
0.0 Abstract 
 
The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and 

renamed to the Spitzer Space Telescope in 2004.  Two years of observing the universe in 

the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries.  

Since this magnificent observatory has a limited lifetime, maximizing science viewing 

efficiency (ie, maximizing time spent executing activities directly related to science 

observations)  was the key operational objective.  

 

The strategy employed for maximizing science viewing efficiency was to optimize 

spacecraft flexibility, adaptability, and use of observation time.   The selected approach 

involved implementation of a multi-engine sequencing architecture coupled with non-

deterministic spacecraft and science execution times.   This approach, though effective, 

added much complexity to uplink operations and sequence development.   

 

The Jet Propulsion Laboratory (JPL) manages Spitzer’s operations. As part of the uplink 

process,  Spitzer’s Mission Sequence Team (MST) was tasked with processing 

observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, 

constraint-checked, and modeled review and command products which accommodated 

the complexity of non-deterministic spacecraft and science event executions without 

increasing operations costs.  The MST developed processes, scripts, and participated in 

the adaptation of multi-mission core software to enable rapid processing of complex 

sequences.  The MST was also tasked with developing a Downlink Keyword File (DKF) 

which could instruct Deep Space Network (DSN) stations on how and when to configure 

themselves to receive Spitzer science data. As MST and uplionk operations developed, 

important lessons were learned that should be applied to future missions, especially those 

missions which employ command-intensive operations via a multi-engine sequence 

architecture.   

 

This paper describes the roles and functions of the SPITZER MST, its operational 

interfaces, processes, tools, and lessons learned. 

 



1.0 Introduction 
 
The Spitzer Space Telescope is the fourth and final of NASA’s great observatories.  

Spitzer takes images and spectra in the infra-red wavelengths of 3 to 180 microns.  

Spitzer (see Figure 1) consists of a spacecraft, a 0.85 – meter telescope, and three very 

sensitive, cryogenically cooled science instruments which conduct observations in the 

infra-red (Figure 1). Spitzer’s three cryogenically cooled instruments  are the Infrared 

Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Imaging 

Photometer for Spitzer (MIPS) (Figure 1). 

 
     Figure 1. 
                Spitzer Observatory 
 
 
The Infrared Array Camera (IRAC) conduct observations at near- and mid-infrared 

wavelengths.   The Infrared Spectrograph (IRS) provides both high- and low- resolution 

spectroscopy at mid-infrared wavelengths.  The Multi-band Imaging Photometer (MIPS) 

provides imaging and some, limited spectroscopic data at far-infrared wavelengths.  

Because infrared light is generated primarily by heat, keeping these instruments 

extremely cold make them most sensitive to infrared light. 

 

Launched from Cape Canaveral, Florida, on August 25, 2003, the mission was to be 

executed in   three phases; a 60 day In-Orbit Checkout (IOC) followed by a 30 day 

Science Verification (SV), and a 2.5 year (minimum requirement) Nominal Operation.  

Spitzer’s Uplink Process had to take on the tools, processes, and procedures required to 



support these mission phases while simultaneously meeting the mission’s science 

viewing efficiency requirements.   

 
 
 
1.1 Challenges 

 

The three different mission phases were distinctly different, and so strategies and 

sequence architecture would have to be developed to handle all three.  Software, tools, 

processes, and procedures had to be able to handle all three mission phases, be adaptable 

enough to handle real-time updates during nominal operations, and most of all be able to 

achieve the mission’s 90 percent science viewing efficiency requirement. (Science 

viewing efficiency is defined as time spent executing activities directly related to science 

observations.  Spitzer’s target goal is 90 percent science viewing efficiency.  So for each 

24 hour day, our goal is to spend approximately 21.5 hours obtaining data directly related 

to science observations (engineering calibrations, the slew to Earth and downlink of data, 

idle time, etc occurs during the other 2.5 hours).  To meet these challenges, Spitzer 

needed to develop  a sequence architecture to support the IOC and the Nominal Operation 

phases and at the same time meet science viewing and spacecraft requirements.  Spitzer 

needed to operate in a more non-deterministic manner to remove the inefficiencies built 

in by deterministic operations and slewing.   Spitzer needed to generate the mission 

software, tools, processes, and the procedures to efficiently build mission sequences 

within this multi-phase, highly efficient operations environment.  And Spitzer needed to 

accomplish these objectives within project costs.  

 

The first challenge had to do with the sequence types, if the sequences were going to be 

relative or absolute timed sequences; mini, background or stored sequences and how the 

sequences were going to execute on board the spacecraft. The second challenge was, that 

what kind of tools and processes we were going to require, to be able to build these 

sequences with less hassle and in less time. 

 

These challenges will be discussed later in this document in more details. 



 
1.2 Background 

 

The key to handling Spitzer’s different mission phases and achieving its science viewing 

efficiency requirement was to optimize spacecraft flexibility, adaptability, and use of 

observation time.   So the flight and uplink system was designed to accommodate non-

deterministic spacecraft and science execution times.  Much on-board flexibility was 

needed to load and run programs in order to achieve logical and event-oriented decisions 

which cannot be achieved using just absolute-time tagged calls.  This onboard-flexibility 

was achieved by using virtual machines to enable a multi-engine onboard sequence 

architecture.   Each virtual machine represented one sequence engine and executes time-

tagged instructions capable of invoking complex functions.     

 

A virtual machine provides the basics of a computing environment.  Each virtual machine 

employs simulated memory locations, simulated registers, a stack pointer, and an 

instruction pointer.   Adopting this architecture for the underlying sequence capability 

simplifies software design and provides a great deal of flexibility for creating and running 

programs. 

 

The number of virtual machines is sized to address the need for simultaneous threads of 

execution. One thread of execution may run per virtual machine, but an arbitrary number 

of functions may be run on any one machine. Cross-machine function calls maintain 

pointer and stack information on the calling virtual machine. Global data is visible to all 

functions and sequences.  

 

Spitzer eventually selected twelve virtual machines to address the anticipated needs for 

simultaneous threads of execution.  One thread of execution may run per virtual machine. 

The time clock in each Spitzer VM updates every 0.1 seconds. 

 
2.0 Lessons Learned 
 
2.1 Sequence Architecture 



 

Spitzer’s multi-engine virtual machine architecture is unique.   The “master” sequence is 

built as an absolute-timed SASF file and controls the behavior of the overall sequence 

load by spawning or calling slave sequences at appropriate times. The master sequence 

also calls absolute-timed engineering calibrations and downlink activities. There may be 

one or many master sequences per week, but only one master may be executing at a time. 

Slave sequences may contain all the commands to execute their activities, or they may 

call blocks from the block library, or they may call one or more AORs, IERs, or other 

activities chained together.  If the slave and its associated AOR(s), IER(s), and SER(s) 

will not fit into one VM module, the slave will call one or more slave library. The slave 

library contains only single use activities at the  AORs/IER  level.  As with the slaves, the 

slave library issues AOR(s) and IER(s) chained together. Spitzer also uses a set of 

functions called sequence blocks, which are parameterized, reusable relative sequences. 

Parameterization allows execution of the block to occur differently with each use. Blocks 

may accept parameters, return values, or both. Blocks are loaded on board and may be 

used by the master or slave sequences in AORs, IERs, or SERs. As mentioned above, 

VM engines are used for two distinct purposes; one is to store functions and data, and the 

other one is to execute threads of processing (Figure 3). Functions can only be stored on 

one engine and may be executed on multiple engines simultaneously.  Slave sequences 

may contain all the commanding necessary for the execution of their activities or they 

may call blocks from the block library and slaves from the slave library (Figure 2). 

 

 

 



 
                         Figure 2 

 
 
As also mention above, the sequence architecture on-board consists of 12 virtual 

sequence engines. A sequence engine, or virtual machine (VM), can be loaded with a 

sequence, and can execute while other VMs are being loaded and executed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3 
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As an example, let us consider how the architecture would work to execute a nominal 

science load (a more detailed discussion of nominal science operations is included 

below).  The master sequence is loaded on virtual machine number 2 or 3 (for this 

example, let’s select virtual machine number 2). The absolute-timed master sequence 

plays operations cop for the week.  It executes absolute-timed engineering events as 

required for spacecraft safety and downlinks as DSN viewperiods become available.  

Between these absolute-timed events are Periods of Autonomous Operation (PAOs).  

Each PAO is approximately 11.5 hours to 12 hours long and is constructed mostly of 

relative-timed slave sequence(s) which issue commands,  relative-timed slave libraries, 

AOR, IER, and SER activities, or stored on-board blocks.  The master spawns the PAO 

slave sequence(s)  off to virtual machine 4.  The first activity in the slave begins, calling 

an AOR from the slave library that in turn calls a block. The PCS slew complete indicator 

global variable tells these activities when observatory slews are completed and observing 



can begin.  By studying statistical variations in the slews,  the Spitzer operations teams 

have been able to update the slew model to better predict the exact time for slew 

completion. 

 

The slave or slave library activities (AORs, IERs and SERs) are tied together so  that the 

second activity will start as soon as the first activity is completed. When the first activity 

completes, the next activity starts, calling its own blocks, etc.  

 

A slave concludes with one of three prevailing conditions.  In the first condition, the  

slave will complete before the next slave (or downlink if at end of the PAO) begins and 

there will be “dead” time.  The only negative result for this condition is that viewing 

efficiency will not be completely optimized.  In the second condition, the  

slave will complete as predicted and the next slave (or downlink activity) will start 

immediately.  This condition is optimal in that no science data is lost and viewing 

efficiency is optimized.  In the third condition, the slave will not have completed and will 

need to be killed before the next slave (or downlink) can start.  In this condition, 

statistical variations have worked against you and the slews in the slave average longer 

that expected.  When a slave is killed, a halt command kills the executing slave sequence 

and performs a clean up before the downlink activity starts. 

 

For downlink, Spitzer turns its HGA to earth and dumps its science and engineering data 

and possibly its reaction wheel momentum data as well. When the contact is complete, 

the master sequence controls the return to observing by spawning another slave sequence 

onto VM 4. 

 

Near the end of the week, the next master sequence and its associated slaves and slave 

libraries are uplinked. As its last activity before completion, the current master sequence 

kicks off the next master sequence onto VM3 and then expires. 

 

 
 
 



2.1.1 Requirements 

 

In addition to building sequences that would handle Spitzer’s different mission phases 

while achieving its science viewing efficiency requirements,  Spitzer had to handle 

several types of sequences.  These sequence types include mini, master, absolute,  and 

relative timed sequences.  Spitzer was also had to handle special events like Target of 

Opportunity and Slave Replacements.  As mentioned above, to handle the master and 

slave sequence structure, the VM (Virtual Machine) was introduced to solve storage and 

sequence execution issues.   Adaptation of existing, core mission software enabled 

reliable and cost-efficient generation of sequences.  In addition, considerable time and 

effort was spent building scripts to support the sequence builds.  This script development 

was not anticipated at the project’s beginning.  During the IOC phase, the project 

required continuous coverage to enable ground-in-the-loop operations and to insure that 

the amount of science being gathered could be downlinked before the MMC (mass 

memory card) filled up.  

 

2.1.2 Pros and Cons 

 

The sequence design and ground system developed to support the Launch, IOC, and the 

primary mission presented challenges with the sequence design and with the ground 

system.   The multi-engine sequence architecture was the major role player.  The 

sequence architecture was designed to support absolute and relative timed sequence, 

where these sequences could execute in different engines.  At that time, Spitzer was the 

project with most extensive use of  the Virtual Machine Language (VML). The VML was 

used as a source language for spacecraft sequences. One advantage to that is the uplink 

volume reduction (order of magnitude) it also increased science efficiency through 

relative timing, non-deterministic waits that reduce using worst-case timing (may kill 

activity if it isn’t done on time before the next absolute timed event). The uplink size was 

reduced since the blocks reside on-board, it also gave flexibility in sequence, meaning 

that sequence and block development can start earlier and proceed in parallel with 

spacecraft development. Also it reduced the flight system maintenance cost since many 



changes occur in blocks rather than flight software. But at the same time there were some 

disadvantages too when it came to the VML. There were some difficulties due to 

integrating VML with the existing JPL legacy systems such as SEQ. Translators were 

needed and tools had to be generated by the teams to be able to support the project. 

Especially when it came to the sequence builds. The teams had to generate number of 

tools to be able to support the sequence builds. Limitations in ground hardware and 

software have also played a role. Not having the right hardware and the right software, 

the sequences being too big, the sequence generation process was taking tremendous 

amount of time.  

 

2.2 Sequence Development 

 

Spitzer Science Center (SSC) uses the software package SIRPASS to develop sequences 

from the database of AORs, IERs, and SERs. SIRPASS uses the database and metadata 

to create the 1-week schedule from a pool of observations. SIRPASS controls 

oversubscription and sequence packaging.  Once SIRPASS has created the schedule, it 

outputs the master SASF at least one SATF for each slave sequence and for each slave 

library. The SSC also takes engineering files from the OET which are called in absolute 

time from the master sequence.   These products are then delivered to the Spitzer Mission 

Sequence Team (MST) for command and modeling product development.  

 

The MST then uses  SEQGEN to merge the SASF and SATFs from SIRPASS with the 

engineering SATFs from LMMS OET.   MST uses SEQGEN, SLINC and the VML 

compiler to convert these sequence components into spacecraft readable language, and 

produces review products and products to instruct the DSN.   As mentioned above, to 

enable optimized viewing efficiency, the sequence components execute out of a twelve 

engine spacecraft sequence architecture.   Sequence development usually entails the 

following nine process steps:  

 

Step 1:  Compile AOR, IER, and SER SATFs into slave SATFs and command 

packet files.   In this step, support satf files are merged into slave(s) and slave 



libraries based upon the .spd file.  Output files are generated in the slave 

subdirectories. 

Step 2:    Generate an environment (.env) file for SEQGEN runs 

Step 3:    Execute SEQGEN with modeling turned off to generate unmodeled 

review products.   Unmodeled review products more concisely show slave loading 

from the master, slave begin/end times, and downlink start/stop times before 

slewing and spacecraft states are modeled and slaves are expanded to the 

command level.  

Step 4:  Generate command products taking not of any problems found in Step 3. 

Step 5:  Execute SEQGEN with modeling on to see slew and spacecraft state 

modeling, and to see slaves and downlink activities expanded to the command 

level. 

Step 6:  Execute review scripts to help perform quick review of modeled products. 

Step 7:  Generate products to instruct stations on how to configure for Spitzer 

downlink.  Also, generate visual products for project review. 

Step 8:  Deliver command and modeled products to project database for Project 

review. 

Step 9:  Hold review meeting. 

 

These above nine steps constitute what is called a single sequence development “Pass”.   

The nominal science sequence schedule allows for two “Passes”.  The second Pass is 

usually intended to fix problems discovered during the first Pass.   Other sequence 

processes which are more tightly constrained in time, such a Target of Opportunity (ToO) 

or slave replacement, allow for only a single Pass. 

 

The process of generating command and modeled products is divided into three sub-

process:  command product generation, modeled and review product generation,   and 

Deep Space Network instruction product generation.   Additional products to support 

mission sequence development are attributable as secondary processes. 

 



To perform Spitzer sequencing,  we applied Spitzer mission-specific adaptation to certain 

core mission programs (SEQGEN, SLINC, CMD_TCWRAP, etc) maintained by JPLs 

Mission Management Office.  Spitzer mission-specific adaptations were enabled by 

adaptations made to mission specific “adaptation” files that define the mission-specific 

commands, models, and constraint checks. 

 

As an example, let us consider SEQGEN.  SEQGEN allows a user to generate and 

modify requests, expand a series of requests into their resultant S/C commands, model 

these S/C commands, flag conflicts in the modeling of commands, flag violations of 

flight/mission rules, show the time extent of each request graphically, and graphically 

display model attributes.  As implied above, SEQGEN consists of a multi-mission core 

program and a mission specific adaptation.   The mission specific adaptation employs the 

following set of “adaptation” files that define the mission specific commands, models, 

and constraint checks: 

 

a)  Spacecraft Model File (SMF).    The SMF contains the definition of spacecraft 

and ground  

subsystem models, and spacecraft command/parameter definitions 

b) Flight/Mission Rules File (FMRF).   The FMRF contains flight and mission rule 

checking algorithms 

c) Spacecraft Activity Type File (SATF).  Contains names and definitions of the 

activity types, including on-board blocks, ground expanded blocks, SEQGEN 

directives and SLINC directives 

d) Context Variable (Definition) File (CVF).  Contains parameters defined during 

the adaptation process that are used in the definition of activity types or models 

e) Legend File.  Contains data to define display definitions and layout 

 

SEQGEN Inputs 

 SEQGEN requires the following input files to perform sequence expansion and 

constraint checking: 

 



a) Spacecraft Clock Coefficient File (SCLK)  

b) Lighttime File (LTF) 

c) DSN Viewperiod File (VP) 

d) Viewperiod Format Description File (VIEW_FD) 

e) DSN Station Allocation File (SAF) 

f) Initial Conditions File (INCON) 

g) Context Variable File (CVF) 

h) Spacecraft Activity Sequence File (SASF) 

i) Spacecraft Activity Type File (SATF) 

 

SEQGEN Outputs 

a) Spacecraft Activity Sequence File (SASF) 

b) Spacecraft Sequence File (SSF) 

c) Predicted Events File (PEF) 

d) Final Conditions File (FINCON) 

e) Run Log 

 

Figures 4 (Ref.1) shows SEQGEN inputs and outputs.  In both cases, note the input of the 

SMF, FMRM, and SATF files “adaptation” files.   Figure 5 (Ref. 2) shows the overall 

flowchart for the set of core Mission Services and Applications (MS&A) software which 

is adaptable to support multiple missions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Uplink Data Flow for Surveyor Bus 
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Figure 5:  MS&A Software 
 
In addition, these adaptable, core tools have been “wrapped” so that their use enables a 

consistent, multi-mission process.  These “wrappers” are scripts which use tables that 

define states for different spacecraft.  Spitzer was incorporated into these “wrappers:.  For 

example, when performing sequence integration, the MPST user identifies Spitzer’s 

spacecraft number.  The script then references Spitzer’s  spacecraft data.  These data 

tables then tell the script what to do for Spitzer.  So if a user is running SLINC, the script 

will use Spitzer’s spacecraft number to consult a table which identifies Spitzer as  a VML 

spacecraft.  The script then runs a VML compiler as opposed to a memory management 

routine which is executed for a non VML spacecraft.  

 

Generating and reviewing sequence products for a multi-engine sequence architecture 

entails much work.  Early in the development of the MST process, it became clear that 

scripts would be needed to work in unison with adapted core software to make timely 

sequence development possible.  As an example, we discuss  a processing script below.  

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.



 

To build a one week science upload sequence, each sequence (master, slave, slave 

library) must be individually processed into command packet files.  Figures 6 and 7  

detail the steps required to get each master, slave, and slave library into a command 

packet file.    

 

For each week of normal operations, SSC delivers to MST one absolute-timed master 

SASF file,  multiple slave SATF files, support AOR and IER SATF  files,  and an SPDF 

file which details the overall sequence structure (ie, how many slave libraries will each 

slave sequence call, and how many support SATFs will be contained within each slave 

library).    

 

Each master sequence, each slave sequence, and each library slave sequence must be 

individually constructed, translated into spacecraft readable code and merged with all the 

other master, slave, and slave library sequences into a single, week-long command 

sequence.   To perform this process by hand would prove extremely labor intensive and 

make the weekly production of science sequences virtually impossible.  So MST 

developed a sequence command processing scrip.  Figures 6, 7, and 8 (TBS)  show the 

steps employed by the processing script in combination with other multi-mission scripts 

to produce a final .scmf file which can be uplinked to the spacecraft.    

 

 



 
Figure 6:  Process_modules script.  Process slaves/libraries into .cmdpkt files 
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Figure 6:  Process_modules script.  Process slaves/libraries into .cmdpkt files (cont) 

 
 

Figure 7.  Run env_gen  and gen_command on master 
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Figure 8.  Merge cmdpkt files into one scmf 

 

To use the processing script, the SSC delivers an SPDF file which details the libraries and 

AOR/IER support blocks associated with each slave.  The .env lists the slave SATF and 

the supporting SATF’s as defined in the SPDF file. It then executes seqadapt with that 

environment file.  Seqadapt produces a merged SATF and a merged VML file.  The 

script will add the merged SATF file to a list.  To process the VML file, the processing 

script then reads the SPDF file and builds the seqadapt environment file. The 

environment file lists the slave SATF and the supporting SATF’s as defined in the SPDF 

file. It then executes SEQADAPT with that environment file.  SEQADAPT produces a 

merged SATF and a merged VML file.  The script will add the merged SATF file to the 

list file.  The SEQADAPT and SLINC steps are executed in order for each module to be 

merged, then both steps are repeated for the next module, etc.      

  

Another script is then employed to get all of the merged SATF files  into the SEQGEN 

environment file.   SEQGEN and SEQ_TRANSLATE are then executed to produce 

merged cmdpkts and an unmodeled pef.   CMD_TCWRAP is then the final script 

executed to produce a merged scmf which can be uplinked to the spacecraft. 

Uplink Toolkit Inputs/Outputs  
Custom Script driven actions  

Description: 
merge_cmdpkts will accept a file listing cmdpkt files, individual cmdpkt files, a 
master cmdpkt, an activate cmdpkt, and a seq_id.  It will merge all of the cmdpkt 
files into one scmf and name it <seq_id>.scmf.  It then does a kwik unwrap and 
kwikwrap of the header of the scmf. 
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SEQGEN then processes the merged .env file with modeling on.  With modeling on, 

SEQGEN expands out the commanding,  executes the slewing motion based upon the 

PCS software, checks the sequence for any flight rule on constraints violations, and 

outputs the review products which include PCS output files, a modeled PEF, and the 

downlink keyword file (DKF).    

 

 Multi-mission adaptation of core software, scripts development, and processes have 

enabled Spitzer to achieve its mission objectives.  Spitzer mission operations have been 

cost-effective and efficient.   However, development and test of the mission sequence 

architecture in flight software was not easy.   In addition, the non-deterministic slew 

modeling was challenging.  The flight software algorithms had to be incorporated into the 

ground software so that the spacecraft behavior could be exactly replicated on the ground.  

If a project is willing to accept truncation of relative slaves,  non-deterministic modeling 

could be dropped, thereby simplifying ground operations.   

 

2.2.1 Test and Training Sequences 

 

Test sequences were generated on the ground, before launch, to validate blocks, Flight 

Rules, sequence formats and get the teams to train on how to build sequences and to get 

ready for operations.  IRAC Mini-Sequences, designed to checkout IRAC operation 

modes, were delivered from Harvard to JPL for processing, and then delivered to the 

OSTL for testing.  The short forms and long forms represented a step-up in testing from 

the individual IRAC sequence to multi-engine sequences.  Multi-engine sequences tested 

the command responses of the instruments and required instrument transitions since only 

one instrument can operate at a time.  Long forms tested all three instruments operating in 

succession.  So, for example, a long forms would begin with an instrument power on, 

followed by an operational sequence, and concluding with a power off.  That instrument 

would be similarly be followed by the next instrument and then the next.  Short and  long 

form sequences would be delivered from the instrument teams to the SSC for packaging 

and then to MST for command and review product development.   Once command 



products were successfully produced, the  sequence would be loaded onto the testbed for 

checkout.  Some sequences, once had fully and safely executed on the testbed, were 

loaded onto the observatory. 

 

A number of Operation Readiness Tests (ORT) were conducted to get the personnel 

ready for operations. The ORTs had their positive and negative affects. When it came to 

the sequence builds the inputs were usually late and incorrect. But at the same time after 

performing several training builds the teams got better in delivering and producing the 

products.  Test and training played a major role in getting the teams ready for operation. 

Several types of sequences were introduced during the development process for each 

phase of the mission. For IOC, mini type sequence was introduced; where the sequences 

were relative timed and they were designed for specific campaigns (instruments).   Test 

and training sequences generally used a single pass of process steps 1 through 8 outlined 

above.   

 

2.2.2 IOC/SV 

 

The Spitzer IOC and SV phases were planned to last 90 days. IOC was planned to begin 

5 hours, 42 minutes after launch and SV after 60 days and was executed with ground-in-

the-loop. The IOC and SV Mission Plan were introduced to commission Spitzer for 

routine operations. The emphasis for the in-orbit checkout (IOC) phase was to bring the 

Facility on-line safely, verify the functionality of the instruments, telescope and 

spacecraft, and demonstrate that the facility meets the level 1 requirements.  The 

emphasis of the science verification (SV) phase was to characterize the Observatory in-

orbit performance, demonstrate Observatory capability for autonomous operations, 

conduct early release observations, and exercise the ground systems software, processes, 

and staffing sufficiently to commission the Facility for routine operations. During the 

IOC phase final focusing was achieved and the telescope had cooled to an operating 

temperature of approximately 5 Kelvin (-268 Celsius or -451 Fahrenheit).   This cold 

temperature has allowed the observatory to detect the infrared radiation, or heat, from 

celestial objects without picking up its own infrared signature. 



 

The IOC was completed in 62.8 days and SV in 35.6 days. The longer duration was due 

primarily to three safing/standby events experienced by the spacecraft. The IOC 

sequences were bit different from the Nominal Operations sequence (will be discussed in 

later section).  IOC sequences were built by instrument campaign (each campaign was a 

mini sequence and could be from a few hours to a day or so in duration) which allowed 

more flexibility to respond to changes based on the new data.   Because IOC/SV 

sequences were event-driven, a flexible, real-time strategy was selected. Uplink 

sequences were transmitted using the "load and go" approach with relative-time 

sequencing.  

 

The IOC/SV operations implementation plan defined the following IOC strategies: 

instrument/engineering sequences built in relative time to reduce sequence rebuilds due 

to start time changes; real-timed commanding (load and go) of all mini sequences and 

playbacks to provide maximum flexibility; operational support teams operated primarily 

on prime shift, except for the flight control team which worked around the clock, and 

instrument teams who were on-shift when their data was received on the ground; 

background master sequence loads would be 1-2 weeks in duration with the instrument 

campaigns loaded into the sequence engines as "load and go" sequences. The goal was to 

transition to nominal processes prior to completing IOC/SV, thus validating the nominal 

processes prior to the start of the science mission.  

 

The IOC/SV process incorporated sequence process steps 2 through 5 and 7 through 9 

above.  In IOC, the OET submitted the absolute-timed master sasf while the relative-

timed mini sequences came from the SSC.  MST modeled the master with planned mini-

sequence execution times to insure successful integration and flight rules compliance. 

 

During the IOC/SV phases a few lessons were learned: 

1. Relative-time sequencing is the key to flexibility.  

2. Reserve time should be distributed throughout a timeline in order to ensure that a 

complex, interleaved set of dependent activities is robust against unplanned 



anomalies. One hour of reserve was added behind every campaign and six hours 

weekly to allow the timeline to slip without having to extend the phase. 

3. Tools must have a simple way to model dependencies, since the planning process 

must allow a rapid, frequent response to changes and anomalies. Use of the off-

the-shelf software (e.g. MS Excel) allowed the replan team to focus on process 

design and timeline planning rather than tool design and testing. Excel is a 

flexible tool for passing data in human-readable form, and is useful for linking 

timeline information to schedules and diagrams. 

4. Allow for frequent communication between teams and team members. The replan 

team required all disciplines to be able to recommend solutions at a rapid pace. 

The IOC/SV website with access to all important documentation, tools, forms, 

useful links, and daily status was one stop shopping for the distributed teams.  

5. Quick replanning allowed for other teams downstream the standard amount of 

time to do their jobs. 

6. Test and training exercises provided invaluable experience. Spitzer performed 

eight replan training exercises prior to launch, starting simple and ending with 

more challenging situations. Tabletop training exercises were chosen to exercise 

the team's decision-making capabilities.  

7. Phased transition from IOC to SV to nominal operations allowed the teams to get 

up to speed smoothly. We had team responsibilities changing as well as the 

change from relative time sequencing to absolute. Kept the IOC replan team on 

during transition. 

8. Co-location, clear lines of authority and responsibility, and the fact that the key 

IOC team members had no other project responsibilities during that period were 

also key factors in the success of IOC/SV. 

 

2.2.3 Nominal Science Operations 

  

The transition to Nominal Operations occurred right after IOC/SV. The IOC/SV process 

was designed to allow for short lead times, while the normal process involves almost six 



weeks of development time. It took awhile (approx 12 weeks) before the project fully 

achieved the standard operations.  

 

The Prime Mission started with a fully commissioned Facility. The Prime Mission 

extended from the end of SV until the liquid helium supply is exhausted. An extended 

mission would take advantage of the short wavelength IRAC bands to continue useful 

observations. End of Mission is expected at ~ Launch + 5 years (note the requirement is 

2.5 years). 

 

Nominal Operations is being used to operate the Facility at the start of the Prime Mission.  

During Nominal Operations, the Mission Operations System (MOS) commands the 

spacecraft systems and instruments to gather science data, telemeter that data to the 

ground where it initially processes by the MOS and then passed on to the Spitzer Science 

Center (SSC). DSN tracking using the 34-meter & 70-meter antennas nominally occur 

once or twice a day with each pass approximately 12 hours and 24 hours apart 

respectively. Engineering and science data nominally being transmitted by the Facility on 

the high gain antenna at 2.2 Mbps. As the Earth-Sun-spacecraft geometry worsens, the 

high gain antenna data rate will drop but the project can mitigate this by switching to a 

downlink configuration where both power amplifiers are turned on to increase the 

downlink signal strength or switch to 70-meter station coverage. 

 

The strategy for accomplishing the Prime Mission has been well planned and rehearsed. 

Sequences of commands were designed, built, tested, uplinked to the Observatory and 

stored on-board for later execution. Operations personnel have been prepared for 

Nominal Operations by walkthroughs, rehearsals, Operational Readiness Tests, and by 

operating the Observatory during IOC/SV. Mitigation plans, and contingency sequences 

for a select set of contingencies were prepared prior to Nominal Operations and continue 

to be maintained. 

 

Nominal Operation is bit more unique. First it starts off with science observation 

proposals, where the science community submits to SSC approximately once a year.  



These proposals are collected into an Observing Program. This Observing Program is 

used for Long Range Mission Planning and a skeleton Long Range Plan and a Baseline 

Instrument Campaign are products that are generated. These products are used for Short 

Term Scheduling to build a Weekly Schedule. This Weekly Schedule is packaged into 

products (a Master Sequence and its corresponding set of Slave sequences) that are used 

by the MOS to build uplinkable sequence loads.  

            Figure 10 

 
The MOS builds sequence loads of approximately 7 days duration and radiates them to 

the Observatory for execution at a specified time. Sequence loads become active at a set 

time, execute to completion, and then are replaced by another sequence load of similar 

length, thus there will nominally be a sequence load active at all times on the 

Observatory. 

 



Sequence loads will take advantage of onboard blocks that can be executed at preset 

times. These blocks contain a series of relative time-tagged commands that perform a 

particular function. Parameters can pass data to onboard blocks, allowing these blocks to 

be uploaded once and used multiple times. 

 

The MOS also has the ability to uplink any individual Observatory command. The 

command list in the Command and Telemetry Dictionary indicates whether a command 

can only be sent as an immediate command (real time command), only as part of a 

sequence load or “block”, or both. 

 

Sequence loads execute on board the Observatory in Virtual Machines (VM). A virtual 

machine is a software construct that simulates a generic processor, memory locations, and 

registers: the basics of any computing environment. Spitzer has 12 Virtual Machines. The 

VM architecture has limitations on its use such as sequence load size, instruction limit, 

and number of parameters being passed to a block. Each VM has Code Space that 

contains storage for the sequence loads, blocks, or other software modules, and Execution 

Space in which the execution of the instructions takes place. The VM strategy includes 

using a language (Virtual Machine Language, VML) to add logic to sequences to utilize 

this architecture. 

 

Spitzer uses a 30 calendar day nominal sequence load uplink process from Weekly 

Schedule generation to uplink of the sequence load with a 30% development margin. This 

cycle allows 5 days (10 nominal DSN passes, including 30% margin) to get a sequence 

loaded onboard the Observatory. Note that there is work done at the SSC by the 

operations teams and the Instrument teams prior to Schedule Generation that includes 

pooling of the available observation proposals for scheduling, and generating calibration 

strategies for the SIs. 

 

The MOS radiates a merged Spacecraft Message File (SCMF) of the Master and Slave 

sequences. Large uplink volumes may require SCMFs to be split in order to fit within 

scheduled DSN passes. 



 

Sequence loads are uplinked as Virtual Channel 2 files (VC2) that can be stored in the 

on-board file system (see Table 1) and loaded onto a specified VM by the flight software. 

Table 1 On board File System 

LOCATION PATH GENERAL USE 
CMIC c:/cfg Configuration files that need to persist through a side-swap. 
(not write protected) c:/dat Data files that need to persist through a side-swap. 
 c:/seq SVM modules that need to persist through a side-swap.   
CMIC cwp:/cfg Configuration files that need to persist through a side-swap. 
(write protected) cwp:/dat Data files that need to persist through a side-swap. 
 cwp:/seq SVM modules that need to persist through a side-swap.   
EEPROM e:/cfg Configuration files that need to persist through a reboot. 
 e:/dat Data files that need to persist through a reboot. 
 e:/ce CE files that need to persist through a reboot. 
 e:/irac IRAC files that need to persist through a reboot. 
 e:/seq SVM modules that need to persist through a reboot. 
 e:/tlm Telemetry related files that need to persist through a reboot. 
DRAM d:/cfg Configuration files used in operation of the spacecraft. 
 d:/dat Data files used in operation of the spacecraft. 
 d:/ce CE files used in operation of the spacecraft. 
 d:/irac IRAC files used in operation of the spacecraft. 
 d:/seq SVM modules used in operation of the spacecraft. 
 d:/tlm Telemetry related files used in operation of the spacecraft. 
 d:/tmp Temporary files used in operation of the spacecraft. 
 d:/upl Uplink related files used in operation of the spacecraft. 
 
Engineering activities (Spacecraft Engineering Requests, SERs) are either radiated during 

DSN passes as immediate commands/sequences that execute as soon as they are received, 

or implemented as regular SERs or pseudo SERs. Pseudo SERs are engineering activities 

that reside in the master sequence. Regular SERs are implemented just like science 

activities. 

 

Commands are uplinked every DSN contact to delete ground acknowledged telemetry 

packets and retransmit packets older than the end of the previous downlink that were not 

received on the ground. 

 



The sequencing strategy chosen for Spitzer employs a Master/Slave sequence 

architecture. The Master sequence controls the behavior of the overall sequence load, 

spawning slave sequences at specified times. There may be one or many Master 

sequences per week, but only one Master may be executing at a time (except during the 

overlap when the new Master is active prior to the old Master completing execution). 

Masters are built in the form of an absolute timed Spacecraft Activity Sequence File 

(SASF). 

 

Slaves may be as small as one Astronomical Observation Request (AOR), or Instrument 

Engineering Request (IER) or can be several AORs, IERs, or SERs. Slaves are built in 

the form of relative timed Sequence Activity Type Files (SATFs). 

 

Slaves may contain all the commanding necessary for the execution of their activities or 

they may call blocks from any of the installed block libraries and slaves from the slave 

library. See Figure 3 for a diagram of the Spitzer Sequence Virtual Machine Architecture. 

 

Spitzer also uses a set of functions called Sequence blocks, which are parameterized, 

reusable relative sequences. Blocks behave like sequences, but are treated like modifiable 

flight software. Parameterization allows execution of the block to occur differently with 

each use. Usage of variables that are visible to both sequences and blocks are also a part 

of the sequence strategy. As the flight software dynamically changes the values of global 

variables, executing sequences and blocks can make real-time decisions based on the 

values of these variables.  Examples would be waiting for a slew or reaction wheel 

desaturation to complete, or for a particular instrument mode. 

 

During Nominal Ops the master and slave sequences perform their own activities. 

Master sequences contain activities to: 

- Manage the DRAM file system 

- Load slaves into sequence engine 4 

- Call, spawn or halt slave sequences 

- Perform routine Inertial Reference Unit and Star Tracker to PCRS calibrations 



- Initiate downlink passes 

- Manage the transition between master sequences 

 

Sequences will nominally start on Wednesdays such that the Master sequence transition 

occurs on the second pass of the day. 

 

Slave sequences contain science observations and instrument calibrations.  

Slave sequences perform the following engineering functions 

- Managing the DRAM file system 

- Performing command history "dumps" 

- Loading of slave libraries into sequence engine 5 

- Ending downlink passes (by calling the “stop downlink” block) 

- Executing all science IERs and AORs as well as engineering SERs 

- CTA makeup heater management 

- Gyro bias updates 

 

Sequence blocks are small pieces of sequence code (Observatory commands and VML 

instructions) that reside in libraries. Blocks are used in developing sequence loads to save 

code space (i.e., uplink volume) in a VM or to execute repetitive and routine activities 

on-board the Observatory. Blocks can be used to implement science or engineering 

activities. Spitzer has several block libraries. The science fault protection library is 

resident in VM 1. The engineering block library is resident in VM 7, and the science 

block library is resident in VM 8. 

 

Blocks can be passed parameter values from a sequence to customize the block 

execution, and blocks can return values. For the programming experienced reader, blocks 

are similar to subroutines or functions that can be called from a main program. 

 

Sequences may call blocks as library routines or to arbitrate a resource. Blocks may also 

call or spawn blocks but blocks may not call sequences. 

 



When a block is spawned, the block executes on a different engine than the calling 

sequence thus the calling sequence does not wait for the block to complete. 

 

When a block is called, the block executes in the same engine as the calling sequence, 

thus the calling sequence must wait for the block to complete execution. 

 

There is a VM (for Spitzer it is VM 13) that contains a stack of 99 global variables. This 

number can be changed at compile time. When the VM boots up, an internal sequence 

runs to set up the GV declarations on the VM. 

 

A sequence can be set to wait on a global variable value set by flight software or another 

function. 

 

Blocks can also wait on a global variable value. If the block is called by a sequence, the 

wait must contain a timeout so that the calling sequence is guaranteed to continue 

 

Telecommunications also plays a big role. It involves the coordination of activities 

between the Observatory and the Deep Space Network (DSN). During the nominal 

mission, DSN tracking is scheduled approximately every 12 hours each pass with a 

duration of approximately 1 hour. Early in the nominal mission for the first few weeks, a 

3 hour pass per week was scheduled to alleviate the transition from nearly continuous 

coverage during IOC/SV to the nominal 2 one hour passes per day for the nominal 

mission. 

 

For science efficiency purposes, 1 DSN pass per day is considered for the IRS and IRAC 

instruments later during Nominal Operations (~ 1 year after start of Nominal Operations). 

 

Nominally the ground will communicate with Spitzer using an uplink rate of 2000 bits 

per second and a downlink rate of 2.2 Megabits per second. 

 



During safing and standby modes of operation, the uplink rate is switched to 7.8125 bps 

and the downlink rate set to 40 bps through the LGAs until ground personnel intervene 

and gain control of the Observatory. 

 

The observatory has 4 low gain antennas (LGAs) and one 1.35 meter high gain antenna 

(HGA) pointed along the –X axis. The low gain antennas are mounted such that near-

spherical coverage is available on either the uplink or downlink. 

 

Two power amplifiers (SSPA) and two Deep Space Transponders (SDST) provide 

redundancy to the telecom subsystem. Both SDSTs are powered but only one is 

configured to be “active.” Nominally SSPA 1 is powered to transmit through the LGAs 

and SSPA 2 through the HGA. During late nominal operations, the SSPAs can be 

combined to increase the data rate capability. 

 

There's an idiosyncrasy that results in switching back and forth between SSPAs (as 

connected to the HGA) as our safing events occur. 

 

To configure the telecom subsystem for downlink, the rfs_downlink_start and 

rfs_downlink_stop blocks are used. During off earth periods, the LGAs are selected for 

uplink at 7.8125 bps. 

 

Virtual channels (VC) are used when commanding with Spitzer. VC0 is used for 

hardware or critical commands. VC1 is used for real time or immediate commands. VC2 

is used for file loads (used for sequence loading) and VC5 is the uplink session indicator. 

 

Nominal operations use sequence process steps 1 through 9 above for each pass.   

Nominal operations allow for two passes prior to uplink.   

 

2.2.4 Real Time Ops 

 



Real Time Operation includes monitoring health and status of the observatory, 

monitoring the status of DSN antennas, the telemetry, command processing capabilities, 

and etc…   

The real time command process is a subset of the uplink process, and dependant upon the 

length of time until response is necessary, may impact at different steps of the uplink 

process. Real Time products that don’t follow the stored sequence process are Express, 

Interactive, Non-interactive, and Load and Go commands. 

• Non-Interactive Payload Commands (NIPCs) are parsed and translated via the 

automated sequence processor (ASP) and do not require Mission Manager 

approval. Processing is normally accomplished in under 3 minutes. Input format 

is an SASF and SATF. Flight rule checking is not performed with this command 

type. 

• Non-Interactive File Loads (NIFLs) are parsed and translated via the ASP and do 

not require Mission Manager approval. Processing is normally accomplished in 

under 3 minutes. Input format is a binary file. Flight rule checking is not 

performed with this command type. 

• Interactive Commands (ICs that have an impact on ground and on-board 

resources and that require a build) are parsed and translated via the ASP and 

require Mission Manager approval for uplink. In certain cases, the OET may 

request that the command be merged with the other planned commanding. This 

allows the SEQGEN to check flight rules and constraints in addition to the 

standard manual OET checks. Processing is normally accomplished in under 3 

minutes. Flight rule checking is typically not performed with this command type, 

a merged IC can usually be processed by the MST in one hour. Input format is an 

SASF and SATF. 

• Interactive File Loads (IFLs) are parsed and translated via the ASP and require 

Mission Manager approval for uplink. Flight rule checking is usually not 

performed with this command type. In certain cases, the command be merged 

with the other planned commanding. This allows SEQGEN to check flight rules 

and constraints in addition to the standard manual OET checks. Processing is 



normally accomplished in under 3 minutes. A merged IC can usually be processed 

by the MST in an hour. 

• Express Commands (ECs) are interactive S/C commands that are used regularly 

are parsed and translated via the ASP. These commands have been pre-approved 

by the Mission Manager and may be sent without his approval. Processing is 

normally accomplished in under 3 minutes. Input format is a pre-stored SASF. 

Flight rule checking is not performed with this command type. Can be requested 

at any time by OET systems. 

• Up & Go sequences (the sequence formally known as Load & Go) are parsed and 

translated via the ASP. They differ from other real-time commands because they 

consist of timed scripts of commands that reside in a specific area of sequence 

memory that execute immediately.  

 

Real time commands are used by the OET to implement engineering activities during 

track times. Unless pre-approved, all real time commands are require the originator to 

submit a Command Change Request (CCR) prior to building and uplinking the 

command. It is the responsibility of the Mission Manager or designee, with assistance 

from the CM Engineer as requested, to assure approved change paper exists for the real 

time command. 

 

One advantage to real time commands is that some of them are pre-built and can be 

reused. The disadvantage is that too much real time commanding can lead to “joy 

sticking”. 

  

2.2.5 Target of Opportunity 

 

Target of Opportunity (ToO) are observations approved during the General Observer 

review process, but which involve transient phenomena whose exact timing and/or 

location on the sky were uncertain at the time the proposal was submitted (e.g. a newly 

discovered comet, a bright supernova, or a Gamma-Ray Burst (GRB)). ToOs are 

categorized by the extent to which the execution of such an observation affects normal 



scheduling and observing procedures.  A high-impact ToO is one with a delay of less 

than one week (minimum of 48 hours).  A medium-impact ToO is one with user-

specified delays of one to five weeks.  A low-impact ToO is one where the acceptable 

delay is longer than five weeks.  All delays are measured from the time the SSC Director 

approves the ToO activation request until the time the first observation in the newly 

approved ToO sequence begins execution on the observatory. The ToO activation process 

begins with the observer notifying the SSC Observer Support Team (OST) of the desire 

to activate an observation in an approved program. Simultaneously (within minutes) the 

observer submits a SSC Helpdesk ticket with all information required by the SSC 

Director for review of the activation request (including the source position and a 

demonstration that the triggering criteria have been met). Upon receiving the Observer’s 

request to activate a ToO, the SSC OST notify key Project personnel of the request, 

perform a cursory review of the requested observations, and, if appropriate, schedule a 

meeting at the SSC to assess and decide on the request.  

The ToO can be achieved by doing a master replacement or a slave replacement. The 

master replacement requires to:  

– Build/load new & dummy master 

– Start dummy, stop old master 

– Stop dummy, start new master 

– PRO: have dummy & master management sequences built 

– PRO: can do instrument power transitions 

– CON: model of master required PLUS subsequent sequence in 

development would have to be modeled 

• Need INCON from executing master at start of replacement 

• If master n is replaced, then INCON for master n+1 would change 

– PRO: slaves can extend beyond original boundaries 

 

– Replacement sequence is a one pass process 

– Executing master must be remodeled and a FINCON cut at the appropriate 

time (start of the dummy master) 

• During the first 24 hours 



– Subsequent master is remodeled using the FINCON cut in the replacement 

master build 

– Modules yet to be executed and used by the replacement master do not 

need to be uplinked 
 

 
 
 

Master Replacement ToO (Figure 11) 
 
 
 

 
 
 
To complete the master replacement scenario the following steps are performed (Figure 
12):  

1. Uplink dummy master, replacement master/slave, master management 
sequences 

2. Load and activate dummy master 
• set the GV to point to the dummy 

3. Unload the old master that is being replaced 
4. Load and activate the replacement master sequence 

• set the GV to point to the new master 
5. Load any remaining modules 
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6. Delete any "leftover" slaves and slave libraries 
 

 
 
 
ToO can also be performed by doing a slave replacement. Usually the slave replacement 

scenarios include: 

• When the IST/ITs request changes to be made after Pass 2 (Mission Manger 

approval is required). 

• When Spitzer has missed a DSN pass and a longer downlink period is needed. 

• To support ToO observations. 

• Any time a health and safety issue arises which may require an urgent diagnostic 

sequence to be run. 

• To support small changes after the schedule approval meeting or Pass 1 review 

but prior to uplink of the master sequence. 

 

Several types of replacements are possible: 

• Replacement of the contents of a single slave. 

• Replacement of the multiple slaves. 
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• Simple deletions of one or more requests. 

• Hand-edits to change parameters in block calls. 

 

The ToO employs a single pass of sequence process steps 1 through 9 above. 

 

2.2.6 Anomaly Recovery 

 

When it comes to anomalies the Spitzer mission has been quite successful and relatively 

anomaly free. However, there have been a couple of safing and standby events which 

required rapid response and a high degree of coordination between the MOS teams to get 

the Observatory back on line quickly. During such an event, the Flight Control team 

communicates with the spacecraft, by gathering as much data as possible, which, under 

these circumstances, will be broadcasting via the Low-Gain Antenna, while the OET and 

others attempt to diagnose the problem and come up with a solution. Once the OET has a 

good estimate of when they will begin the recovery effort to come out of the safe or 

standby mode, OPST will start the process of building the “recovery master sequence”, 

which is usually a truncated version of the master currently on board. 

For example if the spacecraft entered into either standby or safe mode after the master 

sequence for any particular week had been executing for 24 hours (assuming that the 

process of diagnosis and determining the appropriate solution may take a full day or 

longer), the sequence might be rebuilt exactly as before, but with the first 3 days missing. 

This would result in a shortened master sequence (4 days long instead of 7 in this 

example), which would begin to execute immediately after a specific downlink pass 

identified by the OET. 

The normal processes and procedures for this emergency build remain in place to the 

extent that the rapid turnaround time-scale allows; the OPST member responsible for the 

rebuild, along with members of other teams (OET, ISTs, MST, etc) are required to check 

the products for problems prior to delivery to MST. After the delivery to the MST, MST 

builds and delivers the products. But the fast recovery has its pros and cons. One of the 

problems is that during the fast recovery less time is given to review or double check the 



work and due to this mistakes can be introduced. The positive thing about fast recovery is 

that it helps to get back to normal operations and start collecting science.  

Another anomalous occurrence to be considered is the instance of a missed DSN pass. 

Due to the high data volume produced by MIPS, this can be a potentially serious issue. 

One method for extending a subsequent pass has been developed using a strategy which 

allows for the replacement of a portion of the sequence on board. The master sequence 

calls and spawns numerous other processes as it runs, including shorter, relative-timed 

sequences (generally referred to as slave sequences), which in turn call some fraction of 

the hundreds of science and calibration requests that are scheduled in that week. It is 

possible to construct a shortened version of a slave which contains a call to the downlink 

stop block that has been moved later in time, in order to extend the downlink pass in 

question. The replacement slave sequence is then uplinked to the spacecraft and original 

version is deleted, before the current master sequence has issued the call or spawn for that 

particular slave sequence. 

 

Anomaly recovery employs a single pass of sequence process steps1 through 9 above. 

 

3.0  Overall Conclusions 

 

Spitzer’s requirement for adaptable operations and for maximized science viewing 

efficiency drove an optimization of  spacecraft flexibility, adaptability, and use of 

observation time.   This optimization was achieved through the implementation of a 

multi-engine sequencing architecture coupled with non-deterministic spacecraft and 

science execution times.   To accommodate this design approach and produce sequences 

in a time-efficient manner, the MST employed a tactic of adapting core sequence 

generation software and developing scripts to automate labor-intensive processing and 

sequence product-generation routines.  The adapted core software and scripts were then 

employed in a sequence generation process to accommodate each mission phase and 

strategy.  This strategy achieved mission objectives in a time- and cost-efficient manner. 

 

3.1 Overall Lessons Learned 



 

The MST came onto the mission relatively late (approximately 1.5 to 2 years before 

launch).   At that time, the requirement to maximize science viewing efficiency was in 

place, but a method to handle the operations complexity was not well understood.  Much 

work had to be quickly done to develop the interfaces,  core software adaptations, scripts 

and processes to develop workable sequences in a timely, efficient, and cost-effective 

manner.   

 

Although effective in achieving the viewing efficiency, the twelve engine architecture 

presented challenges in flight software tests.  A fair amount of work needed to be 

performed to get the flight software properly functioning with the multi-engine 

architecture.  In addition, the non-deterministic modeling added much complexity to 

ground operations.   To model the spacecraft’s non-deterministic slewing, the ground 

system had to incorporate the same flight software that was used on the spacecraft.  

Ground operations could be simplified if the project had decided not to perform non-

deterministic modeling on the ground and just accept slave truncations with absolute-

timed slave sequence halt routines.  The IRAC was extremely command intensive.   A 

modeling run for a one-week IRAC sequence could take approximately 15 hours just to 

obtain a modeled review product (ie, a modeled pef).  Hardware upgrades to Blade dual-

processor 2000 computers did shorten model run times,  but model run times still could 

take in excess of twelve hours. Sptizer’s multi-engine architecture, as well as its 

requirement for non-deterministic modeling, also complicated the multi-mission core 

software (SEQGEN, SLINC, CMD-TCWRAP)  adaptation.   Extra testing had to be used 

to insure that the multi-mission core software could adequately account for sequences 

coming from a multi-engine architecture, and that the core software could effectively 

interact with the slew model in performing non-deterministic slew modeling.   

 

We strongly recommend that MST personnel be applied to projects earlier in the mission 

phase so they can help drive the development of tools, processes, and interfaces as part of 

the standard development cycle.   

 


