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Current State-of-the-Art in Vector 
Measurements

Anritsu & Agilent VNAs: 325 GHz (with extensions from OML, Inc.)



3

Current State-of-the-Art in Vector 
Measurements

ABmm MVNA-8-350: up to 1000 GHz, narrow band, ~3 GHz max. 
sweep @ 600 GHz (2 wide-spaced harmonically related freqs. possible)
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Submillimeter Active Imaging 
Requirements

• Focused vector (magnitude & phase) reflection 
measurement

• Large bandwidth (>50 GHz) in quasi-
transparent portion of spectrum

• Small size

Existing commercial off-the-shelf (COTS) solutions are too low in 
frequency, narrowband & too bulky
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600 GHz Vector Measurement System
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600 GHz Vector Measurement System

• Uses 2 inexpensive synthesizers & X18/X36 
multiplier chains to provide measurement 
signal & LO for a subharmonically pumped 
mixer

• Synthesizer outputs directly mixed & 
multiplied to provide a phase reference for 
the IF system

• Phase reference signal is frequency shifted & 
mixed with the submillimeter mixer IF output, 
removing all phase noise
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600 GHz Vector Measurement System
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450 MHz IF Signal

Synthesizer phase noise is multiplied by 

20*log(N) dB = 31 dB for signal
25 dB for LO 

Synth. phase noise @ fundamental = -54 dBc/Hz @ 1 kHz 
offset

At the signal frequency, phase noise = -23 dBc/Hz

At 1 kHz resolution bandwidth, the carrier is 7 dB below the 
phase noise and cannot be seen on a spectrum analyzer!
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450 MHz IF signal @ 1 kHz Res. BW

IF signal is “buried” within a 12 kHz wide noise signal
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450 MHz IF Signal Mixed with 
Shifted 450 MHz Reference Signal

By mixing the IF signal with the offset reference signal, a 2nd IF signal 
(12.79 MHz) is produced that contains the magnitude & phase 

information of the submillimeter wave signal but with the stability of 
the 12.79 MHz offset oscillator.
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System dynamic range is highly dependent on purity of the 
offset reference signal.  Any 450 MHz present at the LO input 
of the 450 MHz signal mixer will be mixed down with the 450 
MHz measurement signal, resulting in reference crosstalk.

To avoid crosstalk, the 450 MHz reference signal must be
<-130 dBm at the LO input to the signal mixer, requiring a 

bandpass filter rejection of 120 dB at 450 MHz.
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Cavity Bandpass Filter

Low loss, high selectivity but bulky
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Miniature Multistage Helical Filter

Extremely high selectivity & small size at the expense of loss (~10 dB), 
which is easily compensated for by an additional amplifier.

(Motorola “Micor” TFE6213A Exciter Output Filter)
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X36 450 MHz Multiplier
GE “Mastr Executive II” transmitter exciter board

•Cost: ~$100 (Alternative: custom built X36 multiplier, ~$4,000
•All spurious <-45 dBc (non-harmonic spurious <-65 dBc)

Input (12.5 MHz
@ +10 dBm)

Output (450 MHz
@ +23 dBm)
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600 GHz Test Setup
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Teflon lens
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600 GHz Transmit Module
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600 GHz Receive Module
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Performance Tests: Amplitude 
Stability & Dynamic Range

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

560 580 600 620 640
Frequency (GHz)

R
el

. P
ow

er
 (d

B
)

-100

-80

-60

-40

-20

0
clear through
blocked with absorber

• Lock-in amplifier bandwidth: 100 Hz
• Dynamic range in 595-615 GHz region is limited by the 16 bit A/D 

reading the lock-in amplifier outputs (max. of only 96 dB possible)
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Performance Tests: Phase Stability
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Stability at Imaging Bandwidths

1 kHz Bandwidth
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Phase Measurement Verification

Dielectric constant of known materials measured by measuring 
change in phase over 75 GHz bandwidth

Dielectric sample
in beam path
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Phase Measurement Verification
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Phase Measurement Verification
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Determination of relative dielectric constant εr was found using

Where l = physical length of material (meters)
δφ/δf = rate of phase change (degrees/Hz)
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The Next Step: Imaging

Fresnel lens designed by JPL & University of 
Delaware, built by Custom Microwave

• 20 cm diameter
• 4 m focal length
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The Next Step: Imaging
Dispersive optics can be used in conjunction with fast frequency sweeping to 
rapidly scan the beam in one dimension.  By scanning mechanically in the 
other dimension, near real-time active imaging can be realized.  However, 
the frequency stepping speed must be improved in order to take advantage 
of electronic beam steering using dispersive optics.

The typical synthesizer lock time is 100 msec.  During this time, the 100 GHz 
power amplifier supply voltage must be reduced to prevent damage to the 
submillimeter multipliers.  Additional time following synthesizer relock is 
required to stabilize the supply voltage.

100 GHz Amplifier Power Supply Switching Time
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Replacement of the Agilent E3634A 
power supplies with amplified D/A 
converters resulted in a 20 msec. 
improvement in frequency switching 
speed.  However, the slow 
synthesizers will need to be 
replaced with faster units in order to 
achieve the speeds required for 
electronic beam steering.



26

Conclusion

• A complete vector measurement system has been 
designed, constructed and tested over 560-635 GHz.

• 60 dB dynamic range typical (maximum of 90 dB)

• ~3000 points per second acquisition speed
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