

Lessons Learned from Daily Uplink Operations during the Deep Impact
Mission

Joseph S. Stehly1 and David A. Bliss2

California Institute of Technology

Jet Propulsion Laboratory, Pasadena, CA 91109, USA

The daily preparation of uplink products (commands and files) for Deep Impact was as
problematic as the final encounter images were spectacular. The operations team was faced
with many challenges during the six-month mission to comet Tempel-1. One of the biggest
difficulties was that the Deep Impact Flyby and Impactor vehicles necessitated a high
volume of uplink products while also utilizing a new uplink file transfer capability. The Jet
Propulsion Laboratory (JPL) Multi-Mission Ground Systems and Services (MGSS) Mission
Planning and Sequence Team (MPST) had the responsibility of preparing the uplink
products for use on the two spacecraft. These responsibilities included processing nearly
15,000 flight products, modeling the states of the spacecraft during all activities for
subsystem review, and ensuring that the proper commands and files were uplinked to the
spacecraft. To guarantee this transpired and the health and safety of the two spacecraft
were not jeopardized several new ground scripts and procedures were developed while the
Deep Impact Flyby and Impactor spacecraft were en route to their encounter with Tempel-
1. The challenges presented by Deep Impact’s daily operations and the development of
scripts and procedures to ease those challenges resulted in several valuable lessons learned.
These lessons are now being integrated into the design of current and future MGSS missions
at JPL.

Nomenclature
ASP = Automated Sequence Processor
CCSDS = Consultative Committee for Space Data Systems
CFDP = CCSDS File Delivery Protocol
DKF = Deep Space Network (DSN) Keyword File
DSN = Deep Space Network
JPL = Jet Propulsion Laboratory
MGSS = Multi-Mission Ground Systems and Services
MPST = Mission Planning and Sequence Team
PEF = Predicted Events File
SASF = Spacecraft Activity Sequence File
SCMF = Spacecraft Message File
TRF = Transaction Request File

I. Introduction
HE Deep Impact mission to comet Tempel-1 produced some of the more spectacular science results ever
collected by a spacecraft. On July 4, 2005 the Deep Impact Flyby vehicle observed the Deep Impact Impactor

vehicle’s collision with the comet. 24 hours earlier the Flyby vehicle released the Impactor vehicle into the path of
comet Tempel-1. The process to command the spacecraft was a challenge to the entire flight operations team. This
paper presents an overview of the process used prepare command products for uplink and the lessons that were
learned from this process. First, the different types of uplink products are discussed followed by how the spacecraft
was commanded. Next, the uplink product development cycle is described along with the tools developed to

1 Deep Impact and Spitzer Space Telescope Sequence Systems Engineer, Planning and Execution Systems, M/S
264-787 4800 Oak Grove Drive, Pasadena, CA 91101
2 Spitzer Space Telescope Sequence Systems Engineer, Planning and Execution Systems, M/S 264-787 4800 Oak
Grove Drive, Pasadena, CA 91101

T

facilitate that process. Finally, several lessons learned are presented as well as how they have been applied to
current and future Multi-Mission Ground Systems and Services (MGSS) missions.

II. Uplink Products Overview

Deep Impact used two distinct uplink product types to command the spacecraft. The first of these was the
spacecraft message files (SCMFs). The SCMFs consisted of all real-time commands that were radiated to Deep
Impact’s Flyby vehicle. The remaining files that were sent to Deep Impact were the Consultative Committee for
Space Data Systems (CCSDS) File Delivery Protocol (CFDP) products.

A. Real-time Commands

Real-time commands were radiated to Deep Impact as a binary SCMF. A spacecraft immediately executes real-
time commands once they are received. Deep Impact had a variety of real-time command classifications that were
used. Real-time commands were used for such tasks as activating sequences, loading parameter tables, and
requesting telemetry from the spacecraft.

B. CFDP

CFDP is a standard file delivery protocol that provided Deep Impact with a means of transferring files from the
ground to the spacecraft. CFDP transfers could be reliable, meaning all components of the uplink are verified as
successfully reaching the spacecraft, or unreliable where the uplink occurs without final verification. Examples of
CFDP files used by Deep Impact were sequences, parameter tables, flight software files, and autonavigation
parameters.

C. Transaction Request Files

CFDP products required a Transaction Request File (TRF) to complete the uplink to the spacecraft. The TRFs
contained the details for the handling of the CFDP products. They were used to dictate where a CFDP product
would be stored and what the filename would be once onboard the spacecraft.

The TRFs were useful, as they would allow the operations team the ability to radiate the same CFDP product to
different locations onboard the spacecraft without creating a new CFDP product. Only a new TRF needed to be
generated to send the same file to a different location, as onboard copies of the files were not available. The TRFs
were used on the ground only and not physically radiated to the spacecraft.

D. Product Naming Convention

Deep Impact employed a detailed naming convention used to name the uplink products. A twelve to thirteen
character string was attached to the beginning of each command and file name. This prefix was known as a “license
plate.” When implemented correctly and fully understood by the user, the license plate was an effective descriptor.
However, the license plates resulted in several problems as discussed in Section VI.

III. Commanding the Spacecraft
A. Commanding the Flyby Vehicle

The uplink of SCMFs to the Flyby was performed in the traditional manner of someone queuing and radiating
the commands. The CFDP products were uplinked, like the SCMFs, directly to the Flyby vehicle.

B. Commanding the Impactor Vehicle

Commanding the Impactor was a tremendous challenge. All commands and files that were needed by the
Impactor had to first be radiated to the Flyby. Once these commands and files were received by the Flyby,
additional commands were required to send them to the Impactor and then activate or load them if needed. Up to six
products were needed to execute one sequence or load one parameter table onboard the Impactor.

C. Batch Mode

Deep Impact required an enormous number of commands and files to perform mission operations. The time
required to queue and verify each command and file to radiate to the spacecraft was tedious for the flight team.
Activities such as a flight software load or an autonavigation demonstration contained several hundred files. The
products used for the encounter with Tempel-1 contained well over 400 files. The solution to this problem was to
develop a “batch mode” of uplinking files to the spacecraft. The batch mode used a text file containing up to 25
CFPD/TRF pairs as a method to automatically uplink the files to the spacecraft. These text files were known as

radiation lists. Radiation lists did not contain any real-time commands, only the CFDP files. The development of
the radiation lists and software used to facilitate the process are discussed in Sections IV and V.

IV. Uplink Process Overview
Presented below are the steps that were taken to prepare the products radiated to Deep Impact. This process was

used for each major activity that was required to characterize the spacecraft and prepare it for the encounter with
comet Tempel-1.

1. Activity Kickoff
 The kickoff for each activity was a meeting that was led by the activity lead. The activity lead was responsible
for coordinating each activity and seeing that all needed products were produced. They would also serve as the
flight director while the activity was executing onboard the spacecraft. During the kickoff, a summary of the
activity and relevant dates throughout the development cycle were highlighted, such as when inputs would be given
to the MPST, subsystem reviews, and the command approval meeting. Kickoffs were held primarily towards the
end of the mission when the intensity and the increased number of activities necessitated extra coordination to keep
teams focused on all upcoming activities.
2. Uplink Product Generation
 The activity leads would deliver inputs in the form of a Spacecraft Activity Sequence File (SASF) to the MPST
so that the uplink products could be created. The uplink products were reviewed by the MPST and then stored so
the spacecraft team could access them.
3. Products to Testbed
 Once the activity leads had the uplink products they were able to simulate the spacecraft activities using the Deep
Impact testbed. The results of the testbed run would later be discussed in the sequence approval meeting (see
below). If a problem was found within the testbed data then the delivery to the MPST would be repeated and the
products would be retested.
4. Timeline Delivery to MPST
 Activity leads used a detailed timeline to illustrate which commands and files were needed for an activity and
when they would execute onboard the spacecraft. The delivery of the timeline would occur with delivery of inputs
to MPST, in concurrence with the testbed run, or shortly after the testbed run was completed. Ideally the timeline
would arrive before the testbed run so the Predicted Events File (see below) would be completed at the same time as
the testbed run providing the subsystem engineers with all of their review products. However, the timeline could not
always be finalized before the testbed run so MPST would be forced to delay the release of the Predicted Events File
to the subsystems. This was inconvenient to the reviewers but they were usually able to complete the reviews by the
required deadline.
5. Predicted Events File
 The MPST generated Predicted Events Files, or PEF, is a file that contains all of the expanded sequences and
constraint checking for a given activity. The PEF predicts the ground and spacecraft events in a text file that is
readable by the user. The PEFs were used to check for flight rule violations and by the subsystems to review the
events of each major activity that was to take place on Deep Impact.
6. DSN Keyword File
 The MPST generated Deep Space Network (DSN) Keyword File (DKF) is used by the DSN to properly
configure the Deep Space Stations to communicate with the spacecraft. DKFs are important for all missions to
ensure that all data are captured on the ground and that the spacecraft can be commanded. This was especially
important for Deep Impact since so many activities relied on real-time commanding. If a DSN station had a
problem and Deep Impact missed a pass the entire activity was in danger of not being able to execute.
7. Subsystem Review
 Once the modeled PEF and testbed data were available, the subsystems would review the activity. If any issues
were found then the activity lead would redeliver inputs to the MPST and the process would repeat itself.
Redeliveries would continue until the subsystems were satisfied that the objectives of the activity were met and that
the health and safety of the spacecraft was maintained. Both the testbed data and the PEF proved to be valuable as
they uncovered errors in sequence development throughout the mission.
8. Sequence Approval Meeting
 The sequence approval meeting was the official forum for subsystems and activity leads to discuss the activity.
Each subsystem that was involved in the activity would approve or disapprove the activity. Depending on the
severity of the changes, a new testbed run and PEF could be required with an additional subsystem review.
Activities were occasionally delayed due to a failed sequence approval meeting.

9. Uplink Summary Generation
 Uplink summaries (ULS) were generated by the MPST using the timeline as an input from the activity lead.
Uplink summaries would contain all real-time commands and CFDP/TRF pairs that would get uplinked to the
spacecraft for an activity. The summaries would also contain information unique to each command or file that was
used to verify that the proper command was uplinked to the spacecraft. The uplink summaries contained anywhere
from one item to 469 items.
10. CFDP Radiation List
 Typically, only activities that contained a large number of CFDP uplink products (greater than 25) or that were
time critical (such as an ephemeris update) to uplink received radiation lists. Activities would contain anywhere
from one radiation list to eighteen radiation lists.
11. MPST Review
 Once the ULS and radiation list were complete, the MPST would review the contents of each item. This
involved using the timeline to verify the contents of the ULS and radiation list and also verifying that the commands
and files could be accessed by the command system. Once the review was complete, the ULS and CFDP Radiation
list were taken to the Command Approval Meeting. No products were uplinked to the spacecraft without the MPST
first reviewing the uplink summaries and radiation lists.
12. Command Approval Meeting
 The command approval meeting was where the ULS and radiation lists were approved for radiation to the
spacecraft. These meetings would consist of a walkthrough of the ULS and provide participants with one final
opportunity to voice any concerns they might have about an activity. All major activities had a command approval
meeting before the products were uplinked to the spacecraft. Any errors or discrepancies in the ULS would require
that a new ULS be generated before the activity was taken to the spacecraft.
13. Uplink to the Spacecraft
 At the conclusion of the command approval meeting, the uplink summary and radiation lists were taken to the
engineer who was responsible for uplinking the commands and files to Deep Impact. All commands and files were
sent to the Flyby vehicle and later transferred to the Impactor if needed.

V. MPST Toolbox
The uplink process described in Section IV would not have been possible without the tools developed in flight

by the MPST. These tools either replaced existing tools that were not properly adapted for Deep Impact or served as
a utility tool to facilitate processes that were defined after launch as the spacecraft was further characterized. The
tools were constantly modified as the mission’s needs were defined. The final changes were implemented six days
before the encounter with Tempel-1.

The MPST tools not only permitted mission operations to function as they did, but the MPST was actually able
to decrease staffing even as the number of activities on the spacecraft increased.

A. Uplink Product Generation - gen_di_cmd_pro

Shortly before launch, the naming convention for commands was changed from a traditional MGSS naming
convention to the license plate method described in Section II. When this change was implemented, Deep Impact
could no longer rely on the Automated Sequence Processor (ASP) to generate and store uplink products.
Traditionally, spacecraft team members use the ASP to generate their own uplink products. The ASP is
programmed to assign generic names to uplink products and Deep Impact chose instead to use the detailed license
plate naming convention. Therefore, the ASP was eliminated from operations.

Without the ASP, the MPST was forced to manually generate and store the uplink products for the spacecraft.
Since the ASP was originally scheduled to handle this workload a new tool needed to act as the ASP and be smart
enough to utilize the new naming convention.

The tool to satisfy these requirements was gen_di_cmd_pro. This Cshell script functioned just as the ASP would
have with the exception that the MPST was responsible for all uplink products being produced instead of the
spacecraft team. The gen_di_cmd_pro tool was responsible for producing all uplink products except the
autonavigation parameters, flight software files, and flight software TRFs.

The gen_di_cmd_pro tool successfully replaced the ASP and as an added feature was able to operate in a batch
mode using a text file as an input. The tool performed flawlessly throughout the entire prime mission and enabled
the MPST to generate uplink products more quickly and efficiently than if the ASP was utilized due to the batch
mode feature.

B. Modeled Products Tool - gen_di_mdl_pro
Deep Impact PEFs were particularly challenging to build. One challenge was due to the large number of

command and sequence files that were required for modeling. Deep Impact PEFs could contain nearly 400 files for
a given week. In comparison, Mars Odyssey and Mars Global Surveyor consistently contain less than ten command
and sequence files. Most missions do not model real-time commands but Deep Impact needed to do this in order to
properly capture the spacecraft states and ensure that the real-time commands were properly constructed.

The Deep Impact inputs could include any uplink product generated throughout the mission. Since commands
were used repeatedly, the majority of the commands and files used on Deep Impact were built as relative-timed
commands and sequences as opposed to absolute timed products.

Relative-timed products presented another challenge when building the PEFs. The times within the relative-
timed files must be manually edited to reflect when the command will most likely execute on the spacecraft.
Complicating the process even more is the fact that the same file could be used several times throughout a PEF. The
gen_di_mdl_pro script was developed to assist with these challenges. The primary function of gen_di_mdl_pro was
to replace the generic times within relative-timed commands and files with the time the command would execute
onboard the spacecraft. Some files would contain hundreds of commands requiring that hundreds of times be
modified so this was an important task to have automated. Every request containing an execution time within a file
was modified by gen_di_mdl_pro.

C. Uplink Summary, Radiation List, and Utility Tool - spider

Spider was a tool that evolved throughout the entire mission. The initial requirement for spider was to verify
that the commands on the ULS were accessible to the command system. The next revision of spider was used to
assist the MPST with the review of the ULS. Spider was locating several ULS errors early in the mission that were
not a result of mistakes made by the user, but bugs and inefficiencies within the current software that was provided
to MPST to produce the ULS. Furthermore, the original software was not programmed to properly add Impactor
commands and files to the ULS. Spider was then adapted to generate the ULS, replacing the original ULS software.

Spider was further adapted as needed when high-risk areas were identified throughout the mission to perform
checks and balances. An example of a spider check is verifying that the license plate matched the content of the
command or file.

Besides ULS generation and error checking, spider served one more important purpose. Once the need for the
radiation lists materialized it was a natural adaptation for spider to produce the lists. The MPST worked with the
CMD system engineers to produce the requirements for the list and the new CMD System. The radiation lists and
CMD system were developed in parallel and integrated into mission operations in April 2005.

VI. Lessons Learned
The following lessons learned from Deep Impact’s daily uplink operations are what the MPST feel should be

shared so that future missions can benefit from the experience gained during Deep Impact. This is not a mission
comprehensive list or representative of lessons learned from other spacecraft team members, just the MPST.

1. Activity Lead Deliveries

The MPST had to coordinate the preparation of uplink products with twelve different activity leads. Early in the
mission there was not an established procedure for deliveries from the activity leads to the MPST. This created a
great deal of confusion shortly after the launch of the spacecraft. The problem was somewhat rectified by
standardizing the timeline’s format but this was not strictly enforced so there were still some inconsistencies. If the
activity lead concept is to be utilized in future missions their final deliveries and input files need to correspond with
consistent formats and processes defined in Software Interface Specifications. Scripting is extremely important
during operations as automation saves time and eliminates human error. Scripting cannot be used when deliveries
have no consistency.

Along with inconsistent timeline deliveries, the MPST was also delivered bad SASFs on a consistent basis. This
problem was more noticeable when an activity lead first started to generate SASFs. To their credit, as they gained
experience building the SASFs the number of bad files decreased drastically. A solution to this problem would be to
offer command training. This training would present a strategy to building commands and also show common
mistakes individuals make while generating the SASFs. One to two hours would be adequate time for such an
activity. The time spent in a command school would be significantly less than the time it takes the activity leads to
regenerate and redeliver to the MPST.

Lesson: It is important that written agreements detailing how one team delivers to another are developed. This will
more easily allow automation to be integrated into procedures. Scripting can rely heavily on techniques such as
“pattern matching” and that technique is only effective when the input is in a consistent format.

2. Real-time Command Modeling

The difficulties brought upon by the large number of relative timed real-time commands required for PEFs has
already been addressed by the sequence software developers. This was a known problem before Deep Impact and
Deep Impact demonstrated that this future modification is a priority.

Lesson: A more efficient method of modeling real-time commands is needed. This issue has already been addressed
and future missions will surely benefit from the modification.

3. Naming Convention for Commands and Files

Deep Impact used a descriptive naming convention for the uplink products. Reading the name of the command
or file could usually tell a spacecraft team member the command or file’s function and where it would be located
onboard the spacecraft. The problem with relying on the name of a command or file for that information is that it is
easy to neglect looking within the command or file itself for that information. If the license plate was not consistent
with the contents of the command then a bad command could be radiated to the spacecraft. This actually happened
on multiple occasions early in the mission but fortunately for Deep Impact the commands did nothing to jeopardize
the heath or safety of the spacecraft. Eventually checks to ensure that the license plate and file content were
consistent were implemented into both gen_di_cmd_pro and spider.

Lesson: Care should be taken when using a descriptive filename so that the contents of the file are examined and
not the filename. Checks can also be integrated into the generation and storage of the commands and files to verify
that the name matches the contents of the file. A descriptive naming convention is not reliable until the proper
checks and balances are in place for the development of the commands and files.

4. Replacing Old Processes with New Processes
 The ASP for Deep Impact was delivered to the project as a means to build uplink products. The project chose to
bypass this established process and instead rely on the MPST to generate the uplink products. This decision led to
an increased workload for the MPST but a more detailed filename for those designing the activities. If a command
is needed quickly for a mission critical event, an MPST member must be available to build a command. When
commands are needed during overnight operations, a MPST member would need to support the activity by working
overnight or by receiving what turned into frequent wake-up calls.

Lesson: When an established, automated system is available, every effort should be made to take advantage of that
system. Replacing an established system with a newly developed system is risky and time consuming.

5. System Engineering New Capabilities
 CFDP was used for the first time on Deep Impact as an alternative method to create uplink products. The
protocol allows a far greater amount of flexibility with respect to the type of uplink file and who builds the uplink
file. Deep Impact had such a small budget that the project was not able to completely system engineer the CFDP
methods into the Mission Operations System. As a result CFDP ended up driving operation complexity and cost in
operations.

Lesson: In the future, new capabilities should not be used on discovery class (low cost) missions unless funding is
allocated to allow proper system engineering to occur.

6. Uplink Product Development Cycle
 Deep Impact suffered from the combination of a complicated spacecraft and a short journey from Earth to comet
Tempel-1. This resulted in an accelerated design schedule and major activities occurring several times per week.
This chaotic schedule did not allow for any type of consistent development cycle to be established. A consistent
development schedule entails sequence deliveries, sequence builds, and sequence reviews and approvals are
performed using a consistent timetable. The benefits of a consistent development cycle are that team members have
a better grasp of when activities need to be reviewed and when the review meetings are held. Due to several factors

such as the shortened cruise period, a new uplink capability, and frequent flight software patches and other large
activities Deep Impact was never able to develop sequences on a consistent development schedule.

Lesson: A consistent development cycle is extremely important for operations. The entire process is more efficient
and safer when teams are in the habit of making deliveries and performing reviews on a consistent schedule. This
will also eliminate the need for meetings late in the workday and on weekends that can decrease team morale.

Lesson: A consistent development schedule will also eliminate a syndrome known as “firefighting”. Firefighting is
when additional resources are allocated so that development cycles can properly function1. These resources were
not in the original scope of the uplink product development process. Many of the individual teams on Deep Impact,
including the MPST, required additional engineers to make the Deep Impact system function when a more efficient
system would have eliminated this need.

7. Pre-launch Uplink Process and System Characterization
 Several areas of the uplink process were not designed until the spacecraft had already launched. The first of
these is that the Impactor command names were not defined until several weeks into operations. As mentioned
previously, the Impactor required several products just to activate one onboard sequence. The process of developing
these products needed to be exercised before flight. The Impactor naming convention was extremely complicated
and resulted in frequent erroneous deliveries to the MPST. A tool needed to be developed and made readily
available to all activity leads before launch to automate the production of the Impactor commands, including the
filenames.
 The Impactor commands were only a small contribution to the overall command volume required to operate
Deep Impact. Both Flyby and Impactor activities would routinely require hundreds of individual commands and
files to uplink to the spacecraft. The uplink sessions were time-consuming and put a tremendous strain on the
spacecraft team. The “batch mode” was a huge time and sanity saver but it was not available until the mission was
over halfway complete.

Lesson: Deep Impact needed to have all elements of its uplink process defined before flight. Many missions can get
away without defining all processes if they have a long cruise period such as Cassini’s voyage to the Saturn system.
Deep Impact did not have that luxury and it would have been much safer and efficient to have all procedures defined
and practiced pre-launch.

Lesson: The smaller discovery class missions should attempt to inherit as many processes from current or past
missions as possible. This will eliminate valuable development time that can be used in other areas to prepare a
mission for launch.

8. Radiation Lists

As previously mentioned, the radiation lists were a tremendous time saver. The only drawback was that they
took time to produce and review. The MPST was the only team to review the radiation lists and that was a risk. The
radiation lists should be reviewed as closely as the ULS by multiple teams to ensure that the proper files are
contained in the list.

Lesson: Radiation Lists increase the efficiency of uplink sessions. Any project that requires multiple products
uplinked to the spacecraft can benefit from radiation lists. They are relatively simple to produce and well worth the
effort they require to produce.

Lesson: Radiation Lists need a more strenuous review process. The contents of the list reflect what gets radiated to
the spacecraft without human interaction. When individual commands and files are radiated, they get one final
check from the ground before being uplinked. The batch mode eliminates this final check so the contents of the
radiation list must be correct.

9. PEF Review Training and Tools

The PEFs were not fully utilized during Deep Impact, especially early in the mission. The subsystems that were
primarily experienced JPL engineers were able to perform adequate reviews using the PEF. The spacecraft team
members that had not read a PEF before were unable to make sense of the files. A brief training session was

provided shortly before launch but several new team members were added to the spacecraft team after launch. This
resulted and a new group of engineers unable to interpret and review the PEF.

Lesson: PEFs are a powerful review tool when they are used correctly. The Attitude Determination and Control
Subsystem caught many slew problems while reviewing the PEF using tools that were developed to interpret the
PEF. JPL needs to make an effort to train all engineers who have not read a PEF before, especially when using a
new contractor, so that activities are adequately reviewed before executing on the spacecraft.

Lesson: All subsystems should have tools developed that can strip the PEF of the needed data and interpret that
data to perform error checking.

10. Uplink Windows

 Unlike other MGSS missions, Deep Impact did not include uplink windows on the ULS. Initially, this was
thought to be a possible risk, but the mission proved that they were not needed. This may have been a result of Deep
Impact using near continuous DSN coverage but it may also be an area future missions can use to eliminate
workload.

Lesson: Typically a lot of work goes into calculating uplink windows and developing tools to facilitate the process.
Deep Impact proved that uplink windows may not be necessary to carry out operations. This will need to be further
demonstrated during a mission that does not have continuous DSN coverage and therefore may need to rely on the
extra planning that uplink windows provide.

VII. Implementation of Lessons Learned and Tools
The lessons learned and tools from Deep Impact have already been implemented into current and future JPL

missions. An adapted version of gen_di_cmd_pro has been integrated into the planned Phoenix surface operations.
Spider was adapted for the Spitzer Space Telescope and is currently generating uplink summaries for that project.

The radiation lists are being enhanced so that more missions will be able to take advantage of their efficiency.
New sequencing software will make the modeling of relative-timed real time commands easier and more efficient.
The remaining lessons learned will play a role in developing processes and procedures for upcoming missions such
as Dawn and Phoenix.

VIII. Conclusions

Deep Impact was a successful mission despite the many challenges the spacecraft team was faced with just to
command the spacecraft. Future missions need to take caution when implementing new technology and ideas so
that they avoid reinventing processes that have proven reliable to past missions. CFDP and the new naming
convention were examples of concepts that were successfully demonstrated in flight but drastically increased the
workload. The MPST tools eventually molded a process together that allowed the less efficient methods to function
on a daily basis. The MPST tools were so effective that they were able to decrease staffing as the mission
progressed and became more intense.

Deep Impact was fortunate enough to have a team of capable and dedicated engineers who, at a great deal of
personal sacrifice, were able to pull together to ensure that the encounter with comet Tempel-1 was a success.

Acknowledgments
The primary author would like to thank the Deep Impact MPST, Grailing Jones, Jr., Vicken Voskanian, Nora

Mainland, Reid Thomas, and Bruce Waggoner. We would also like to thank Bruce Waggoner and Roy Gladden for
their help with the preparation of the paper. Finally, the entire Deep Impact spacecraft and flight team should be
acknowledged for the hard work and dedication that made the Deep Impact mission a success.

The work described by this paper was performed at JPL, managed by The California Institute of Technology,
under contract to the National Aeronautics and Space Administration. The Deep Impact spacecraft was designed
and built by Ball Aerospace & Technologies Corporation.

References
 1Repenning, N. P., Goncalves, P., Black, L. J., “Past the tipping point: The persistence of firefighting
in product development,” California Management Review, Vol. 43, No. 4, pp. 44-63

