition to building sequences that would handle Spitzer’s different mission phases

while achieving its science viewing efficiency requirements, Spitzer had to handle

several types of sequences. These sequence types include mini, master, absolute, and

relative timed sequences. Spitzer was also had to handle special events like Target of

Opportunity and Slave Replacements. As mentioned above, to handle the master and

slave sequence structure, the VM (Virtual Machine) was introduced to solve storage and

sequence execution issues. Adaptation of existing, core mission software enabled

reliable and cost-efficient generation of sequences. In addition, considerable time and

effort was spent building scripts to support the sequence builds. This script development

was not anticipated at the project’s beginning. During the IOC phase, the project

required continuous coverage to enable ground-in-the-loop operations and to insure that

the amount of science being gathered could be downlinked before the MMC (mass

memory card) filled up.

2.1.2 Pros and Cons

The sequence design and ground system developed to support the Launch, IOC, and the

primary mission presented challenges with the sequence design and with the ground

system. The multi-engine sequence architecture was the major role player. The

sequence architecture was designed to support absolute and relative timed sequence,

where these sequences could execute in different engines. At that time, Spitzer was the

project with most extensive use of the Virtual Machine Language (VML). The VML was

used as a source language for spacecraft sequences. One advantage to that is the uplink

volume reduction (order of magnitude) it also increased science efficiency through

relative timing, non-deterministic waits that reduce using worst-case timing (may kill

activity if it isn’t done on time before the next absolute timed event). The uplink size was

reduced since the blocks reside on-board, it also gave flexibility in sequence, meaning

that sequence and block development can start earlier and proceed in parallel with

spacecraft development. Also it reduced the flight system maintenance cost since many

changes occur in blocks rather than flight software. But at the same time there were some

disadvantages too when it came to the VML. There were some difficulties due to

integrating VML with the existing JPL legacy systems such as SEQ. Translators were

needed and tools had to be generated by the teams to be able to support the project.

Especially when it came to the sequence builds. The teams had to generate number of

tools to be able to support the sequence builds. Limitations in ground hardware and

software have also played a role. Not having the right hardware and the right software,

the sequences being too big, the sequence generation process was taking tremendous

amount of time.

2.2 Sequence Development

Spitzer Science Center (SSC) uses the software package SIRPASS to develop sequences

from the database of AORs, IERs, and SERs. SIRPASS uses the database and metadata

to create the 1-week schedule from a pool of observations. SIRPASS controls

oversubscription and sequence packaging. Once SIRPASS has created the schedule, it

outputs the master SASF at least one SATF for each slave sequence and for each slave

library. The SSC also takes engineering files from the OET which are called in absolute

time from the master sequence. These products are then delivered to the Spitzer Mission

Sequence Team (MST) for command and modeling product development.

The MST then uses SEQGEN to merge the SASF and SATFs from SIRPASS with the

engineering SATFs from LMMS OET. MST uses SEQGEN, SLINC and the VML

compiler to convert these sequence components into spacecraft readable language, and

produces review products and products to instruct the DSN. As mentioned above, to

enable optimized viewing efficiency, the sequence components execute out of a twelve

engine spacecraft sequence architecture. Sequence development usually entails the

following nine process steps:

Step 1: Compile AOR, IER, and SER SATFs into slave SATFs and command

packet files. In this step, support satf files are merged into slave(s) and slave

libraries based upon the .spd file. Output files are generated in the slave

subdirectories.

Step 2: Generate an environment (.env) file for SEQGEN runs

Step 3: Execute SEQGEN with modeling turned off to generate unmodeled

review products. Unmodeled review products more concisely show slave loading

from the master, slave begin/end times, and downlink start/stop times before

slewing and spacecraft states are modeled and slaves are expanded to the

command level.

Step 4: Generate command products taking not of any problems found in Step 3.

Step 5: Execute SEQGEN with modeling on to see slew and spacecraft state

modeling, and to see slaves and downlink activities expanded to the command

level.

Step 6: Execute review scripts to help perform quick review of modeled products.

Step 7: Generate products to instruct stations on how to configure for Spitzer

downlink. Also, generate visual products for project review.

Step 8: Deliver command and modeled products to project database for Project

review.

Step 9: Hold review meeting.

These above nine steps constitute what is called a single sequence development “Pass”.

The nominal science sequence schedule allows for two “Passes”. The second Pass is

usually intended to fix problems discovered during the first Pass. Other sequence

processes which are more tightly constrained in time, such a Target of Opportunity (ToO)

or slave replacement, allow for only a single Pass.

The process of generating command and modeled products is divided into three sub-

process: command product generation, modeled and review product generation, and

Deep Space Network instruction product generation. Additional products to support

mission sequence development are attributable as secondary processes.

To perform Spitzer sequencing, we applied Spitzer mission-specific adaptation to certain

core mission programs (SEQGEN, SLINC, CMD_TCWRAP, etc) maintained by JPLs

Mission Management Office. Spitzer mission-specific adaptations were enabled by

adaptations made to mission specific “adaptation” files that define the mission-specific

commands, models, and constraint checks.

As an example, let us consider SEQGEN. SEQGEN allows a user to generate and

modify requests, expand a series of requests into their resultant S/C commands, model

these S/C commands, flag conflicts in the modeling of commands, flag violations of

flight/mission rules, show the time extent of each request graphically, and graphically

display model attributes. As implied above, SEQGEN consists of a multi-mission core

program and a mission specific adaptation. The mission specific adaptation employs the

following set of “adaptation” files that define the mission specific commands, models,

and constraint checks:

a) Spacecraft Model File (SMF). The SMF contains the definition of spacecraft

and ground

subsystem models, and spacecraft command/parameter definitions

b) Flight/Mission Rules File (FMRF). The FMRF contains flight and mission rule

checking algorithms

c) Spacecraft Activity Type File (SATF). Contains names and definitions of the

activity types, including on-board blocks, ground expanded blocks, SEQGEN

directives and SLINC directives

d) Context Variable (Definition) File (CVF). Contains parameters defined during

the adaptation process that are used in the definition of activity types or models

e) Legend File. Contains data to define display definitions and layout

SEQGEN Inputs

 SEQGEN requires the following input files to perform sequence expansion and

constraint checking:

a) Spacecraft Clock Coefficient File (SCLK)

b) Lighttime File (LTF)

c) DSN Viewperiod File (VP)

d) Viewperiod Format Description File (VIEW_FD)

e) DSN Station Allocation File (SAF)

f) Initial Conditions File (INCON)

g) Context Variable File (CVF)

h) Spacecraft Activity Sequence File (SASF)

i) Spacecraft Activity Type File (SATF)

SEQGEN Outputs

a) Spacecraft Activity Sequence File (SASF)

b) Spacecraft Sequence File (SSF)

c) Predicted Events File (PEF)

d) Final Conditions File (FINCON)

e) Run Log

Figures 4 (Ref.1) shows SEQGEN inputs and outputs. In both cases, note the input of the

SMF, FMRM, and SATF files “adaptation” files. Figure 5 (Ref. 2) shows the overall

flowchart for the set of core Mission Services and Applications (MS&A) software which

is adaptable to support multiple missions.

Figure 4: Uplink Data Flow for Surveyor Bus

PEF

SSF

LOG

Condi
tions

SAS

SMF

FMR

F

Condi-
tions

SCLK

LTF

SASF

SATF

SEQGEN

Figure 5: MS&A Software

In addition, these adaptable, core tools have been “wrapped” so that their use enables a

consistent, multi-mission process. These “wrappers” are scripts which use tables that

define states for different spacecraft. Spitzer was incorporated into these “wrappers:. For

example, when performing sequence integration, the MPST user identifies Spitzer’s

spacecraft number. The script then references Spitzer’s spacecraft data. These data

tables then tell the script what to do for Spitzer. So if a user is running SLINC, the script

will use Spitzer’s spacecraft number to consult a table which identifies Spitzer as a VML

spacecraft. The script then runs a VML compiler as opposed to a memory management

routine which is executed for a non VML spacecraft.

Generating and reviewing sequence products for a multi-engine sequence architecture

entails much work. Early in the development of the MST process, it became clear that

scripts would be needed to work in unison with adapted core software to make timely

sequence development possible. As an example, we discuss a processing script below.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

To build a one week science upload sequence, each sequence (master, slave, slave

library) must be individually processed into command packet files. Figures 6 and 7

detail the steps required to get each master, slave, and slave library into a command

packet file.

For each week of normal operations, SSC delivers to MST one absolute-timed master

SASF file, multiple slave SATF files, support AOR and IER SATF files, and an SPDF

file which details the overall sequence structure (ie, how many slave libraries will each

slave sequence call, and how many support SATFs will be contained within each slave

library).

Each master sequence, each slave sequence, and each library slave sequence must be

individually constructed, translated into spacecraft readable code and merged with all the

other master, slave, and slave library sequences into a single, week-long command

sequence. To perform this process by hand would prove extremely labor intensive and

make the weekly production of science sequences virtually impossible. So MST

developed a sequence command processing scrip. Figures 6, 7, and 8 (TBS) show the

steps employed by the processing script in combination with other multi-mission scripts

to produce a final .scmf file which can be uplinked to the spacecraft.

Figure 6: Process_modules script. Process slaves/libraries into .cmdpkt files

<seq_id
>_

cmdpkt

Uplink Toolkit Inputs/Outputs
Custom Script driven actions

<seq_id
>_

Slave v

SLINC
slave.m

od

<seq_id
>_

Slave c

Repeated for each slave or

A

Description:
Continuing from the previous page, reads the .spd file and builds the seqadapt
environment file (.env). The .env lists the slave SATF and the supporting SATF’s as
defined in the spd file. It then executes seqadapt with that environment file. Seqadapt
produces a merged SATF and a merged VML file. The script will add the merged
SATF file to the <seq_id>_satf_list file in the following format:
<path>/<seq_id>_slave (no .satf extension). NOTE: The seqadapt and slinc steps are
executed in order for each module to be merged, then both steps are repeated for the
next module, etc.

Uplink Toolkit Inputs/Outputs
Custom Script driven actions

Description:
merge_cmdpkts will accept a file listing cmdpkt files, individual cmdpkt files, a master
cmdpkt, an activate cmdpkt, and a seq_id. It will merge all of the cmdpkt files into one scmf
and name it <seq_id>.scmf. It then does a kwik unwrap and kwikwrap of the header of the
scmf

cmd_tcwr
ap

B
<seq_id>.cmdpkt
activate_<seq_id>.cmdpkt

<seq_id
>_

cmdpkt_

merge_cmdpkt

Kwik wrap header
<seq_id>.scmf

Figure 6: Process_modules script. Process slaves/libraries into .cmdpkt files (cont)

Figure 7. Run env_gen and gen_command on master

Uplink Toolkit Inputs/Outputs
Custom Script driven actions

<seq_id
>_

satf_list

env_gen

Description:
To get all of the merged satf files into the seqgen environment file, execute:
env_gen -type stored -sc 79 `cat <seq_id>_satf_list` -satf <path>/eng_blib -satf
<path>/sci_blib -satf <path>/fp_blib <seq_id>
(Note: the blib statements are necessary until the block libraries are included in the
uplink toolkit and env_gen pulls in the <seq_id>.sasf sequence from SSC)
Execute seqgen to process the master:
seqgen -ba <seq_id>.env
 seq_translate -activate -engine <#> <seq_id>

seqge
n

seqgen

<seq_id>.ssf

seq_translate

sli
nc

cmd_tc
wrap

<seq_id>.scm<seq_id>.cmdpkt
activate_<seq_id>.cmdpk

B

<seq_id>.e
nv

Figure 8. Merge cmdpkt files into one scmf

To use the processing script, the SSC delivers an SPDF file which details the libraries and

AOR/IER support blocks associated with each slave. The .env lists the slave SATF and

the supporting SATF’s as defined in the SPDF file. It then executes seqadapt with that

environment file. Seqadapt produces a merged SATF and a merged VML file. The

script will add the merged SATF file to a list. To process the VML file, the processing

script then reads the SPDF file and builds the seqadapt environment file. The

environment file lists the slave SATF and the supporting SATF’s as defined in the SPDF

file. It then executes SEQADAPT with that environment file. SEQADAPT produces a

merged SATF and a merged VML file. The script will add the merged SATF file to the

list file. The SEQADAPT and SLINC steps are executed in order for each module to be

merged, then both steps are repeated for the next module, etc.

Another script is then employed to get all of the merged SATF files into the SEQGEN

environment file. SEQGEN and SEQ_TRANSLATE are then executed to produce

merged cmdpkts and an unmodeled pef. CMD_TCWRAP is then the final script

executed to produce a merged scmf which can be uplinked to the spacecraft.

Uplink Toolkit Inputs/Outputs
Custom Script driven actions

Description:
merge_cmdpkts will accept a file listing cmdpkt files, individual cmdpkt files, a
master cmdpkt, an activate cmdpkt, and a seq_id. It will merge all of the cmdpkt
files into one scmf and name it <seq_id>.scmf. It then does a kwik unwrap and
kwikwrap of the header of the scmf.

cmd_tc

B
<seq id>.cmd

activate <seq id>.cm

<seq_id
>_

cmdpkt

merge_cmdpkt

Kwik wrap header <seq_id>.scmf

SEQGEN then processes the merged .env file with modeling on. With modeling on,

SEQGEN expands out the commanding, executes the slewing motion based upon the

PCS software, checks the sequence for any flight rule on constraints violations, and

outputs the review products which include PCS output files, a modeled PEF, and the

downlink keyword file (DKF).

 Multi-mission adaptation of core software, scripts development, and processes have

enabled Spitzer to achieve its mission objectives. Spitzer mission operations have been

cost-effective and efficient. However, development and test of the mission sequence

architecture in flight software was not easy. In addition, the non-deterministic slew

modeling was challenging. The flight software algorithms had to be incorporated into the

ground software so that the spacecraft behavior could be exactly replicated on the ground.

If a project is willing to accept truncation of relative slaves, non-deterministic modeling

could be dropped, thereby simplifying ground operations.

2.2.1 Test and Training Sequences

Test sequences were generated on the ground, before launch, to validate blocks, Flight

Rules, sequence formats and get the teams to train on how to build sequences and to get

ready for operations. IRAC Mini-Sequences, designed to checkout IRAC operation

modes, were delivered from Harvard to JPL for processing, and then delivered to the

OSTL for testing. The short forms and long forms represented a step-up in testing from

the individual IRAC sequence to multi-engine sequences. Multi-engine sequences tested

the command responses of the instruments and required instrument transitions since only

one instrument can operate at a time. Long forms tested all three instruments operating in

succession. So, for example, a long forms would begin with an instrument power on,

followed by an operational sequence, and concluding with a power off. That instrument

would be similarly be followed by the next instrument and then the next. Short and long

form sequences would be delivered from the instrument teams to the SSC for packaging

and then to MST for command and review product development. Once command

products were successfully produced, the sequence would be loaded onto the testbed for

checkout. Some sequences, once had fully and safely executed on the testbed, were

loaded onto the observatory.

A number of Operation Readiness Tests (ORT) were conducted to get the personnel

ready for operations. The ORTs had their positive and negative affects. When it came to

the sequence builds the inputs were usually late and incorrect. But at the same time after

performing several training builds the teams got better in delivering and producing the

products. Test and training played a major role in getting the teams ready for operation.

Several types of sequences were introduced during the development process for each

phase of the mission. For IOC, mini type sequence was introduced; where the sequences

were relative timed and they were designed for specific campaigns (instruments). Test

and training sequences generally used a single pass of process steps 1 through 8 outlined

above.

2.2.2 IOC/SV

The Spitzer IOC and SV phases were planned to last 90 days. IOC was planned to begin

5 hours, 42 minutes after launch and SV after 60 days and was executed with ground-in-

the-loop. The IOC and SV Mission Plan were introduced to commission Spitzer for

routine operations. The emphasis for the in-orbit checkout (IOC) phase was to bring the

Facility on-line safely, verify the functionality of the instruments, telescope and

spacecraft, and demonstrate that the facility meets the level 1 requirements. The

emphasis of the science verification (SV) phase was to characterize the Observatory in-

orbit performance, demonstrate Observatory capability for autonomous operations,

conduct early release observations, and exercise the ground systems software, processes,

and staffing sufficiently to commission the Facility for routine operations. During the

IOC phase final focusing was achieved and the telescope had cooled to an operating

temperature of approximately 5 Kelvin (-268 Celsius or -451 Fahrenheit). This cold

temperature has allowed the observatory to detect the infrared radiation, or heat, from

celestial objects without picking up its own infrared signature.

The IOC was completed in 62.8 days and SV in 35.6 days. The longer duration was due

primarily to three safing/standby events experienced by the spacecraft. The IOC

sequences were bit different from the Nominal Operations sequence (will be discussed in

later section). IOC sequences were built by instrument campaign (each campaign was a

mini sequence and could be from a few hours to a day or so in duration) which allowed

more flexibility to respond to changes based on the new data. Because IOC/SV

sequences were event-driven, a flexible, real-time strategy was selected. Uplink

sequences were transmitted using the "load and go" approach with relative-time

sequencing.

The IOC/SV operations implementation plan defined the following IOC strategies:

instrument/engineering sequences built in relative time to reduce sequence rebuilds due

to start time changes; real-timed commanding (load and go) of all mini sequences and

playbacks to provide maximum flexibility; operational support teams operated primarily

on prime shift, except for the flight control team which worked around the clock, and

instrument teams who were on-shift when their data was received on the ground;

background master sequence loads would be 1-2 weeks in duration with the instrument

campaigns loaded into the sequence engines as "load and go" sequences. The goal was to

transition to nominal processes prior to completing IOC/SV, thus validating the nominal

processes prior to the start of the science mission.

The IOC/SV process incorporated sequence process steps 2 through 5 and 7 through 9

above. In IOC, the OET submitted the absolute-timed master sasf while the relative-

timed mini sequences came from the SSC. MST modeled the master with planned mini-

sequence execution times to insure successful integration and flight rules compliance.

During the IOC/SV phases a few lessons were learned:

1. Relative-time sequencing is the key to flexibility.

2. Reserve time should be distributed throughout a timeline in order to ensure that a

complex, interleaved set of dependent activities is robust against unplanned

anomalies. One hour of reserve was added behind every campaign and six hours

weekly to allow the timeline to slip without having to extend the phase.

3. Tools must have a simple way to model dependencies, since the planning process

must allow a rapid, frequent response to changes and anomalies. Use of the off-

the-shelf software (e.g. MS Excel) allowed the replan team to focus on process

design and timeline planning rather than tool design and testing. Excel is a

flexible tool for passing data in human-readable form, and is useful for linking

timeline information to schedules and diagrams.

4. Allow for frequent communication between teams and team members. The replan

team required all disciplines to be able to recommend solutions at a rapid pace.

The IOC/SV website with access to all important documentation, tools, forms,

useful links, and daily status was one stop shopping for the distributed teams.

5. Quick replanning allowed for other teams downstream the standard amount of

time to do their jobs.

6. Test and training exercises provided invaluable experience. Spitzer performed

eight replan training exercises prior to launch, starting simple and ending with

more challenging situations. Tabletop training exercises were chosen to exercise

the team's decision-making capabilities.

7. Phased transition from IOC to SV to nominal operations allowed the teams to get

up to speed smoothly. We had team responsibilities changing as well as the

change from relative time sequencing to absolute. Kept the IOC replan team on

during transition.

8. Co-location, clear lines of authority and responsibility, and the fact that the key

IOC team members had no other project responsibilities during that period were

also key factors in the success of IOC/SV.

2.2.3 Nominal Science Operations

The transition to Nominal Operations occurred right after IOC/SV. The IOC/SV process

was designed to allow for short lead times, while the normal process involves almost six

weeks of development time. It took awhile (approx 12 weeks) before the project fully

achieved the standard operations.

The Prime Mission started with a fully commissioned Facility. The Prime Mission

extended from the end of SV until the liquid helium supply is exhausted. An extended

mission would take advantage of the short wavelength IRAC bands to continue useful

observations. End of Mission is expected at ~ Launch + 5 years (note the requirement is

2.5 years).

Nominal Operations is being used to operate the Facility at the start of the Prime Mission.

During Nominal Operations, the Mission Operations System (MOS) commands the

spacecraft systems and instruments to gather science data, telemeter that data to the

ground where it initially processes by the MOS and then passed on to the Spitzer Science

Center (SSC). DSN tracking using the 34-meter & 70-meter antennas nominally occur

once or twice a day with each pass approximately 12 hours and 24 hours apart

respectively. Engineering and science data nominally being transmitted by the Facility on

the high gain antenna at 2.2 Mbps. As the Earth-Sun-spacecraft geometry worsens, the

high gain antenna data rate will drop but the project can mitigate this by switching to a

downlink configuration where both power amplifiers are turned on to increase the

downlink signal strength or switch to 70-meter station coverage.

The strategy for accomplishing the Prime Mission has been well planned and rehearsed.

Sequences of commands were designed, built, tested, uplinked to the Observatory and

stored on-board for later execution. Operations personnel have been prepared for

Nominal Operations by walkthroughs, rehearsals, Operational Readiness Tests, and by

operating the Observatory during IOC/SV. Mitigation plans, and contingency sequences

for a select set of contingencies were prepared prior to Nominal Operations and continue

to be maintained.

Nominal Operation is bit more unique. First it starts off with science observation

proposals, where the science community submits to SSC approximately once a year.

These proposals are collected into an Observing Program. This Observing Program is

used for Long Range Mission Planning and a skeleton Long Range Plan and a Baseline

Instrument Campaign are products that are generated. These products are used for Short

Term Scheduling to build a Weekly Schedule. This Weekly Schedule is packaged into

products (a Master Sequence and its corresponding set of Slave sequences) that are used

by the MOS to build uplinkable sequence loads.

 Figure 10

The MOS builds sequence loads of approximately 7 days duration and radiates them to

the Observatory for execution at a specified time. Sequence loads become active at a set

time, execute to completion, and then are replaced by another sequence load of similar

length, thus there will nominally be a sequence load active at all times on the

Observatory.

Sequence loads will take advantage of onboard blocks that can be executed at preset

times. These blocks contain a series of relative time-tagged commands that perform a

particular function. Parameters can pass data to onboard blocks, allowing these blocks to

be uploaded once and used multiple times.

The MOS also has the ability to uplink any individual Observatory command. The

command list in the Command and Telemetry Dictionary indicates whether a command

can only be sent as an immediate command (real time command), only as part of a

sequence load or “block”, or both.

Sequence loads execute on board the Observatory in Virtual Machines (VM). A virtual

machine is a software construct that simulates a generic processor, memory locations, and

registers: the basics of any computing environment. Spitzer has 12 Virtual Machines. The

VM architecture has limitations on its use such as sequence load size, instruction limit,

and number of parameters being passed to a block. Each VM has Code Space that

contains storage for the sequence loads, blocks, or other software modules, and Execution

Space in which the execution of the instructions takes place. The VM strategy includes

using a language (Virtual Machine Language, VML) to add logic to sequences to utilize

this architecture.

Spitzer uses a 30 calendar day nominal sequence load uplink process from Weekly

Schedule generation to uplink of the sequence load with a 30% development margin. This

cycle allows 5 days (10 nominal DSN passes, including 30% margin) to get a sequence

loaded onboard the Observatory. Note that there is work done at the SSC by the

operations teams and the Instrument teams prior to Schedule Generation that includes

pooling of the available observation proposals for scheduling, and generating calibration

strategies for the SIs.

The MOS radiates a merged Spacecraft Message File (SCMF) of the Master and Slave

sequences. Large uplink volumes may require SCMFs to be split in order to fit within

scheduled DSN passes.

Sequence loads are uplinked as Virtual Channel 2 files (VC2) that can be stored in the

on-board file system (see Table 1) and loaded onto a specified VM by the flight software.

Table 1 On board File System

LOCATION PATH GENERAL USE
CMIC c:/cfg Configuration files that need to persist through a side-swap.
(not write protected) c:/dat Data files that need to persist through a side-swap.
 c:/seq SVM modules that need to persist through a side-swap.
CMIC cwp:/cfg Configuration files that need to persist through a side-swap.
(write protected) cwp:/dat Data files that need to persist through a side-swap.
 cwp:/seq SVM modules that need to persist through a side-swap.
EEPROM e:/cfg Configuration files that need to persist through a reboot.
 e:/dat Data files that need to persist through a reboot.
 e:/ce CE files that need to persist through a reboot.
 e:/irac IRAC files that need to persist through a reboot.
 e:/seq SVM modules that need to persist through a reboot.
 e:/tlm Telemetry related files that need to persist through a reboot.
DRAM d:/cfg Configuration files used in operation of the spacecraft.
 d:/dat Data files used in operation of the spacecraft.
 d:/ce CE files used in operation of the spacecraft.
 d:/irac IRAC files used in operation of the spacecraft.
 d:/seq SVM modules used in operation of the spacecraft.
 d:/tlm Telemetry related files used in operation of the spacecraft.
 d:/tmp Temporary files used in operation of the spacecraft.
 d:/upl Uplink related files used in operation of the spacecraft.

Engineering activities (Spacecraft Engineering Requests, SERs) are either radiated during

DSN passes as immediate commands/sequences that execute as soon as they are received,

or implemented as regular SERs or pseudo SERs. Pseudo SERs are engineering activities

that reside in the master sequence. Regular SERs are implemented just like science

activities.

Commands are uplinked every DSN contact to delete ground acknowledged telemetry

packets and retransmit packets older than the end of the previous downlink that were not

received on the ground.

The sequencing strategy chosen for Spitzer employs a Master/Slave sequence

architecture. The Master sequence controls the behavior of the overall sequence load,

spawning slave sequences at specified times. There may be one or many Master

sequences per week, but only one Master may be executing at a time (except during the

overlap when the new Master is active prior to the old Master completing execution).

Masters are built in the form of an absolute timed Spacecraft Activity Sequence File

(SASF).

Slaves may be as small as one Astronomical Observation Request (AOR), or Instrument

Engineering Request (IER) or can be several AORs, IERs, or SERs. Slaves are built in

the form of relative timed Sequence Activity Type Files (SATFs).

Slaves may contain all the commanding necessary for the execution of their activities or

they may call blocks from any of the installed block libraries and slaves from the slave

library. See Figure 3 for a diagram of the Spitzer Sequence Virtual Machine Architecture.

Spitzer also uses a set of functions called Sequence blocks, which are parameterized,

reusable relative sequences. Blocks behave like sequences, but are treated like modifiable

flight software. Parameterization allows execution of the block to occur differently with

each use. Usage of variables that are visible to both sequences and blocks are also a part

of the sequence strategy. As the flight software dynamically changes the values of global

variables, executing sequences and blocks can make real-time decisions based on the

values of these variables. Examples would be waiting for a slew or reaction wheel

desaturation to complete, or for a particular instrument mode.

During Nominal Ops the master and slave sequences perform their own activities.

Master sequences contain activities to:

- Manage the DRAM file system

- Load slaves into sequence engine 4

- Call, spawn or halt slave sequences

- Perform routine Inertial Reference Unit and Star Tracker to PCRS calibrations

- Initiate downlink passes

- Manage the transition between master sequences

Sequences will nominally start on Wednesdays such that the Master sequence transition

occurs on the second pass of the day.

Slave sequences contain science observations and instrument calibrations.

Slave sequences perform the following engineering functions

- Managing the DRAM file system

- Performing command history "dumps"

- Loading of slave libraries into sequence engine 5

- Ending downlink passes (by calling the “stop downlink” block)

- Executing all science IERs and AORs as well as engineering SERs

- CTA makeup heater management

- Gyro bias updates

Sequence blocks are small pieces of sequence code (Observatory commands and VML

instructions) that reside in libraries. Blocks are used in developing sequence loads to save

code space (i.e., uplink volume) in a VM or to execute repetitive and routine activities

on-board the Observatory. Blocks can be used to implement science or engineering

activities. Spitzer has several block libraries. The science fault protection library is

resident in VM 1. The engineering block library is resident in VM 7, and the science

block library is resident in VM 8.

Blocks can be passed parameter values from a sequence to customize the block

execution, and blocks can return values. For the programming experienced reader, blocks

are similar to subroutines or functions that can be called from a main program.

Sequences may call blocks as library routines or to arbitrate a resource. Blocks may also

call or spawn blocks but blocks may not call sequences.

When a block is spawned, the block executes on a different engine than the calling

sequence thus the calling sequence does not wait for the block to complete.

When a block is called, the block executes in the same engine as the calling sequence,

thus the calling sequence must wait for the block to complete execution.

There is a VM (for Spitzer it is VM 13) that contains a stack of 99 global variables. This

number can be changed at compile time. When the VM boots up, an internal sequence

runs to set up the GV declarations on the VM.

A sequence can be set to wait on a global variable value set by flight software or another

function.

Blocks can also wait on a global variable value. If the block is called by a sequence, the

wait must contain a timeout so that the calling sequence is guaranteed to continue

Telecommunications also plays a big role. It involves the coordination of activities

between the Observatory and the Deep Space Network (DSN). During the nominal

mission, DSN tracking is scheduled approximately every 12 hours each pass with a

duration of approximately 1 hour. Early in the nominal mission for the first few weeks, a

3 hour pass per week was scheduled to alleviate the transition from nearly continuous

coverage during IOC/SV to the nominal 2 one hour passes per day for the nominal

mission.

For science efficiency purposes, 1 DSN pass per day is considered for the IRS and IRAC

instruments later during Nominal Operations (~ 1 year after start of Nominal Operations).

Nominally the ground will communicate with Spitzer using an uplink rate of 2000 bits

per second and a downlink rate of 2.2 Megabits per second.

During safing and standby modes of operation, the uplink rate is switched to 7.8125 bps

and the downlink rate set to 40 bps through the LGAs until ground personnel intervene

and gain control of the Observatory.

The observatory has 4 low gain antennas (LGAs) and one 1.35 meter high gain antenna

(HGA) pointed along the –X axis. The low gain antennas are mounted such that near-

spherical coverage is available on either the uplink or downlink.

Two power amplifiers (SSPA) and two Deep Space Transponders (SDST) provide

redundancy to the telecom subsystem. Both SDSTs are powered but only one is

configured to be “active.” Nominally SSPA 1 is powered to transmit through the LGAs

and SSPA 2 through the HGA. During late nominal operations, the SSPAs can be

combined to increase the data rate capability.

There's an idiosyncrasy that results in switching back and forth between SSPAs (as

connected to the HGA) as our safing events occur.

To configure the telecom subsystem for downlink, the rfs_downlink_start and

rfs_downlink_stop blocks are used. During off earth periods, the LGAs are selected for

uplink at 7.8125 bps.

Virtual channels (VC) are used when commanding with Spitzer. VC0 is used for

hardware or critical commands. VC1 is used for real time or immediate commands. VC2

is used for file loads (used for sequence loading) and VC5 is the uplink session indicator.

Nominal operations use sequence process steps 1 through 9 above for each pass.

Nominal operations allow for two passes prior to uplink.

2.2.4 Real Time Ops

Real Time Operation includes monitoring health and status of the observatory,

monitoring the status of DSN antennas, the telemetry, command processing capabilities,

and etc…

The real time command process is a subset of the uplink process, and dependant upon the

length of time until response is necessary, may impact at different steps of the uplink

process. Real Time products that don’t follow the stored sequence process are Express,

Interactive, Non-interactive, and Load and Go commands.

• Non-Interactive Payload Commands (NIPCs) are parsed and translated via the

automated sequence processor (ASP) and do not require Mission Manager

approval. Processing is normally accomplished in under 3 minutes. Input format

is an SASF and SATF. Flight rule checking is not performed with this command

type.

• Non-Interactive File Loads (NIFLs) are parsed and translated via the ASP and do

not require Mission Manager approval. Processing is normally accomplished in

under 3 minutes. Input format is a binary file. Flight rule checking is not

performed with this command type.

• Interactive Commands (ICs that have an impact on ground and on-board

resources and that require a build) are parsed and translated via the ASP and

require Mission Manager approval for uplink. In certain cases, the OET may

request that the command be merged with the other planned commanding. This

allows the SEQGEN to check flight rules and constraints in addition to the

standard manual OET checks. Processing is normally accomplished in under 3

minutes. Flight rule checking is typically not performed with this command type,

a merged IC can usually be processed by the MST in one hour. Input format is an

SASF and SATF.

• Interactive File Loads (IFLs) are parsed and translated via the ASP and require

Mission Manager approval for uplink. Flight rule checking is usually not

performed with this command type. In certain cases, the command be merged

with the other planned commanding. This allows SEQGEN to check flight rules

and constraints in addition to the standard manual OET checks. Processing is

normally accomplished in under 3 minutes. A merged IC can usually be processed

by the MST in an hour.

• Express Commands (ECs) are interactive S/C commands that are used regularly

are parsed and translated via the ASP. These commands have been pre-approved

by the Mission Manager and may be sent without his approval. Processing is

normally accomplished in under 3 minutes. Input format is a pre-stored SASF.

Flight rule checking is not performed with this command type. Can be requested

at any time by OET systems.

• Up & Go sequences (the sequence formally known as Load & Go) are parsed and

translated via the ASP. They differ from other real-time commands because they

consist of timed scripts of commands that reside in a specific area of sequence

memory that execute immediately.

Real time commands are used by the OET to implement engineering activities during

track times. Unless pre-approved, all real time commands are require the originator to

submit a Command Change Request (CCR) prior to building and uplinking the

command. It is the responsibility of the Mission Manager or designee, with assistance

from the CM Engineer as requested, to assure approved change paper exists for the real

time command.

One advantage to real time commands is that some of them are pre-built and can be

reused. The disadvantage is that too much real time commanding can lead to “joy

sticking”.

2.2.5 Target of Opportunity

Target of Opportunity (ToO) are observations approved during the General Observer

review process, but which involve transient phenomena whose exact timing and/or

location on the sky were uncertain at the time the proposal was submitted (e.g. a newly

discovered comet, a bright supernova, or a Gamma-Ray Burst (GRB)). ToOs are

categorized by the extent to which the execution of such an observation affects normal

scheduling and observing procedures. A high-impact ToO is one with a delay of less

than one week (minimum of 48 hours). A medium-impact ToO is one with user-

specified delays of one to five weeks. A low-impact ToO is one where the acceptable

delay is longer than five weeks. All delays are measured from the time the SSC Director

approves the ToO activation request until the time the first observation in the newly

approved ToO sequence begins execution on the observatory. The ToO activation process

begins with the observer notifying the SSC Observer Support Team (OST) of the desire

to activate an observation in an approved program. Simultaneously (within minutes) the

observer submits a SSC Helpdesk ticket with all information required by the SSC

Director for review of the activation request (including the source position and a

demonstration that the triggering criteria have been met). Upon receiving the Observer’s

request to activate a ToO, the SSC OST notify key Project personnel of the request,

perform a cursory review of the requested observations, and, if appropriate, schedule a

meeting at the SSC to assess and decide on the request.

The ToO can be achieved by doing a master replacement or a slave replacement. The

master replacement requires to:

– Build/load new & dummy master

– Start dummy, stop old master

– Stop dummy, start new master

– PRO: have dummy & master management sequences built

– PRO: can do instrument power transitions

– CON: model of master required PLUS subsequent sequence in

development would have to be modeled

• Need INCON from executing master at start of replacement

• If master n is replaced, then INCON for master n+1 would change

– PRO: slaves can extend beyond original boundaries

– Replacement sequence is a one pass process

– Executing master must be remodeled and a FINCON cut at the appropriate

time (start of the dummy master)

• During the first 24 hours

– Subsequent master is remodeled using the FINCON cut in the replacement

master build

– Modules yet to be executed and used by the replacement master do not

need to be uplinked

Master Replacement ToO (Figure 11)

To complete the master replacement scenario the following steps are performed (Figure
12):

1. Uplink dummy master, replacement master/slave, master management
sequences

2. Load and activate dummy master
• set the GV to point to the dummy

3. Unload the old master that is being replaced
4. Load and activate the replacement master sequence

• set the GV to point to the new master
5. Load any remaining modules

Process Instigation Control Flow
Process Notification Control Flow
Process Data Flow

Duration: no less than 48 hrs
(at least 6 hours of margin to be allocated at CCR approval)

OPST
SER/IER/AOR
Updates

MST

OPST

New Tar file:

•New SPD

•New master/slaves

•Updated
SERs/IERs/AORs

DOM

CCR

OET
OPST
MST+

Mission
Manage

r

CCR impacts

CCR
approval

2

3

4

OET
MST

OPST
UL summary

Mission
Manage

r

UL
summary
approval

FCT

New uplink products

SCMF

Approved
UL
summary

5

6

8

9

10

11

≥ 24 hours 24 hours

DOM

UL summary

Next available uplink
window

OET
MST

OPST

Seq review
comments

O
bserver

Observer request
1

7

12

CCR must be
approved by this time

New Tar file:

•New SPD

•New master/slaves

•Updated
SERs/IERs/AORs

MDAPT*

DSN
allocations

* = only if required
+ = remodels executing
sequence for INCON

DSN pass*
extension req

DSN
allocations

New
uplink
products

Dummy master &
master mgmt
sequences

DSN
allocations

6. Delete any "leftover" slaves and slave libraries

ToO can also be performed by doing a slave replacement. Usually the slave replacement

scenarios include:

• When the IST/ITs request changes to be made after Pass 2 (Mission Manger

approval is required).

• When Spitzer has missed a DSN pass and a longer downlink period is needed.

• To support ToO observations.

• Any time a health and safety issue arises which may require an urgent diagnostic

sequence to be run.

• To support small changes after the schedule approval meeting or Pass 1 review

but prior to uplink of the master sequence.

Several types of replacements are possible:

• Replacement of the contents of a single slave.

• Replacement of the multiple slaves.

On-board

d:\seq

VM2

VM3

VM4

dummy master

a b x y h i

 Replacement master

 Original master VM2

VM3

VM4 a b c e f g h id

c

ToO

Uplink

i

Delete

hgfed

already executed same as original master

 Scenario
(Figure12)

• Simple deletions of one or more requests.

• Hand-edits to change parameters in block calls.

The ToO employs a single pass of sequence process steps 1 through 9 above.

2.2.6 Anomaly Recovery

When it comes to anomalies the Spitzer mission has been quite successful and relatively

anomaly free. However, there have been a couple of safing and standby events which

required rapid response and a high degree of coordination between the MOS teams to get

the Observatory back on line quickly. During such an event, the Flight Control team

communicates with the spacecraft, by gathering as much data as possible, which, under

these circumstances, will be broadcasting via the Low-Gain Antenna, while the OET and

others attempt to diagnose the problem and come up with a solution. Once the OET has a

good estimate of when they will begin the recovery effort to come out of the safe or

standby mode, OPST will start the process of building the “recovery master sequence”,

which is usually a truncated version of the master currently on board.

For example if the spacecraft entered into either standby or safe mode after the master

sequence for any particular week had been executing for 24 hours (assuming that the

process of diagnosis and determining the appropriate solution may take a full day or

longer), the sequence might be rebuilt exactly as before, but with the first 3 days missing.

This would result in a shortened master sequence (4 days long instead of 7 in this

example), which would begin to execute immediately after a specific downlink pass

identified by the OET.

The normal processes and procedures for this emergency build remain in place to the

extent that the rapid turnaround time-scale allows; the OPST member responsible for the

rebuild, along with members of other teams (OET, ISTs, MST, etc) are required to check

the products for problems prior to delivery to MST. After the delivery to the MST, MST

builds and delivers the products. But the fast recovery has its pros and cons. One of the

problems is that during the fast recovery less time is given to review or double check the

work and due to this mistakes can be introduced. The positive thing about fast recovery is

that it helps to get back to normal operations and start collecting science.

Another anomalous occurrence to be considered is the instance of a missed DSN pass.

Due to the high data volume produced by MIPS, this can be a potentially serious issue.

One method for extending a subsequent pass has been developed using a strategy which

allows for the replacement of a portion of the sequence on board. The master sequence

calls and spawns numerous other processes as it runs, including shorter, relative-timed

sequences (generally referred to as slave sequences), which in turn call some fraction of

the hundreds of science and calibration requests that are scheduled in that week. It is

possible to construct a shortened version of a slave which contains a call to the downlink

stop block that has been moved later in time, in order to extend the downlink pass in

question. The replacement slave sequence is then uplinked to the spacecraft and original

version is deleted, before the current master sequence has issued the call or spawn for that

particular slave sequence.

Anomaly recovery employs a single pass of sequence process steps1 through 9 above.

3.0 Overall Conclusions

Spitzer’s requirement for adaptable operations and for maximized science viewing

efficiency drove an optimization of spacecraft flexibility, adaptability, and use of

observation time. This optimization was achieved through the implementation of a

multi-engine sequencing architecture coupled with non-deterministic spacecraft and

science execution times. To accommodate this design approach and produce sequences

in a time-efficient manner, the MST employed a tactic of adapting core sequence

generation software and developing scripts to automate labor-intensive processing and

sequence product-generation routines. The adapted core software and scripts were then

employed in a sequence generation process to accommodate each mission phase and

strategy. This strategy achieved mission objectives in a time- and cost-efficient manner.

3.1 Overall Lessons Learned

The MST came onto the mission relatively late (approximately 1.5 to 2 years before

launch). At that time, the requirement to maximize science viewing efficiency was in

place, but a method to handle the operations complexity was not well understood. Much

work had to be quickly done to develop the interfaces, core software adaptations, scripts

and processes to develop workable sequences in a timely, efficient, and cost-effective

manner.

Although effective in achieving the viewing efficiency, the twelve engine architecture

presented challenges in flight software tests. A fair amount of work needed to be

performed to get the flight software properly functioning with the multi-engine

architecture. In addition, the non-deterministic modeling added much complexity to

ground operations. To model the spacecraft’s non-deterministic slewing, the ground

system had to incorporate the same flight software that was used on the spacecraft.

Ground operations could be simplified if the project had decided not to perform non-

deterministic modeling on the ground and just accept slave truncations with absolute-

timed slave sequence halt routines. The IRAC was extremely command intensive. A

modeling run for a one-week IRAC sequence could take approximately 15 hours just to

obtain a modeled review product (ie, a modeled pef). Hardware upgrades to Blade dual-

processor 2000 computers did shorten model run times, but model run times still could

take in excess of twelve hours. Sptizer’s multi-engine architecture, as well as its

requirement for non-deterministic modeling, also complicated the multi-mission core

software (SEQGEN, SLINC, CMD-TCWRAP) adaptation. Extra testing had to be used

to insure that the multi-mission core software could adequately account for sequences

coming from a multi-engine architecture, and that the core software could effectively

interact with the slew model in performing non-deterministic slew modeling.

We strongly recommend that MST personnel be applied to projects earlier in the mission

phase so they can help drive the development of tools, processes, and interfaces as part of

the standard development cycle.

