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These reflections share insight gleaned from Cassini-Huygens experience in supporting 
uplink operations tasks with software. Of particular interest are developed applications that 
were not widely adopted and tasks for which the appropriate application was not planned. 
After several years of operations, tasks are better understood providing a clearer picture of 
the mapping of requirements to applications. The impact on system design of the changing 
user profile due to distributed operations and greater participation of scientists in operations 
is also explored. Suggestions are made for improving the architecture, requirements, and 
design of future systems for uplink operations. 

I. Introduction 
It is common wisdom in the development of complex systems, of which the Cassini-Huygens uplink ground 

system is certainly an example, that the requirements are fully understood about the time the system is retired. While 
we anticipate several more years of successful operation in our tour of Saturn, we now have enough experience to 
reflect on how the design and development would have been done differently if we had known a decade ago what 
we know now. The focus is not primarily on missteps in software development, since the relevance of many of those 
would be diminished by changes in technology. It is rather on ways in which people and processes have changed, 
particularly because of the shift in paradigm due to distributed operations, so that tasks needing software support are 
different than anticipated. It also looks at the need for software support of small (typically unglamorous) tasks done 
repetitively by dozens of people. By analyzing needs that were inadequately met, we aim to enlighten the definition 
efforts of future projects. 

Planning (i.e. constructing a conflict-free timeline of activities) is one task which has evolved considerably over 
the life of the mission. In earlier and simpler missions, planning was done largely by specialists at JPL. In contrast 
the plan for Cassini was largely constructed in meetings, often by teleconference. The participants included not only 
engineers but also scientists from multiple instrument teams at various institutions around the globe. They needed 
not a rigorous analysis of the validity of proposed plan (although this is, of course, eventually essential) but a quick, 
uncomplicated assessment of the viability of an option. Tools that weren’t ready when this early planning was done, 
that required detailed input, or that ran slowly on dedicated hardware at JPL fell by the wayside. Tools built outside 
the formal ground system development and not anticipated in the original design sprung up to fill the void.  

Another aspect of distributed operations (and of instrument processors onboard) was dispersing the responsibility 
for sequence (commanding) verification and validation. With over 300 flight rules and a like number of constraints 
and guidelines, it would have been difficult to accomplish this task without dividing the responsibility. Nonetheless, 
it is essential that a collective picture of the results be assembled from the pieces of validation before uplink, a 
crucial undertaking that is still inefficiently supported by software. 

This paper first addresses delivered applications in the Mission Sequence Subsystem that are used less than 
anticipated exploring the reasons that have impeded their adoption. The second section considers tasks for which no 
formal application was planned. Some of these are now supported by software built outside the formal ground 
development. Other needs are yet unmet with software.   
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II. Underused Applications and Causes for Lack of Use 
The Cassini Mission Sequence System has been successfully used to produce over a million commands for the 

spacecraft. A number of workhorse applications are run day in and day out by engineers, scientists, and science 
planners to design science pointing, to manage data storage and bandwidth, to convert activities to commands and to 
validate the commanding. However, as shown in Table 1, other applications within the subsystem are not utilized as 
extensively as envisioned by the ground system developers. The analysis below considers the reasons that these 
tools have been less successful in supporting uplink operations and makes suggestions for future systems design. 

A. Unwarranted Fidelity in Modeling and Simulation 
Operation of deep space robotic spacecraft would not be possible without high fidelity modeling and simulation 

both to ensure achievement of unique science observations and to preserve the health and safety of the overall 
system. Thus both the science community and the engineering community have vested interests in the availability of 
tools with high fidelity models. Why not extend this fidelity to planning tools? This fidelity does not come without 
cost: it extends development times, complicates usage, and slows performance. Strategic planning—the division of 
time among scientific goals and the negotiation of contested resource—does not require fidelity this extreme. For 
this integration task, the costs of the “last mile” outweigh the advantages of having a usable product with 
performance that supports repeated iteration early in the ground system development cycle. Also, the set of 
characteristics modeled needs to correspond to user concerns for the task at hand. For example, APGEN, Activity 
Plan Generator, copied too much from engineering simulations of the nuance of pointing design but did not 
adequately address the points of planning contention such as agreements on secondary axis pointing. It rigorously 
modeled the format of telemetry recording and downlink, but largely ignored the contention for bandwidth and 
storage.  

For maximum system efficiency, a different performance versus fidelity trade-off should be applied to the 
planning tools than to the engineering validation tools. During the early planning processes evaluating the validity of 
the design will be a central concern requiring frequent iteration to resolve both resource and flight rule conflicts. For 
this purpose, a faster tool with close approximations is more useful than one with a level of fidelity that is too slow 
to run repeatedly. While it is true that compromises in modeling and simulation fidelity will result in some 
undetected commanding errors, most can be driven out with lower fidelity tools. Fewer iterations through the high 
fidelity models are then necessary. 

As mentioned previously, the Cassini uplink process is built on successive refinement from plan to preliminary 
implementation to final validation and polishing. Each of these phases employs tools that require as fundamental 
input the specification of the intended spacecraft activity. It is obviously inconvenient to re-specify the same activity 
for each phase of the sequence development. Unfortunately, to avoid this re-entry, the sequence system design called 
for using the output of the planning process as the input to the command generation. So, for example, the activity 
planner provides as output that which the sequence generation tool expects as input. The Science Opportunity 
Analyzer provides as output that which the pointing design tool expects as input. The drawback to this approach is 
that the planning tools then require complete specification of all the parameters necessary for command generation, 
which significantly impedes ease of use and requires all planners, including scientists, to fully understand the 

Table 1.  UNDERUSED APPLICATIONS 
 

PROGRAM INTENDED FUNCTION 
APGEN—Activity Plan Generator Produce a conflict-free timeline of activities 
SOA—Science Opportunity Analyzer Find opportunities in the tour for particular observations. 

Construct and visualize observation designs. 
MSS Utilities  

CFReader Human intelligible display of initial/final conditions file 
OPS_COMPARE Compare sequence product files 
t2t & timeconverter Time conversions 
Seq_Review Apply user-defined filters to sequence products 
SSFTIME  
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parameters of detailed design. To the extent that development dollars allowed, this was mitigated in SOA with 
different modes of operation.  Simplification of planning tools would have made them easier and faster to use and 
thus more popular. This could have been accomplished by hiding parameters that have a nominal value for a large 
percentage of instances, such as turn rates and acceleration or turn margin, or that represent optimization rather than 
basic design. Other mechanisms could have been employed to manipulate the product formats at the interface for 
further refinement in the detail driven tools. 

B. Timely Delivery 
For essential tools whose use is required by the project, user response to development schedules that slip or lag 

needed use is limited to grumbling. They will be obliged to endure bugs, to put up with awkward workarounds, to 
live without desired features. It cannot be overemphasized that this pattern does not apply to tools whose use is not 
mandated. Largely because of management decisions to delay the start of development, Cassini planning tools such 
as Science Opportunity Analyzer were not mature when intensive integration of science activities started in 2001. 
From the users’ perspective these tools lacked too many features to adequately support the analysis required or were 
too buggy to produce reliable results. As described in the second part of this paper, the planners devised other ways 
to get the tasks done.  They did not, however, revert to the formally delivered tools as these were improved and 
matured. This is a critical consideration for schedule development of auxiliary tools—if the tool is not available and 
usable early in the period when needed, there is significant risk that even its eventual adoption will be impeded. If 
the investment necessary to deliver on time is not possible, late push-up may be useless to compensate. 

C. Platform Accessibility 
For previous flagship missions, most computing was done on project computers in the JPL operations area. No 

one other than the ground data system engineers had to worry about platform choice. Users did not generally have 
experience with alternative platforms nor were they likely to field requirements like cost, portability, or available 
software environments (such as matlab or IDL or Java 3D). In contrast, the scientists planning activities for the 
Cassini tour had been exposed in other contexts to hardware that was, in most respects, superior to that in the 
Cassini ground system. Official software was delivered on Sun workstations that were already several years old 
when intensive science planning kicked in and that had performance inferior to individuals’ personal computers. The 
supported platforms were too expensive to replace or to procure at secondary sites. The software also could not be 
operated from the meeting venues where the analysis of opportunities and computations in support of resource 
allocation were needed in real time. That supported platform was indeed a significant factor in tool adoption was 
borne out by a substantial increase in demand for the Science Opportunity Analyzer when the decision was finally 
made to deliver a version for Windows and for Linux. The drivers such as cost and institutional support that steer the 
selection of a platform for project mandated tools are not necessarily key factors in platform choice for optional 
support. 

D. Awareness and software accessibility 
The Cassini ground system development budget did not stretch to cover user friendly delivery and usage 

documentation. User support was also limited. As a result, many of the remote users are unaware of the availability 
of utility programs. Development of additional utilities was discouraged by the difficulty of making them accessible 
in a user friendly fashion. 

 
III. Tasks with Late or Insufficient Software Support 

 
While essential software support for the uplink process is provided by the Cassini ground system, some tasks 

would be easier with support other than that provided in the ground system design. This is particularly true of those 
tasks that are fundamentally different in either function or process from previous missions either because Cassini 
itself is different or because of distributed operations. Two categories of such tasks are illustrated in this section. 
One is needs which still have inadequate software support and thus require additional staffing to accomplish. The 
other category describes needs that were met with tools developed outside the formal ground system development. 
The successful impact of these on uplink processes suggests the need for reconsideration of the ground system 
architecture to allow adoption into the system of tools developed outside it. Some suggestions for future ground 
system design follow in the next section. 
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A. The Current Plan, Viewable Anywhere 
The initial plan for spacecraft operations at JPL and science operations at team sites with limited interfaces 

between was supplanted by a far more complicated scheme early in the mission. Fortunately for the success of 
distributed operations, Cassini’s need for expanded avenues of communication was supported by the rapid 
emergence of email, teleconferencing and the World Wide Web. Even this was not enough given multiple 
concurrent planning processes on top of multiple sequence development processes whose participants were 
intersecting groups of scientists and engineers scattered around the globe also tasked with monitoring the executing 
sequence (not to mention producing science results).  The need to coalesce the overlapping threads of planning into 
a single, up-to-date, accessible, non-redundant view of the detailed plan was met by creating a central repository of 
planned activity using an Oracle database with a web-based interface. While the timing of ground system 
development did not support this approach for the initial suite of applications, the degree to which this architecture 
eliminated concerns over platform choice and differing installation environments at distributed sites strongly 
recommends it to current distributed architectures. 

B. Summary View of Distributed Analysis Results 
The complexity of Cassini compounded by the complexity of distributed operations demands that numerous 

avenues of sequence verification and validation are pursued through several repetitions. Sequence checks are made 
by members of the science integration teams, science planners serving as virtual team leads, spacecraft team 
engineers, sequence leads, the instrument teams and the simulator team. They employ a plethora of software and 
processes, using sequence subsystem tools, spacecraft subsystem tools, mission planning tools, data base internal 
checks, scripts, team tools, spreadsheets, and hand inspection. Since each sequence passes through at least five ports 
of integration and validation, these checks are repeated several times. While this process is inherently complicated, 
the complexity of the system offers few alternatives. 

From my personal perspective, the largest unmet need is for software and automation support of the re-
integration of the results of the decoupled validation. The same issue, error, or problem is often discovered by 
multiple people (which is a good thing) via multiple mechanisms (which is safer but not more efficient than a single 
catch point) at multiple times. Although by design the number of actual problems should be less at each checkpoint, 
the large majority of checks err on the side of reporting something which may or may not be a problem to reduce the 
possibility of missing a true problem. Therefore, even a perfect sequence might have many repetitions of multiple 
reports of the same problem. 

Sequence validation would be much improved in both accuracy and efficiency with a software mechanism, 
perhaps a database, for collecting, correlating, and recording the resolution of detected problems.  The analysis for 
such a tool would have resulted in a systematic enumeration of the errors to be trapped.  This comprehensive list 
would have provided a central place for adding additional checks as new needs were uncovered. The collective 
ground system designers would have agreed (although perhaps not easily) on an intentional assignment of the 
checks to appropriate people, their tools or processes, and phase of sequence development. The design alone would 
have imposed some uniformity on error reporting that would simplify further handling both by software and by 
human review. 

C. Distributed View of Central Analysis from Distributed Inputs 
When the conflict-free timelines are integrated into a sequence, refinements are sometimes necessary. The 

drivers for these revisions are typically changes in the spacecraft state (especially trajectory) or in the ground 
environment due to changes in the DSN station allocation. For example, relatively late in the sequence development 
process, when the DSN allocation is relatively stable, it is usually possible to release data volume margin and allow 
the collection of more data. This requires negotiation among the various instruments for the available data volume, 
cleverly called sponge bits. Additional bits can be made available as long as there is either bandwidth to downlink 
them or storage on the SSR. Efficient allocation thus requires knowing fairly precisely how many additional bits 
each instrument would like over each period. If each team simply requests what they would like without knowing 
what other instruments are requesting, the demand is always higher than the supply. A mechanism for nearly 
immediate analysis based on adjusted bit requests from multiple teams would facilitate distribution of all available 
bits. 

The cutting edge of web-based applications is now exploring pages that allow simultaneous, interactive input 
from multiple users. As this matures, one could envision web-based applications for spacecraft uplink development 
wherein each of the distributed teams specifies their desired resource allocation, the central processing tool evaluates 
the net resource consumption based all user requests, and nearly immediately reports in a view visible to all those 
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supplying input. Immediate iteration would then be possible so with no more work than the current process more 
optimal resource allocation could be completed. 

D. Automation for mechanical, trivial, repetitive, low-level tasks and process flow 
Perhaps because automation of spacecraft operations has vigorously pursued accomplishing even cognitively 

challenging tasks or perhaps because the Cassini software development budget was stressed just by its major 
applications, many of the menial steps in sequence development remain manual. A personal aggravation is the hand 
calculation of duration by subtracting two UTC times. As another example, recall that there is no central mechanism 
for capturing and reviewing sequence critique. To make the various reports available to all sequence contributors, 
the results from each of the reviewing parties are posted to a web page devoted to that sequence. Since each 
sequence goes through at least five cycles and is reviewed by fifteen or more analysts, the posting of that material to 
the web page is an example of a trivial but frequent task that ought to be automated.  

E. Distributed Planning Without Access to Ground System Workstations 
After the tour design was available, a science plan representing the allocation of time, pointing, power, and data 

volume (all of which are over-constrained) was needed. In the past this might have been done by a select group of 
scientists working together at JPL; Cassini chose to use discipline-focused groups of scientists in order to share the 
responsibility and divide the workload.1   

The interaction of these groups was different from previous experience. Not only were they not co-located, 
working largely by telecon, but they were also not at project workstations. For this interactive but distributed 
integration, they needed fast, easy to use, planning tools accessible from meeting rooms to provide the kinds of 
information cited in the table below. As described in the first section of this paper, the project planning tools did not 
satisfy these requirements especially early in the process. Various participants in this effort filled this hole with 
informal software tools aimed at supporting integration decisions. 

These tools made significant contributions to the integration process. During the intense rush of ground software 
development to support tour operations, independent development conveyed significant advantages over formal 
ground system development. In particular, it allowed for very rapid redelivery in early phases when new features are 
added at a rapid pace and when bugs need to be fixed quickly. (Very rapid in this context means multiple times per 
month in contrast to the formal uplink subsystem, which was redelivered several times per year). As these 
applications also achieved maturity and the delivery pace slowed down, the risks associated with circumventing 
configuration management and regression testing were no longer justified by the cost of rigor. However, they have 
remained separate from the overall ground system design. Future missions should consider a ground system 
architecture which explicitly allocates requirements that cannot be met, whether for functionality or delivery speed, 
to a temporary, more flexible subsystem which does not impose the burdens associated with critical path software 
but affords some of the advantages of uniform delivery. 

F. Electronic Signature 
Some critical decisions including flight rule waivers and sequence change requests require consent verified with 

signature of impacted parties. Since the decision maker for the distributed teams is generally not at JPL and since the 
time-frame for obtaining the signature is relatively brief, the lead responsible relied on fax transmission of the form 
for signature with return fax of the signed paperwork. In addition to incurring costs, the reliability of the approach is 

Table 2. INTEGRATION NEEDS SUPPORTED BY UNPLANNED SOFTWARE 
 

FUNCTION SOURCE 
Turn Time Estimation CTV—Cassini Turn Visualizer 

Brad Wallis, Science Planner 
Visualization of Geometric Constraints i. CTV—Cassini Turn Visualizer 

Brad Wallis, Science Planner 
ii. Forbidden Zone Plot 
Frank Crary, CAPS Scientist  

2D Visualization 
Fields and Particles Opportunities 

JCSN 
MIMI Team (access eventually limited to APL) 

Trajectory Based Opportunity Data: 
Range, phase angle, etc. 

DIGIT 
Dave Seal, Mission Planner 
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incongruous with the importance of the communication. Ownership of the paper was an issue. Prototype attempts at 
electronic signature were overly ambitious for the development effort available and did not realize user adoption. 
Very recently, Cassini adopted the JPL multi-mission CM system, which provides among its features electronic 
signature. It has, however, suffered from the curse of late-adopted software: the advantages are significantly 
degraded by the pain of re-training, glitches at introduction, and mismatch of available features to expectations. 

G. Proliferation of Products in Non-Standard Formats 
The JPL portion of the Cassini ground system itself consists of multiple systems, and this complexity is 

amplified by association with the distributed operations systems of the instrument teams. In system design, the 
analysis of interfaces focused on connectivity. Process definition concentrated on commitments to product delivery 
with considerably more focus on content than format of the products. In the absence of detailed interface 
specifications, many products created by multiple teams have as many formats as originators. An example would be 
the reporting of the team reviews of sequence products for instrument flight rule satisfaction, correct power modes, 
and other validation checks. No format is mandated and there is therefore no uniformity. Some teams provide their 
report as an Excel spreadsheet, but since other teams do not use Microsoft Office these must be converted to PDF 
for review by other teams. With some checklists as spreadsheets, some as email messages, some otherwise captured, 
doing anything automated with the raw reports would first entail considerable effort in extracting relevant data. 
These problems suggest the wisdom of rigorously defining data interfaces even when a software interface is not 
envisioned at design time. 

H. File Access and Management for Uplink Tool Use 
The distribution of pointing design and sequence generation among the instrument teams meant that far more 

users were operating sequence system tools than in previous missions. Furthermore they were dispersed over many 
installation locales some not under control of the project. Also, since the sequence development time is significantly 
longer than the sequence duration, multiple sequences each of which have multiple ports are in work at the same 
time. For these reasons, complaints about initializing tools with the correct inputs were frequent. Some of the remote 
sites had difficulty obtaining and maintaining complete file sets. Some errors in file selection were observed. Also 
the process represented inefficient distribution—the identical effort to get the input files and construct configuration 
files was repeated by dozens of users. 

This problem is an example of an unmet need recognized late in ground system development that was met with 
flexible design approaches. Since most pieces of the uplink system were already in use, a glueware approach was 
used that built around the existing applications rather than significantly altering their code: 

Highlights of the restructured system include the following: (a) an electronic version of the master list of correct ancillary 
files updated at each stage of sequence development, (b) a script validating the master ancillary list construction and 
verifying that named files exist, (c) a translator to make a web page reference from the master list, (d) a new tool which 
enables single point construction for all applications of sequence specific configuration files based on the master list of 
correct files, (e) alterations to the configuration files themselves and to already existing application wrappers so that those 
sequence specific specifications can be used, (f) a configuration file naming convention that allows easy recognition of 
the appropriate configuration file for the work at hand, (g) expansion of the project database to include the master 
ancillary file lists and the configuration files, (h) a logical file structure that provides the application programs a single 
view of the ancillary files while allowing different implementations in various subsystem architectures, and (i) active 
maintenance of the ancillary input files within the ground system in a manner expected by the applications.2 

IV. A Flexible Ground System Architecture 
Increasing the acceptance of the underused applications would largely have required conventional software 

development improvements, especially these: defining better requirements, starting development earlier, and 
spending more moneyy. Ongoing efforts at JPL including SQI—Software Quality Improvement—are addressing 
needed enhancement in software management and development practices. 

However, in order to intentionally exploit the success of ad hoc tools, the ground system architecture must 
become less uniform both in categorization of software and in development process. Although certain popular 
models for software development suggest that process variation should be stamped out, the suggestion here is to 
allow for a more tolerant model.  The proposal is not to reject the model of improving overall development with 
mature, controlled processes or to go back to the heroic development model. Rather it is to acknowledge that novel 
systems as complex as Cassini Uplink which are constrained by both schedule and budget and for which operations 
processes are evolving in parallel with software support will miss or misdefine essential functional capabilities. It is 
to acknowledge that the exceptional people involved will provide unanticipated solutions filling these gaps, but that 
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those solutions may not conform to standard development practices. The ground system would be enriched by 
integrating these tools and providing system advantages such as configuration management, hosting and delivery, 
documentation, regression testing, and user support at tool maturity. Anticipation of these inclusions would mean 
incorporating into the development processes a strategy for risk assessment, management of added interfaces, and 
provision of the system capabilities just mentioned for the unplanned tools. 
  

V. Conclusion: Ground System Recommendations 
Based on the analysis and examples detailed in this paper, we recommend that ground system designers for 

complex spacecraft with distributed operations consider the following guidelines:  
1. Design the ground system to allow incorporation of unanticipated applications. 
2. Recognize that a uniform trade-off of rigor versus development speed may not be suitable for all 

supported tasks. 
3. Recognize that distinct user communities weigh application tradeoffs (such as fidelity vs. performance) 

differently.  
4. Realize that integrating results is as essential to distributed operations as dispersing tasks.  
5. Exploit technologies for non-homogenous systems such as glueware and adaptable interface 

technologies. 
6. Look for cost savings in automation of mechanical, trivial, repetitive, low-level tasks. 
7. Support tasks in the environment in which they will be performed. A uniform hardware architecture 

may not be feasible if this goal is taken seriously. 
8. Apply rigorous system engineering practices such as interface definition to processes as well as 

software. The data flows will then support later automation with software. 
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