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Abstract—Rainfall leads to errors and limitations on the soil 
moisture retrieval using satellite radiometry. To understand the 
impact of rainfall, we examined the temporal and spatial 
correlations between rainfall and soil moisture using AMSR-E 
(Advanced Microwave Scanning Radiometer-EOS) data. Scan by 
scan (swath basis) analyses were conducted to find the short time 
scale relationship between the two physical parameters. The 
retention of soil moisture after rainfall in different climatic 
regimes (e.g. humid and arid regions) was also examined.  
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I.  INTRODUCTION 
Retrieval of soil moisture using satellite data is important 

for better understanding of the global water cycle and its role 
in climate change.  In addition, rainfall measurement over land 
is a crucial element in understanding the water cycle exchange 
between land and atmosphere.  Precipitation is highly related 
with soil moisture. However, it is very difficult to study the 
direct relationship between the two variables since 
precipitation is a main source of uncertainty in soil moisture 
retrieval. In general, retrieval of soil moisture is not attempted 
in the presence of precipitation due to the complexity of 
discerning the signal emitted by the surface from that of a 
raining atmosphere.  

The AMSR-E (Advanced Microwave Scanning 
Radiometer-EOS) instrument on the Aqua satellite launched 
on May 4, 2002, provides an improved opportunity for soil 
moisture retrieval study due to its multiple channels (e.g. 
6.925, 10.65 and 18.7GHz with dual polarizations) and 
enhanced resolutions with respect to previous sensors. With 
AMSR-E data, two retrieved physical parameters (rainfall and 
soil moisture) can be utilized simultaneously. In this study, we 
focused on the temporal and spatial relationship between 
precipitation and soil moisture from AMSR-E data. 

 

II. METHODS 

A. Soil Moisture Algorithm 
Passive microwave techniques to retrieve near-surface soil 

moisture have been developed from the theoretical basis which 
relates the emitted microwave radiation from land surface to 
the dielectric properties of sub-surface soil moisture. Njoku 
and Kong [1] presented the theory of passive microwave 
remote sensing of soil moisture. However, developing a 
retrieval algorithm based on a satellite observation is very 

difficult due to the many sources of uncertainties. 
Furthermore, to achieve robust brightness temperature 
sensitivity to the surface moisture content, low frequency 
channels (1-3GHz) are highly preferable through vegetation 
and their deeper penetration depth. However, Njoku et al. [2] 
have shown that promising results are feasible using the 
AMSR-E (Advanced Microwave Scanning Radiometer-EOS) 
for soil moisture retrieval.  

In this study, we used an updated version of the AMSR-E 
soil algorithm [2]. This algorithm utilizes the polarization ratio 
(pr10) at 10GHz (~ 3cm wavelength) which is defined as    

pr10= (Tb10v-Tb10h) / (Tb10v+Tb10h), 
where Tb10v and Tb10h are the brightness temperatures of the 
vertically and horizontally polarized AMSR-E channels 
respectively.  

The variations of pr10 with respect to the monthly 
minimum polarization ratio of the 10GHz are interpreted as 
the short-term dynamic soil moisture signal. The algorithm has 
some limitations. For example, the use of single channel 
(10GHz) results in a very shallow sensing depth (~1cm). The 
longer wavelength 6.9 GHz data were not used due to the 
contamination at this frequency in many regions by Radio 
Frequency Interference [3]. In addition, the soil moisture 
estimation over dense vegetation areas leads to greater errors. 
 

B. Land Rainfall Algorithm 
For land rainfall algorithm, an empirically-based algorithm 

has been developed ([4], [5]), that utilizes the depression of 
the brightness temperatures at high-frequencies (e.g. 85 GHz) 
due to the scattering by ice particles aloft. The current 
operational rainfall algorithm (NASA, level 2 rainfall 
algorithm, GPROF, for SSM/I, TMI and AMSR-E) has 
adopted this concept for precipitation over land. Like soil 
moisture estimation, retrieval of precipitation has many 
uncertainty sources such as the high variability of the ice 
particle size distribution, false rain signatures caused by snow 
cover, deserts, and semiarid land plus the uncertainty of rain 
type classification.   

 

C. Data 
For comparison with the swath basis AMSR-E level 2 rain 

products [6], we retrieved surface soil moisture on a pixel-by-
pixel (or swath) basis using AMSR-E Level 2A brightness 
temperature data [7].   For analysis of daily level 3 products, 
the official AMSR-E Level 3 surface soil moisture data [8] 



were directly used. In addition to the AMSR-E rainfall 
products, two independent precipitation data sets are included: 
GPCP (Global Precipitation Climatology Project) 1-Degree 
Daily Combination data and Rain Gauge data from NCDC 
(National Climatic Data Center). 
 

III. RESULTS 
Our study is an ongoing project and more detailed results 

will be presented in the future based on our further 
investigations. In this paper we provide only preliminary 
results based on limited analyses. 
 

A. Swath Basis Analysis  
To remove the possible rain-contaminated pixels, a 

screening method [9] is implemented.  However, the current 
GPROF algorithm uses slightly changed threshold values for 
AMSR-E channels (Tb24v-Tb89v > 8K, and Tb89v < 270K). 
First, to evaluate the effectiveness of this method, two 
granules are selected, one over Africa (10-30N; 0-20E) and 
another over the U.S. (85-105W; 30-48N). 

The rain flag map is plotted over the both regions (Figs. 
1(a) and 2(a)). The color of each pixel indicates the difference 
between the two channels, i.e., Tb24v-Tb89v. The black color 
denotes the raining pixels with rain as estimated by the rain-
flag screening. For comparison, level 2 rain rates retrieved 
from GPROF algorithm are plotted in Figs. 1(b) and 2(b).  

Compared to the areas of screened raining pixels, the 
retrieved raining areas are smaller. It could thus be assumed 
that the screening thresholds are very conservative. Another 
possibility is that the retrieved rainfall areas (from GPROF) 
are narrower than actual raining areas. The NEXRAD national 
mosaic radar reflectivity image (Fig. 3(a), from 
www4.ncdc.noaa.gov) shows that possible raining areas are 
much wider with respect to the satellite observation. The 
AMSR-E measurement (vertically polarized 89GHz channel) 
corresponding in terms of time and space to Fig. 3(a) is 
presented in Fig. 3(b).   

 
 

 

 
Figure 1.  (a) Rain flag for a pass of AMSR-E over the Africa (10-30N; 0-

20E). The data span approximately 5 minutes, (b) AMSR-E level 2 rain rate 
corresponding to (a). The black color in Figure 1(a) represents pixels with 

rain. 
 

 

 
Figure 2.  (a) Rain flag for a pass of AMSR-E over the United States (32-48N; 
85-105W). The data span approximately 4 minutes, (b) AMSR-E level 2 rain 

rate corresponding to (a). The black color in Figure 2(a) represents raining 
pixels. 

 
 
 
 
 

 
 
 

 
Figure 3. (a) The NEXRAD national mosaic reflectivity image from NCDC 

(July 2, 2004: 0800Z), (b) Tb89v channels of AMSR-E over the United States 
(July 2, 2004: 0753Z). The data span approximately 8 minutes and thus the 

observation period between (a) and (b) is very close each other. 
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(b) (a) 
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To investigate further, a plot of Tb89v as a function of the 
Tb24v-Tb89v was generated using all samples over the 
selected region shown in Fig. 1. Screened raining pixels are 
indicated by blue. It is clear that most samples, at which the 
brightness temperatures of the 89v are greater than about 
275K, are non-raining pixels. But, it is found that screening of 
raining pixels is heavily driven by the one threshold (Tb89v < 
270K) rather than the combined effect (Tb24v-Tb89v > 8K 
and Tb89v < 270K).  

Second, we examined the impact of rainfall on the retrieval 
of soil moisture for the same data shown in Figs. 1 and 2. The 
data are highlighted by the blue box in Figs. 5 and 6 which 
show the retrieved soil moisture over Africa and the United 
States. In this analysis, the rain screening process was not 
applied. As a result, the retrieved values over some areas (e.g. 
west-central Africa) are rain-contaminated.    

 
 

 
Figure 4. Relationship between the 89GHz vertically polarized brightness 

temperature and the rain flag (Tb24v-Tb89v) for the data shown in Figure 1. 
Blue represents the raining pixels  

 
 

 
Figure 5.  Retrieved soil moisture over Africa from the selected granule 

(AMSR-E, July 1, 2004: 0034Z), Note that the retrieved values over some 
area are not meaningful (e.g. mountainous area and over the ocean) because 

proper land mask schemes are not implemented in this analysis. 

 
Figure 6. Retrieved soil moisture over the United States from the selected 

granule (AMSR-E, July 2, 2004: 0753Z) 
 

 
Figure 7. The selected two rain gauge sites for the time series analysis: Iowa 

City, Iowa (41.72N91.66W) and Lubbock, Texas (33.39N; 101.49W) 
 
 

The soil moisture over raining areas clearly shows the 
impact of rainfall. While many areas are contaminated by false 
signals due to the rainfall, some areas that surround raining 
cores show effects of the increased moisture due to the 
precipitation. They also indicate that the change of soil 
moisture highly relies on the intensity and duration of rainfall 
driven by the two different rainfall regimes (e.g. convective 
and stratiform rain).  However, clear understanding of the 
rainfall impact on soil moisture in this scale requires a solid 
rain screening method along with a finer resolution of 
observation. 
 

B. Time Series Analysis  
Fig. 7 shows two selected rain gauge sites for analysis: 

Iowa City, Iowa (latitude 41.72N, longitude 91.66W) and 
Lubbock, Texas (latitude 33.39N, longitude 101.52W). We 
assumed that Iowa represents a wet area and Lubbock for a 
dry area. The soil moisture variation as a function of time 
(July, 2004) is plotted in Figs. 8(a) and 9(a). Two independent 
rainfall data sets were compared with the retrieved soil 
moisture (Figs. 8(b) and 9(b)).  One data set consists of rain 



gauge data and the other consists of GPCP rain data. For the 
comparison, closest points with respect to the rain gauge sites 
were selected from both GPCP rain data (1° x 1° grid format) 
and the AMSR-E daily soil moisture products (25km x 25km 
EASE-Grid format).  

 

 

 
Figure 8. (a) Retrieved daily soil moisture as a function of time (July 2004, 

Iowa), (b) GPCP(white)  and Rain Gauge (blue) rainfall (mm/day) 
corresponding to a). 

 

 

 
Figure 9. (a) Retrieved daily soil moisture as a function of time (July 2004, 

Texas), (b) GPCP(white) and Rain Gauge (blue) rainfall (mm/day) 
corresponding to a). 

 
 

Direct comparison between point measurements (rain 
gauge) and spatially averaged snapshots (satellite 
measurements) leads to a large discrepancy. Due to the 
location mismatch, rainfall data from rain gauges in Fig. 8(b) 
show much smaller raining events compared to GPCP data, 
which are satellite data combined with rain gauge data. Some 
days (e.g. July 3 and 9) show that gauge data have a larger 
daily rain rates than GPCP. In the Fig. 9(b), the discrepancy 
between the two data sets is obvious as well.    

Nonetheless, the figures give us some insights into the 
relationship between rainfall and soil moisture. It is found that 
retrieved soil moisture does vary according to the major 
rainfall events.  At the Iowa site (wet region), the soil moisture 
variation is relatively small (0.11 ~ 0.13g/cm3) and the 
response to the rainfall is not as sensitive. In the case of the 
Texas site (dry region), the significant change of soil moisture 
is clearly observed just after the heavy rainfall events (July 25 
and 29). However, to determine better the relationship 
between the two variables (Gauge data vs. Satellite data), 
more sampled data sets which are co-registered in terms of 
space and time are required.  

CONCLUTIONS 
The preliminary results give us some insights into the 

relationship between precipitation and soil moisture. For better 
understanding of the rainfall impact on soil moisture retrieval, 
many limitations of the current soil moisture and land rainfall 
algorithms need to be resolved as well as further comparative 
analyses done. In particular, the current rain screening method 
requires improvements by providing a more effective scheme 
to discern the intensity and spatial distribution of rainfall.  
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