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Abstract— In this paper we design high rate protograph “we o o
based LDPC codes suitable for binary erasure channels. To {i%
simplify the encoder and decoder implementation for high Check
0 1 0 1 0 1 0 1 0

data rate transmission, the structure of codes are based 0 1 101

on protographs and circulants. These LDPC codes can

improve data link and network layer protocols in support protograph ) Copy 3times ) Permute the edges

of communication networks. Two classes of codes were

designed. One class is designed for large block sizes withFig- 1.  Copy and Permute operation for a protograph to generate
an iterative decoding threshold that approaches capacity 'a'9€r graphs

of binary erasure channels. The other class is designed

for short block sizes based on maximizing minimum

stopping set size. For high code rates and short blocks or projected graph [8]. A protograph is a Tanner graph
the second class outperforms the first class. A schemeyith g relatively small number of nodes. A “copy-and-
is proposed to use these LDP_C codes over burst er_asurepermute” operation [7] can be applied to the protograph
channels. The proposed encoding method is also applicable

to cases when packets are frequency hopped over channelsto obtain larger derived graphs of various sizes. This

with partial band jamming or frequency selective fading. operation consists of first making' copies of the pro-

Various LDPC codes are compared and simulation results tograph, and then permuting the endpoints of each edge
are provided. among theN variable andN check nodes connected

to the set of N edges copied from the same edge in
l. INTRODUCTION the protograph. The derived graph is the graph of a
Low-density parity-check (LDPC) codes were procodeN times as large as the code corresponding to the
posed by Gallager [1] in 1962. After introduction oforotograph, with the same rate and the same distribution
turbo codes by Berrou et al [2] in 1993, researchees variable and check node degrees. LDPC codes with
revisited LDPC codes, and extended the work of Ggprotograph structure are a subclass of multi-edge-type
lager using the code graphs introduced by Tanner [3] PPC codes. As a simple example, we consider the
1981. After 1993 there have been many contributiomsotograph shown in Fig. 1. This graph consists of 3 vari-
to the design and analysis of LDPC codes; see fable nodes and 2 check nodes, connected by 5 edges. In
example [10], [12], [4], [13], [14], [15], and referenceghis example we have 5 edge types i.e. each edge in
there. Recently a flurry of work has been conducted e base protograph represents an edge type. As another
the design of LDPC codes with imposed sub-structuregample for protograph based LDPC codes we consider
starting with the introduction of multi-edge-type codethe rate-1/3 Repeat-Accumulate (RA) code depicted in
in [9] and [11]. Fig. 2(a). For this code the maximum erasure probability
threshold with iterative decoding ig;;=0.6173, where
Il. PROTOGRAPHLDPC CODES the capacity thresholg,,, = 1 — R.=0.6667. This code
For high-speed decoding, it is advantageous for &@as a protograph representation shown in Fig. 2(b), as
LDPC code to be constructed from a protograph [fdng as the interleaver is chosen to be decomposable



into permutations along each edge of the protogramiternative computational method for stopping set enu-
The iterative decoding threshold is unchanged despiteerators that applies to LDPC codes with protograph
the additional constraint imposed by the protograph. Tk&ucture.
protograph consists of 4 variable nodes and 3 check
nodes, connected by 9 edges. Three variable nodes ard/e express the normalized logarithmic asymptotic
connected to the channel (transmitted nodes) and atepping set size distribution of a code a$(s) =
shown as dark filled circles. One variable node is néiin, .., suprs(d) wherers(5) = % §=424d
connected to the channel (i.e., it is punctured) and i stopping set size , andg is the ensemble stopping
depicted by a blank circle. The three check nodes aet size distribution.
depicted by circles with a plus sign inside.
(a) RA Code (b) Protograph of rate 1/3 RA If the ﬁrSt Z€ro CrOSSing O’f‘S(é) (Ie Ts(d;’grm,n) = 0
] for 65. > 0) exists, andr¥(§) < 0 for all 0 <
§ < 67, thend? . is called typical stopping set size
i ratio. ConsiderP(d < 405, n) < Z‘}ng” A3, If the
@ contribution of stopping sets with sizes less thgp,,»
Threshold py=0.6173 to this sum becomes negligible adecomes large, then
we can say that the normalized stopping set size is almost
Fig. 2. (a) A rate-1/3 RA code with repetition 3, and (b) itssurely is greater thaﬁim — ¢ for any e > 0. In other
corresponding protograph. words, with high probability the minimum stopping set

size of most codes in the ensemble increases linearly
Repeat-Accumulate (RA) [5], Irregular Repeatyith 1.

Accumulate (IRA) [6], and recently proposed

Accumulate-Repeat-Accumulate  (ARA) [16] codes, Consider a protograph based LDPC code as shown
with suitable definitions of their interleavers, all havg, Fig. 3 with n, variable andn. check nodes. Let,
simple protograph representations. These codes proviggresent the degree of variable nageandg., represent
capacity approaching iterative decoding thresholgise degree of check nodg. Suppose we lift (copy and

but have sublinear minimum stopping set size (to Bfsrmute) this protograph by a factor &. To make

defined shortly). However for certain applications lineghe expressions simple, we first defifi&(3) = ln(]éi)

minimum stopping set size is required for low errofheres — % asN — oo. As follows the normalization
floor performance. will be with respect toN. At the final step,(5) can
be obtained as®(§) = L179(md) wherem represents
the number of variable nodes in the protograph that
are connected to the channel i.e.,transmitted nodes, and
A set of variable nodes is called a stopping set ifhe code block size isn = mN. As follows, the
all its check node neighbors are connected to this sebrd “weight” here will represent the “stopping set
at least twice. Message passing iterative decoding fadige”. Assign a normalized weigl®; to variable node
whenever all the variable nodes in a stopping set asgfor i = 1,...,n,. Let S¥ be the set of all possible
erased. Analysis of ensemble average stopping set giegtial normalized weights of. variable nodes that are
enumerators is useful for designing protograph LDP€bnnected to the channel, say with indideds, ..., L,
codes over a BEC. In particular we are interested #uch thaty;, +d;, +---+ 6, = 6. Let S be the set of
protograph LDPC codes that have minimum stoppirgl possible partial normalized weights of the remaining
set size growing linearly with block size. To design suchariable nodes in the protograph, namely the punctured
structured LDPC codes, we need to compute the stariable nodes i.e., not transmitted nodes. Note that for
ping set size enumerators for protograph based LDR€pping set calculations, the check node should satisfy
code ensembles. Such computational tools have beke following constraint. The input weight to a single
only derived for unstructured irregular LDPC enseneheck should be zero or at least 2.
bles [21], [23], [27], [24], [25], [26] [29], [30], [22].
Recently a method to compute the asymptotic weight Then the asymptotic ensemble stopping set size enu-
distribution for protograph LDPC codes has been prmerator for the protograph LDPC code can be written
posed [20], [18], [17], and [33]. Here we propose aas [17]:

— [T}

permutation

(interleaver) o}

Repeat 3 accumulator

I11. ASYMPTOTIC ENSEMBLE OF STOPPING SET SIZE
ENUMERATORS



a®(8y,00,03,04) = m/ex{as’c(él, 2, \)

+GS’C(53, 54, /\)
—H(\)} 4)

In general, having (81, 62, 93) as a function of three
partial weightsd, d2,d3, we can compute recursively
to obtain a®¢(8y,d9,...,d,) as a function ofg partial
weights for degreg check node for > 4 as

aS7C((517 0y 5q—27 61]—17 5q)
= maX)\{aS’C(él, cey (5q_2, )\)

~S /<
5) =
r ( ) {5%35‘;? {5171/]1%);5 +aS’C(6(1*17 56]7 )‘) - H()‘)}
Ne Sc. Ty (5)
> a0 (8) =Y (qw, — VH(S) (D)
i=1 i=1 Thus ™ (§;) for all check nodes in the protograph

whereH (z) = —(1—z)In(l—z) —zInx is the entropy can be computed using (3), and (5).

function, and Thea* (§;) 2 limy oo sup W]‘#Z. A. Example
S.ci . .

-Lhe ﬁdi ; IS c:he stapprggset s1ze enut:neratorbfor Consider Repeat Jagged Accumulate (RJA) and its

the check noder;. The Ay~ represents the number, .. qeq version Accumulate Repeat Jagged Accumu-

of sequences with partial stopping set size vectfi, (ARJA) LDPC codes [28] as shown in Fig. 4. The

di = (i1, diz, ..., dig.,) that satisfies the checkpp coge hag® . =0.011. However if we precode the
node constraint for stopping sets. Vectyr represents RJA LDPC co

h lized . f th o Wh h de with an accumulator (to create ARJA),
the norma Iz€d version o the vectat;, where each o e obtains®, =0.012. The asymptotic normalized
component is normalized bW, as N — oo. The

- stopping set distributions and zero crossing for the RJA
vector §; = (0;,,0;,,...,9;, ) represents the partial
stopping set sizey;, s which correspond to the edge

and ARJA LDPC codes are shown in Fig. 4.
connections of the check node to the set of variable 035
nodes{v;,, vi,, ..., v, }.

0.30

For a check with degree 3, let= (d;+0d2+03)/2 such .
thatmax{0,2(c—1)} <n < 20—2max{d1, 2,93}, and RA protograph

e =%

5
Hs(z1, 22, 13, 24, 75) = —Zﬂfilnxi 2) e
i=1

r3(8)

ARJA protograph

then

precoder
85in50.012

a570(517 527 53) = m'r?x H5((1 — 0+ 77)’ (0’ — 61 — 77) 70'050.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

o)
) (G — 0 — 77)7 (U - 53 - 77)7 (277))
(3) Fig. 4. Asymptotic normalized stopping set distributions for RJA
LDPC code, and precoded RJA (ARJA) LDPC code

For checks with degree 4, we have



IV. DENSITY EVOLUTION IN PROTOGRAPHS FOR THE rate 1/2 codes. The RJA code has threshgd0.4375.
ERASURE CHANNEL However if we precode the RJA LDPC code with an

Computation of iterative decoding thresholds for th@ccumulator namely ARJA, then we obtain threshold
protographs in this paper is by density evolution. Ferit=0-4387.
the erasure channel, a single real-valued parameter, the \v ExaMPLE OF PROTOGRAPH CODES WITH

probability of erasurep, serves as a stand-in for full CAPACITY APPROACHING THRESHOLD
density evolution. Alternatively, we can track the self-

information of an erasure; = —Inp, which is additive code with thresholg;;=0.4387 and with linear minimum

at variable nodes. A reciprocal parametet — In(1 — : . .

: ) . .. stopping set size. Protograph codes can also be designed
p). the self-information of a non-erasure, is additive ‘%ith thresholds approaching capacity more closely. Here
the check nodes. Since® + ¢™" = 1, we note that y Y

one such example is shown in Fig. 6. This is a rate 1/2

r=R(s) ands = R(r) are Lelated to each other by th?ﬂ\ccumulate Repeat Accumulate (ARA) type protograph

self-inverting function(s) = —In (1 —e™). code with thresholgh;;=0.4951. The capacity threshold
To apply density evolution to a protograph we firsfor rate 1/2 code isp.,,=0.5000. Although this code

identify all transmitted variable nodes and select a targels 5 capacity approaching threshold, it has sublinear

channel erasure probabilify.na, = e™*"". As Shown minimum stopping set size. This type of code might be

in Fig. 5 messages. are passed along edges leavingppropriate for very large block lengths.

variable nodes 4. = s.p4, from transmitted nodes

and s, = 0 from punctured nodes). The transformation protograph of rate 1/2 ARA

R(s.) is applied and an extrinsic return message,

is determined by computing the sum of all incoming

messages save the one along edgeansformationR(-)

is then reapplied to produce.. The process continues

and the iterative decoding thresholg, = e % s

determined by the smallest value f,, for which

unbounded growth of all messages can be achieved.

In the previous examples we considered the ARJA

Threshold over BEC pj=0.4951

Fig. 5. Density evolution in protographs for the erasure channels.
Fig. 6. Rate 1/2 ARA type protograph.
Note that the capacity threshold.,, is defined as
Peap = 1 — Re, Where R, represents the code rate. If a
code over binary erasure channel with erasure probabilit
Penan. CAN be decoded iteratively, theny,, < pi <

|. AN ENCODING METHOD OFLDPC CODES OVER
BURSTERASURE CHANNELS

Suppose the data frames each of size are trans-
mitted over a bursty erasure channel. Here we propose a
A. Example simple encoding method for channels with random burst

Consider Repeat Jagged Accumulate (RJA) and #@sasures of sizeB < np. Suppose these bursts occur
precoded version Accumulate Repeat Jagged Accunwith probability p. The frames are stored as rows of a
late (ARJA) LDPC codes in previous example both arl® by ny matrix. Then each column of the matrix is

Pcap-



encoded with g N +m, N) LDPC code. The encoding
method is shown in Fig. 7. * 1—p*

* A * *
D",p) S p"ln e 4 (1= p") In ®)

Bit1 Bit ng p -p

Transmit 1 Note that if we defing* = pc,p, = 1 — R. which is
LLLL LTI L LT e Transmit 2 maximum erasure probability at capacity of BEC, then
LLIT T T LT reme > for a random(n, k) code with code ratez, — £ we get
T I .
[TTTTTTTT] e P, < ¢"Dbeard) -

This bound is simple but it is less tight than the

LI T T T LTI ] rramene previous upper bound. In section IX, these bound are
LIT T T T T T Framens compared with simulation results.
N I [
VIIl. HI1GH RATE PROTOGRAPH CODES WITH LINEAR
Each columnis STOPPING SET SIZE
Encoded with arate e o i
NJ/(N-+m) protograph In previous example we have shown that a rate 1/2
LDPC code ARJA protograph LDPC code has minimum stopping

CTTITITTITITT] e Tansmith+1  Set size that linearly grows with the block size. Here
Parity Frame — . .
° ° ° ° ® we design a high rate 9/10 protograph LDPC code (see
_ Parity Frame Transmit Ngn Fig. 8) whose minimum stopping set size also grows
linearly with the block size. We call this protograph code
Fig. 7. An encoding method for Burst Erasure channels. as R4JA3. To achieve rates higher than 9/10, we puncture
the expanded version of the same protograph.

VIl. UPPER AND LOWER BOUNDS FOBEC

For any (n,k) block code over BEC with channel
erasure probability, a lower bound on frame error rate
is given by Singleton bound [31]

P, > iéﬂ (?)pi(l —p)" (6)

Also for a random codén, k), the averaged frame error
rate can be upper bounded by [32] as

P, < tz_? (?) pi(1 — pyrig=(n=h=i)
T i <T;>pi(1 —p)" @)

i=n—k-+1

Gallager [1] also proposed an upperbound over a
discrete memoryless channel. For BEC we simplified
this upperbound. The upper bound can be expressed in
terms of Kullback-Leibler distance. Let a binary random
variable have probability functiop, and let a second
random variable have probability functigri. Then the
relative entropy ofp* with respect top, also called the Fig. 8. Rate 9/10 R4JA3 protograph wit=0.0782.
Kullback-Leibler distance, is defined by
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IX. SIMULATION RESULTS

Simulation results in Fig. 9 compares the performance~’
of an ARA type code (with capacity approaching itera- ,
tive decoding threshold) to an ARJA code (with linear
minimum stopping set size). Simulation results, shogvm'?
that for short blocks at low error rates, a code with .
linear minimum stopping set size but without capacit%
approaching iterative decoding threshold, outperformss*
a code with capacity approaching iterative decoding .
threshold but with sublinear minimum stopping set size.
However, the ARA type code might be preferred in «°
applications that include a retransmission protocol so thagoq
low error rates are not required.
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e compared to the upper and lower bounds for BEC.

p (channel erasure probability)

Simulation results for rate 9/10 protograph LDPC code is

Bit and Frame Erasure Probability
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Fig. 9. Performance of ARA type code and ARJA code with inp
block sizek = 1024.

In Fig. 10, frame error rate simulation results for rate

input block
k=1044

punctured
version of
R4JA3

Rate=0.947 Rate=0.923 Rate=0.900

oo

______

’
’ I ’

~

punctured i /
version of
R4JA3

9/10 R4JA3 code are compared with bounds derived:?
in section VII. Fig. 11 shows bit and frame error rate
simulation results for LDPC codes with dimensibn=

1044 expanded from the rate-9/10 R4JA3 protograph Er\g_ 11014 4

Fig. 8. The rate-12/13 and rate-18/19 protographs in this '

case are obtained by simply puncturing the rate-9/10
protograph. Protographs were lifted using the Circulant
Progressive Edge Growth (CPEG) and Approximate Cy-

00

0.03 0.04 0.05 0.06 0.07

p (channel Erasure probability)

Performance of R4JA3 code family with input block size

cle Extrinsic Message Degree (ACE) algorithms [19] tgodes were designed. One class is designed to have

find circulants for each edge of the protograph.

iterative decoding thresholds that approach the capacity

of binary erasure channels. The other class is designed

X. CONCLUSION

to improve minimum stopping set size. We have shown

In this paper we designed high rate protograph baseut for high code rates and short blocks the second class
LDPC codes suitable for binary erasure channels. ®otperforms the first class. A scheme is proposed to use
simplify the encoder and decoder implementation féhese LDPC codes over burst erasure channels. Various
high data rate transmission, the structure of codes &lePC codes are compared and simulation results are
based on protographs and circulants. Two classes pobvided.



ACKNOWLEDGMENT [18] D. Divsalar, and C. Jones,“Protograph Based Low Error Floor
LDPC Coded Modulation,” IEEE Milcom 2005, Atlantic City,
This research was carried out at the Jet Propulsion NJ, October 17-20, 2005.

Laboratory, California Institute of Technology, undef®l Tian. T. Jones, C.; Villasenor, J.; and Wesel, R. D.; "Char-

. . . acterization and selective avoidance of cycles in irregular LDPC
contract with the National Aeronautics and Space Ad- code construction,” IEEE Transactions on Communications, Aug.

ministration. 2004, pp. 1242-1247.
[20] S.L. Fogal, Robert McEliece, Jeremy thorpe “Enumerators
for Protograph Ensembles of LDPC Codes,” IEEE ISIT 2005,

REFERENCES Adelaide, Australia 4-9 September,2005.

[21] Ikegaya, R.; Kasai, K.; Shibuya, T.; Sakaniwa, K.; Asymptotic
[1] R. G. Gallager,Low Density Parity Check Code€ambridge, weight and stopping set distributions for detailedly represented
MA: MIT Press, 1963. irregular LDPC code ensembles , ISIT 2004. Proceedings. In-
[2] C. Berrou and A. Glavieux, “Near optimum error correcting  ternational Symposium on Information Theory, 2004. 27 June-2

coding and decoding: Turbo-code#ZEE Trans. Commun\ol. July 2004 Page(s):208
44, pp. 1261-1271, October 1996. [22] Tillich, J.-P.; The average weight distribution of Tanner code
[3] M. R. Tanner, “A recursive approach to low complexity codes,” ensembles and a way to modify them to improve their weight
IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, 1981. distribution , ISIT 2004. Proceedings. International Symposium

[4] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of  on Information Theory, 2004. 27 June-2 July 2004 Page(s):7
capacity-approaching irregular low- density parity-check codeg23] Di, C.; Montanari, A.; Urbanke, R.; Weight distributions of

IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, 2001. LDPC code ensembles: combinatorics meets statistical physics
[5] D. Divsalar, H. Jin, and R. McEliece, “Coding theorems for , ISIT 2004. Proceedings. International Symposium on Informa-

Turbo-like codes,” in Proceedings of the 1998 Allerton Confer- tion Theory, 2004. 27 June-2 July 2004 Page(s):102

ence,1998. [24] Burshtein, D.; Miller, G.; Asymptotic enumeration methods

[6] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat- for analyzing LDPC codes, IEEE Transactions on Information
accumulate codes,” in Proc. 2nd International Symposium on Theory, Volume 50, Issue 6, June 2004 Page(s):1115 - 1131
Turbo Codes, 2000. [25] Litsyn, S.; Shevelev, V.; Distance distributions in ensembles

[7] Jeremy Thorpe, “Low Density Parity Check (LDPC) Codes of irregular low-density parity-check codes , IEEE Transac-
Constructed from Protographs,” JPL INP Progress Report 42- tions on Information Theory, Volume 49, Issue 12, Dec. 2003

154, August 15, 2003. Page(s):3140 - 3159
[8] Richardson, et al., “Methods and apparatus for decoding LDA@6] Litsyn, S.; Shevelev, V.; On ensembles of low-density parity-
codes,” United States Patent 6,633,856, October 14, 2003. check codes: asymptotic distance distributions , Information

[9] T. Richardson, “Multi-Edge Type LDPC Codes,” presented at Theory, IEEE Transactions on Volume 48, Issue 4, April 2002
the Workshop honoring Prof. Bob McEliece on his 60th birthday, Page(s):887 - 908 . .
Callifornia Institute of Technology, Pasadena, California, May 2427] A. Orlitsky, K. Viswanathan, and J. Zhang, Stopping set dis-
25, 2002. tribution of LDPC code ensembles, |IEEE Trans. Information

[10] D.J.C. MacKay, R.M. Neal, “Near Shannon limit performance _ Theory, vol. 51, pp. 929953, Mar. 2005.
of low density parity check codes,” Electronics Letters ,Vol. 3428] D. Divsalar, C. Jones, S. Dolinar, J. Thorpe; Protograph Based
Issue 18, 29 Aug. 1996, Page(s) 1645. LDPC Codes with Minimum Distance Linearly Growing with

[11] T. Richardson and R. Urbanke,“The Renaissance of Gallager's Block Size , IEEE Globecom 2005. ) o
Low-Density Parity-Check Codes,” IEEE Communications Mag29] |. Sason, E. Telatar and R. Urbanke, " Asymptotic input-output
azine, pages 126-131, August 2003 weight distributions and thresholds of convolutional and turbo-

[12] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, like codes ,” IEEE Trans. on Information Theory , vol. 48, no.
“Analysis of low density codes and improved designs using 12, Ppp. 3052 -3061, December 2002. . o
irregular graphs,” IEEE Trans. Inform. Theory, vol. 47, pp. 58 0] H. Pfister, I. Sason and R. Urbanke, " Capacity-achieving en-
598, 2001. sembles for the binary erasure channel with bounded complexity,

[13] T. Richardson and R. Urbanke, “The capacity of low-density |EEE Trans. on Information Theory , vol. 51, no. 7, pp. 2352~
parity check codes under message- passing decoding,” IEEE 2379'_*]“'3/ 2005. ) ) .

Trans. Inform. Theory, vol. 47, pp. 599-618, 2001. [31] P. Elias,“Coding for two noise channels,” in Information Theory,

[14] Y. Kou, S. Lin, and M.P.C. Fossorier, “Low-density parity-check C. Cherry, Ed. !‘_ondon, U.K.;Butterworth, 1956. )
codes based on finite geometries: a rediscovery and new resukd2] E. Berlekamp,“The technology of error-correcting codes,"|EEE

IEEE Transactions on Information Theory, vol. 47, Nov. 2001 Procegdings,“vol. 68, pp. 564-593, 1980.
pp. 2711 -2736. [33] D. Divsalar,"Ensemble Weight Enumerators for Protograph

[15] F.R. Kschischang, “Codes defined on graphs,” IEEE Commu- LDPC Codes,” IEEE ISIT 2006, Seattle, Washington, July 9-14,
nications Magazine, Vol. 41, Issu8 , Aug. 2003, Pages 118 2006.
-125.
[16] A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate Repeat
Accumulate Codes,” (abstract) IEEE ISIT 2004, Chicago, IL,
June 27-July 2, and IEEE Globecom 2004, Dallas, Texas, 29
Novembe - 3 December, 2004.
[17] D. Divsalar, “Finite Length Weight Enumerators for Protograph
Based LDPC Code Ensembles,” IEEE Communication Theory
Workshop, Park City, Utah, June 12-15, 2005.



