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We describe a reference architecture for space information management systems that 
elegantly overcomes the rigid design of common information systems in many domains. The 
reference architecture consists of a set of flexible, reusable, independent models and 
software components that function in unison, but remain separately managed entities. The 
main guiding principle of the reference architecture is to separate the various models of 
information (e.g., data, metadata, etc.) from implemented system code, allowing each to 
evolve independently. System modularity, systems interoperability, and dynamic evolution 
of information system components are the primary benefits of the design of the architecture. 
The architecture requires the use of information models that are substantially more 
advanced than those used by the vast majority of information systems. These models are 
more expressive and can be more easily modularized, distributed and maintained than 
simpler models e.g., configuration files and data dictionaries. Our current work focuses on 
formalizing the architecture within a CCSDS Green Book and evaluating the architecture 
within the context of the C3I initiative. 

I. Introduction 
Today’s software systems are growing in complexity, dynamicity, heterogeneity, and becoming increasingly 

more costly to operate. Space data systems are no exception to this emerging trend; they are highly distributed, 
complex software entities that must manage information from the point of generation, during distribution via one of 
many existing CCSDS protocols (e.g., CFDP, Proximity-1), at arrival on Earth, during delivery to processing 
centers, distribution to mission personnel and scientists, and ultimately for long-term archiving. Space data systems 
should be developed and operated using models of the information that they manage. There are many different 
models that need to be managed across an end-to-end space data system. These should include scientific and 
engineering data models (e.g., models of images taken on a spacecraft, of control center operations), and even 
models of other models (meta-models). To avoid rigidity, however, software used by a space data system should be 
flexible: it should be driven by the models that it operates on, and not vice versa. 

Current space data systems are not flexible, and are extremely tied to the information on which they operate. 
However, they are not unique in this regard. Bio-medical computing systems, science data processing systems, space 
flight operation systems all exhibit the same brittle design – software and model tied together – a change in the 
model requires a change in the software, a change in the software leads to a change in the model.  
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Over the course of the past three years within the CCSDS Information Architecture Working Group (IAWG), we 
have been formalizing a Reference Architecture for Space Data Systems (or RASIM for short) whose goal is to 
elegantly tease apart the staunch dependency between software component and software model. RASIM was 
inspired by the success of the Object Oriented Data Technology (OODT) project1 that originated at the Jet 
Propulsion Laboratory. OODT’s carefully crafted reference architecture consists of a set of eight software 
components, and two software connectors that are instantiated and tailored for each deployment domain. Inspired by 
OODT, our work within CCSDS has resulted in the formalization of several core software components within 
RASIM including those that deal with registries and repositories, data products, archives, and query aggregation. In 
addition, the RASIM identifies the core data and metadata models that facilitate interoperability between 
information systems domains, and explores the relationships between data, metadata, and meta-metadata within 
space data systems. In this paper, we describe RASIM in detail, illustrate its utility through several case studies in 
different space data systems including NASA’s Planetary Data System (PDS), and NASA’s Deep Space Mission 
Systems (DSMS). The rest of this paper is organized as follows. Section II discusses the data and metadata models 
identified within RASIM. Section III discusses the software components identified within RASIM. Section IV 
illustrates the applicability of RASIM by applying its models to the PDS, and DSMS. Section V discusses related 
efforts in formalizing space data systems architecture, including those within the C3I initiative. Section VI 
concludes the paper.  

 

II. Data and Metadata Models within RASIM 
RASIM identifies the application information object††. The application information object is the cornerstone of 

defining and constructing a data-driven system where models and software function in unison, but are separate 
entities. An application information object is an independent, flexible model of the data and corresponding metadata 
in an information system, and is meant to be reusable across many information system domains. The main guiding 
principle of the information object is to separate the models of information (e.g., data, metadata, etc.) from the actual 
implemented system code. In this fashion the software system and the models that describe the information in the 
system may both evolve independently of one another.  

The information object is composed of the data object, a sequence of bits responsible for physically representing 
data, and the metadata object, information about the data object including, but not limited to, structure, semantic, 
and preservation information2.  

A. DATA OBJECTS 
Data objects are either physical objects or digital objects as illustrated in Figure 1. A physical object is a tangible 

thing (e.g., a moon rock) together with some representation information bringing to light the fact that any object that 
can be described with data is a data object. On the other hand, a digital object is a sequence of bits, representing a 
thing that is not tangible (e.g., an electronic document, image file, a ‘folder’ of files). In contrast to the widely cited 
OAIS reference model3, RASIM focuses on the digital object specialization of the data object and does not focus on 

the physical object specialization. 

B. METADATA OBJECTS 
Metadata objects provide information (or metadata) 

about the data object. Similar to the OAIS reference 
model, a metadata object comprises representation and 
preservation description information as two broad 
classifications of metadata. As shown in Figure 2, 
representation information includes structure (syntactic) 
and semantic information and preservation information 
includes reference, provenance, fixity, and context 
information. Metadata objects might be atomic or 
comprised of a set of metadata sub-objects. Data objects 
and metadata objects are highly interdependent. Without 
the metadata object, essentially the data object is just a 

self-contained sequence of bits about which nothing is known: systems cannot unlock its information. When a 

                                                           
†† Also used and described throughout the document as an information object. 

 
Figure 1. A Data Object 
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metadata object and data object are present (e.g., an information object), a myriad of capabilities are available to the 
user (or system). If the data object is an image, most likely the metadata object will describe what kind of image 
(JPEG or ‘raster’ for example). If the metadata object mandates that the data object has a field called pixel, an 
examination of a specified (by the metadata object) location within the data object will reveal the value of the pixel. 
 

C. INFORMATION OBJECTS 
Information objects (shown in Figure 3) build upon the data and metadata object by logically associating them 

together. Information objects are components in information systems architecture that model both a granule of 
information (i.e., the bits) and its corresponding metadata. An information object consists of a data object and one or 
more metadata objects: the latter models the aforementioned information and metadata properties. The metadata 
object can describe the data object’s structure, such as what fields it is composed of, the fields’ valid values (e.g., in 
the case of ‘Uplink Speed’, the data may have a controlled list of available speeds such as 1MB or 2MB/sec), and 
the semantic relationships between the structural elements (such as ‘Uplink Speed must always equal Downlink 
Speed’).  

 
1. Classes of Information Objects 

There are several different classes of information objects. For brevity, in this paper we will only focus on three 
of the classes, however, many other classes of information objects are currently being classified and identified 
within the context of our CCSDS Green Book4. The three fundamental classes of information objects are: (a) the 
primitive information object, (b) the standard 
information object, and (c) the complex information 
object.  

 
Primitive Information Object – A primitive 

information object is an information object with simple 
metadata information that contains a small amount of 
metadata with a data object. Simple metadata indicates 
that the only metadata captured for a particular data 
object are primitive attributes such as name, format, or 
modification date. These are attributes typically 
associated with a file in a file system and seldom provide 
any information about content or relationships.  
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Figure 2. A Metadata Object, Adapted from reference 3. 

 

 
Figure 3. An information object 
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An example of a primitive information object is a data file 
managed in a solid state recorder. Minimal metadata exists for 
it other than basic properties that define its name, type, and 
size. A name often is used to denote specialized information 
about an object.  In practice, it is preferable to separate the 
name of an object from other information such as creation 
date, sequence numbers, etc. Many space data systems have 
typically focused on the management of primitive information 
objects and have not made metadata objects (with more 
complex attributes) first-class citizens 

Standard Information Object – A standard information 
object is an information object that has well-defined metadata 
and a data object. The metadata is an instance of one or more 
domain models. The data object can be null. A number of data 
systems throughout the space agencies have standard 
information objects as part of their system design (incl. the 
SpaceGRID study16 by ESA, and NASA’s Planetary Data 

System).  Standard information objects have been predominately used within archive and science processing data 
systems.  The metadata for these information objects are often defined by some data description language like XML 
and may be stored in an online registry or database to enable effective search and browsing. Increasing emphasis on 
constructing end-to-end space information system architectures is suggesting the use of standard information objects 
at a variety of stages within the mission pipeline including: observation planning, execution, processing, and 
distribution. Standard information objects are applicable across this entire pipeline since it is a mechanism to enable 
interoperability between systems as long as the information objects and their associated models are carefully 
developed, and not intertwined with the software that supports them. 

Complex Information Object – Complex information objects (shown in Figure 5) are information objects that 
encapsulate one or more information objects, coupled with a metadata object containing packaging information. 
Similar to the OAIS reference model, packaging information is the set of information, consisting primarily of 
package descriptions, which is provided to data management to support the finding, ordering, and retrieving of 
information holdings by consumers. Additionally packaging information is the information that is used to bind and 
identify the components of an information package. For example, it may be the ISO 9660 volume and directory 
information used on a CD-ROM to provide the content of several files containing content information and 
preservation description information. It also can describe the algorithms and formats of the package structure itself 
(e.g., whether or not the package was compressed, which compression algorithm was used, such as ZIP, TAR,‡‡ 
etc.).  

Each information object in a complex information object 
includes its own metadata that may or may not correlate 
with other metadata from the other information objects in 
the package. This makes it difficult to interpret and compare 
information objects, even ones that come from the same 
repository, unless they conform to a standard meta-model, 
e.g., such as the XFDU packaging model6. 

The purpose of the complex information object is to 
provide the aggregation of related data to the user. It is 
assumed that the user typically knows how to use each 
information object within the set. If the user does not know 
how to correlate the information, then descriptive 
information related to the complex information object (such 
as index information regarding the individual information 
objects in the complex information object) can be used to 

deduce package properties. 
 
 

                                                           
‡‡  See reference 5 for definitions of ZIP and TAR. 
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Figure 5. A Complex Information Object 

 
 



 
American Institute of Aeronautics and Astronautics 

 

5

III. Software Components within RASIM 
RASIM software components are higher level software components built using primitive data store and retrieval 

functions to arrive at complex capabilities. Examples of these capabilities include ingestion of data into repositories, 
federated search across heterogeneous repositories using registries, and the like. The set of reference components 
within RASIM is not meant to be comprehensive, though the RASIM set represents a sound cross-section of 
advanced components that span the typical usage scenarios involved in data systems. The core RASIM software 
components are: Repository Service Objects, Registry Service Objects, Product Service Objects, Archive Service 
Objects, and Query Service Objects. 

D. REPOSITORY SERVICE OBJECT 
The repository service object component is depicted in Figure 7. Repository service objects are responsible for 

management of an underlying data store object or the physical data store. The repository service object differs from 
a data store object by a myriad of properties that are typically considered non-functional. These properties include 
scalability, dependability, uniformity, and other quality attributes. In this context, repository service objects provide 
the same get and put methods that a typical data store object provides. However, whereas a data store object may not 
scale across many underlying physical data stores, may not be dependable 24×7, and may not provide a uniform 
software interface, a repository service object is responsible for delivering non-trivial quality of service in each of 
these non-functional properties. 

 
Figure 6. A Registry Service Object. 

 

 
Figure 7. Repository Service Object 
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Its primary interface is a repository request that can be used to manage information objects. Information objects 
can be retrieved from the repository via the repository request interface, and a response from the repository is 
provided. The repository service object also provides basic get and put capabilities of information objects using the 
capabilities of its associated data store object.  

 
2. Taxonomy of Repository Service Objects 

Our work within RASIM has led us to identify several different types of repository service objects. Each of the 
repository service object types we have identified so far are explained below. 

First, repository service objects are identified via their type. Type provides a quantifiable grouping for a family of 
repositories with similar functional and non-functional properties. We have identified three key repository types: data 
Store, operational archive, and long-term archive. The object properties dimension serves as a general grouping of 
various functional and non-functional properties a repository might have. At the time of preparing this paper the properties 
dimension covers the entire scope of properties for a particular repository. In the long term however, properties will be 
categorized as dimensions of comparison and classification between different repository service objects. Potential 
dimensions of repositories include compositionality, referring to the lower-level and higher-level organization of the sub-
components of a repository; supported data objects, referring to the type of data objects that a repository is responsible for 
storing; permanence, referring to the non-functional property of how long the data is guaranteed safe and reliable shelter 
within a repository; and finally interface richness, referring to the repository’s ability to natively handle either primitive 
get/put operations, or higher level operations possibly requiring both querying and processing of data being returned. The 
last dimension in the current taxonomy, object description, identifies key services and responsibilities of the repository 
when deployed together with a set of other software components.  Table 1 lists the current taxonomy and classification of 
repositories. 

 
Table 1. Taxonomy of Repository Service Objects 

Repository Object Type Object Properties Object Description 

Data Store Primitive Component (e.g., 
DBMS, and File system). 

Basic Data Store component sits behind 
Data Store Object and supports 
Repository Interface to get and put data 
(lower level data such as streams and 
bits). 

Operational Archive Component that stores data 
products and higher level 
products, possibly including 
metadata. Supports retrieval of 
data products through possibly 
complex methods, and 
processing. No support for 
permanence. Stores products for 
short term (e.g., less than 10 
years), and allows retrieval of 
products. 

Advanced Component supporting 
retrieval of possibly complex data 
products, including their metadata. 
Repository where writes are frequent 
and reads are frequent. Data products 
stored in this type of archive will be 
updated and versioned. Examples of 
products stored in this archive are 
command sequence products sent using 
spacecraft telemetry. 

Long-term Archive Stores products for long term 
archiving, and supports basic 
archive functionality. 

Archive for long-term preservation of 
data products, and data permanence. 
Supports basic archive functional 
interfaces (e.g., get, put). 

 

E. REGISTRY SERVICE OBJECT 
The registry service object component provides an interface to retrieve metadata objects. There are two special 

types of metadata objects which most current registries are able to return, other than the basic metadata object 
aforementioned. The first type is a service description metadata object. A service description is some metadata 
document that describes the basic components of a service, such as its interface and its accepted parameters and 
values; a Web Services Description Language (WSDL) document7 would be an example of this.  The second type of 
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metadata object returned by most registry service objects is the resource metadata object. A resource metadata 
object is typically simple keyword-value paired information about an information object, such as an individual 
science data product, or a science data set. The registry service object returns metadata objects which satisfy a 
particular query expression provided by the user of the metadataQuery interface.  Figure 6 depicts a registry service 
object. 

Similar to the repository service object, there also exist different classes of registry service objects. A 
representative subset of these classes is identified below. 

 
3. Taxonomy of Registry Service Objects 

We have identified three main classes of registries and then classified them along a particular set of dimensions: 
the registry type, the return object types, and query interface parameters. 

The three main types of registries are metadata registry, service registry, and resource registry. The metadata 
registry returns structural information describing the structure of the metadata. This is sometimes referred to as a 
meta-meta-model. Subsequently, the object returned from a metadata registry is a meta-metadata object. Queries to 
the metadata registry are formulated via specification of constraints and values assigned to a set of attributes.  
Constraints and values are specified either implicitly by querying the attribute’s properties, or explicitly by 
specifying the data element’s identifier.  

The service registry provides an interface to search for functional services that perform a needed action specified 
by a user. Service registries manage descriptions of service interfaces (called service descriptions), including their 
respective locations, methods, and method parameters. New technological standards such as WSDL provide an 
implementation-level facility for service descriptions.  An additional implementation of a service description and its 
respective service registry exists in the form of the Profile Server and Resource Profile components specified in 
references8, 9, 10. Service descriptions are important because they describe software methods, software systems, and 
Web resources using metadata. Because of this, they can be queried to retrieve a service endpoint (essentially a 
pointer to the service’s location), and metadata describing how to invoke the particular service.  This helps to 
facilitate the use and consumption of services dynamically via software rather than explicit invocations and requests.  

The third type of registry, the resource registry, while capable of describing any resource or object, is used 
specifically for describing information objects such as science data products and data sets. Science catalogs such as 
the SIMBAD Astrophysics Catalog11 are examples of resource registries that serve information objects. Resource 
registries can also point to other resource registries to enable discovery of information objects across distributed 
registries.  

The classification dimensions introduced here effectively categorize the functional properties of each type of 
registry, leaving the non-functional classification unspecified at this point. This type of classification of non-
functional registry service properties is very important, and this contribution is an element of on-going work within 
the Information Architecture (IA) Working Group. The taxonomy of registry service objects is summarized in Table 
2. 

 
Table 2. A Taxonomy of Registry Service Objects 

Registry Type Return Object Types Query Interface Parameters 

Metadata Registry Data Dictionaries, Data 
Elements 

Query for Data Element properties, 
or Data Element IDs, or Data 
Dictionary IDs 

Service Registry Service Endpoints, Service 
Metadata (interface properties, 
interface type, return schema) 

Query for Service properties 

Resource Registry Data Products, Resource 
Registry Locations 

Data Resource properties 

 
 

F. PRODUCT SERVICE OBJECT 
The product service object contains a repository service object, coupled with a query object, and a domain 

processing or transformation object. The domain processing object is a functional component that provides 
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specialized processing of a data object to transform it from one object type to another.  This is critical in the era of 
providing on-the-fly processing of data to other users and systems and allows for specialization of a core software 
infrastructure on a product-type specific basis. In fact, domain processing objects can be externalized and registered 
on a product-type basis so as to require that the object is called as part of the retrieval process. Processing can 
involve functions such as science level processing, compression, decompression, scaling (in the case of an image), 
format conversion, and many other transformations  

The product service object serves as a common interface to heterogeneous data sources and allows for the 
querying the information objects (shown as IO in Figure 8) via a query expression. The query expression is passed 
along to the internal query object, which in turn evaluates the query expression and transfers it into a sequence of get 
calls to the repository service object, including execution of any specialized data processing objects. A product 
service object is shown in Figure 8. 

G. ARCHIVE SERVICE OBJECT 
Archive service objects are responsible for (a) ingestion of data objects into a repository, and (b) ingestion of 

metadata objects into an accompanying registry. The ingestion of both metadata and data objects can be performed 
using a task processing approach: the users define tasks formulating the ingestion process of information objects 
(shown as IO in Figure 9). These tasks can then be managed via a rule-based policy which, given a set of criteria 
such as time, task type, ingestion type, etc., determines when a particular task, or set of tasks, should be executed for 
a given ingestion. This rule-based task processing is often referred to as workflow10, 12, 13 and can execute 
externalized objects such as the Domain Processing Object discussed prior.  This would enable a workflow-oriented 
archive service to construct a pipeline for ingestion and processing of level science products from missions.  The 
externalization of a domain processing object would allow science data processors to run on appropriate scalable 
hardware, such as computational clusters, constructing an architecture for science processing and archiving. In fact, 
this component was implemented for the SeaWinds Earth science instrument that was part of the payload for the 
ADEOS II satellite.  This type of ingestion process is shown as the ingest service object component in Figure 9.  

 
Figure 8. A Product Service Object 



 
American Institute of Aeronautics and Astronautics 

 

9

Archive service objects 
also have the capability of 
handling transaction-based 
ingestion of data and 
metadata objects, similar to 
the ingestion interface 
described in the OAIS model. 
This type of transaction 
capability would be provided 
by the ingest service object in 
Figure 9, managing all 
aspects of ingesting an object 
into the archive (e.g., 
validation, registration, etc.). 
An archive service object is 
shown in Figure 9.  

H. QUERY SERVICE 
OBJECT 

The query service object 
manages routing of queries in 
order to discover and locate 
product service objects, 
repository service objects and 
registry service objects which 
contain information to satisfy 
user queries. Routing is accomplished by querying registry service objects in order to discover the location of the 
appropriate repository, or product service objects to ultimately locate the information objects (shown as IOs in 
Figure 10) that satisfy a user’s query. Once the service objects have returned the information objects that satisfy the 
query, the information objects are aggregated and returned to the query service object. At that point, the query 
service object can perform processing such as packaging, translations to other formats, and other types of advanced 
processing. These advanced processing capabilities are shown as the domain processing object in Figure 10 and are 
utilized as an externalized component of the product service (recall Section III.F).  Figure 10 depicts a query service 
object. 

 

IV. Applying the RASIM 
architecture 

To demonstrate the applicability 
of RASIM, in this section we will 
model three distinct types of 
information objects using RASIM.  

For ground data systems, a 
spacecraft command message file 
information object is discussed. For 
archive data systems, a planetary data 
system information object is 
discussed. Finally, for space data 
systems, a service link exchange 
(SLE) information object is 
discussed. 
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Figure 9. An Archive Service Object 

 

 
Figure 10. A Query Service Object 
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Table 3. A Spacecraft Command Message file information object 

I.  Spacecraft Command Message File 
A spacecraft command message file is a telemetry uplink packet sent from a ground station to a spacecraft. It can 

be modeled using an information object. The information object is made up of a sequence of bits representing the 
command to be sent to the spacecraft. This bit sequence is mapped to an application information object consisting of 
one data object, command sequence. The associated structural information for the telemetry uplink packet consists 
of three data elements, ground station name (representing the ground station that sent the command to the 
spacecraft), instrument name (representing the instrument on-board the spacecraft that this sequence of commands is 
intended for), and packet sent-time (a timestamp representing the exact time the packet was sent from ground to 
space). Semantic information about these three data elements consists of valid values for the data element instrument 
name (e.g., spectrometer, or hi-resolution imager), and min value for the timestamp, which states that the timestamp 
for packet sent-time should be less than or equal to the current time on the sending system. This example is 
summarized in Table 3. 

J. Planetary Data System Product 
A Planetary Data System (PDS) product is an archive structure consisting of one or more science data files (e.g., 

image files, calibration files, SPICE files) and a PDS Label file in the ODL format. It can be represented using the 
information object construct. The information object consists of a set of data objects, such as image or SPICE files. 
Each data object is described by a metadata object, the PDS Label. For the SPICE files, metadata objects defined 
data elements such as file name to identify the name of the SPICE file, Orbit Numbers to identify the spacecraft orbit 
numbers that the SPICE file data covers, and Mission Name for which the SPICE file describes the navigation data. 
Each of the data elements for the SPICE files has semantic constraints. For instance, the mission name element’s 
value must be a valid PDS mission. The orbit number element’s value must be a valid orbit number from the 
mission. The file name of the SPICE file must exist in the PDS volume. For each the image file data objects, there 
are single metadata objects containing the data element image dimensions, which describes the width and height of 

Data Object Metadata Object 
Name Type Data 

Element 
Data 
Element 
Type 

Semantic Constraints 

Ground 
Station 
Name 

String None 

Packet-Sent 
Time 

Timestamp ≤ Current System Time 

Command Sequence 
of bits 

Instrument 
Name 

String Value:= 
{ }| spectrometer, hi-resolution imagera a ∈   

 
Table 4. A Planetary Data System product information object 

Data Object Metadata Object 
Name Type Data 

Element 
Data 
Element 
Type 

Semantic Constraints 

File Name String Must exist in the volume 

Orbit 
Numbers 

Long 
Integer 

Must be valid orbit within the mission 

SPICE files Set of 
ancillary 
spacecraft 
data files 

Mission 
Name 

String Must be valid PDS Mission 

Image Files Raster 
Image 

Image 
Dimensions 

W x H 
image 
dimensions 

Dimensions must not exceed 1024 pixels by 
768 pixels 
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the image in pixels. There is a single semantic constraint on this element; for example, in this case, the width of the 
image must not exceed 1024 pixels, and the height must not exceed 768 pixels. This example is summarized in 
Table 4. 

K. Space Link Extension (SLE) Service Management Objects 
CCSDS is developing standards to support automation of requests between agencies for managing space link and 

SLE services known as ‘SLE-SM. SLE-SM defines a set of information objects called service management objects 
for automating the exchange of SLE-SM information. The service request includes the service agreement, 
configuration profiles, trajectory predictions, and service packages. The SLE Service Management Objects can be 
modeled as an information object in the same fashion shown in previous examples. The SLE Service Management 
information object would consist of a set of data objects including a service agreement, trajectory prediction 
constraints, a forward carrier agreement.  Each data object would have a corresponding metadata object. In Table 5, 
the Trajectory Prediction Constraints data object has a metadata object associated with it that contains three data 
elements: Maximum Size Storage, of type long integer, that represents the maximum amount allowed for storage by 
a content manager (CM); Allowed Trajectory Formats is a list of acceptable CCSDS and non-CCSDS formats that 
this service agreement defines; and Operation Timeout Limits is a list of timeout values on operations involved in 
this service agreement. Examples of semantic constraints in the above metadata objects would be verifying that the 
operation timeout limits do not exceed pre-specified values, that the formats correspond to known mime type 
specifications, and checking to ensure that the maximum size storage does not exceed a pre-specified value. 

 
Table 5. SLE Service Link Exchange information object 

 

 

Data Object Metadata Object 

Name Type Data 
Element 

Data 
Element 
Type 

Semantic Constraints 

Maximum 
Size Storage 

Long integer Maximum CM allowed size of storage does 
not exceed a pre specified value. 

Allowed 
trajectory 
formats 

List Formats conform to standard mimeType 
specifications. 

Trajectory 
Prediction 
Operations 
Constraints 

TBD 

Operation 
Timeout 
Limits 

List Timeouts cannot exceed pre specified value. 

Service 
Agreement 

Aggregatio
n of SLE 
objects 

Service 
agreement 
identifier 

URN Identifier URN should be within an accepted 
SLE namespace 
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V. Related Work 
In this section, we provide information about related space data system projects which use components of RASIM. 
The use of information architecture components in each project is summarized in Table 6. 
 

Table 6. Example Projects Using Related RASIM Concepts 
Project Information Architecture Concepts Used 

OAIS CCSDS reference model describing information objects, 
information packages, archive service object. 

SPACEGRID Uses concept of information objects and registry service objects. 
EOSDIS Uses concepts including meta-models, domain models, metadata 

objects, information objects for a national Earth science program 
within NASA. 

European Data Grid Uses concept of information objects, information packages, archive 
service object, registry service object for a national grid system. 

National Virtual Observatory Uses concepts of information objects, information packages, archive 
service object, registry service object for an international 
astrophysics interoperability effort. 

Planetary Data System Uses concepts of information objects, information packages, archive 
service object, registry service object for a national planetary 
science grid system within NASA. 

L. OAIS 
The CCSDS OAIS reference model has made metadata a key element in terms of the ability to validate ingestion 

of data products and understand data product format, which is a key element of RASIM. OAIS defines the notion of 
an ‘open archive’. An open archive is an archive service object that interacts with three main outside entities:  
Producers, Consumers and Management. In general: 

 
• producers produce Submission Information Packages (SIPs) to send to the OAIS compliant archive; 
• consumers consume Dissemination Information Packages (DIPs) that they retrieve from the OAIS 

compliant archive; 
• management constitutes outside entities responsible for managing data within the archive and are not 

involved in the day-to-day operations of the component. 
 
In addition to SIPs and DIPs, OAIS archives also deal with Archival Information Packages (AIPs), which are 

created within the OAIS archive from SIPs. Within RASIM, the OAIS DIPs, SIPs, and AIPs are each information 
objects conforming to each respective package format specified in the OAIS model. 

 
Figure 11. The Open Archival Information System Reference Model 
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OAIS-compliant archives are in the business of preserving, providing, managing, and collecting information. 
Inherently they are domain specific implementations of the archive service object (recall Section III.G) described 
within RASIM.  

M. GRIDS 
Recent work in the grid community has characterized a class of distributed data interoperable systems as data 

grids14, 15. Data grids involve the identification of (different classes of) metadata objects, used to make 
heterogeneous software systems interoperable.  In the next paragraphs, some overviews of grid projects at various 
space agencies are listed. Each subsection details how the core concepts and components from RASIM are in heavy 
use within each of these large scale projects. 

 
4. SpaceGRID 

ESA’s SpaceGRID Study16 commenced in 2001 and concluded in 2003 with the goal of assessing how ESA 
could infuse grid technology into various Earth observing and space missions to support (1) distributed data 
management, (2) data distribution, (3) data access, and (4) a common architectural approach to designing, 
implementing, and deploying software to support such activities.  The study spanned several different disciplines 
including Earth Observation, Space Research, Solar System Research, and Mechanical Engineering.  Results of the 
study included identification of 240 user requirements for grids, 146 of which were considered ‘common’, denoting 
the fact that the requirement was considered useful for at least three of the study domains.  

The proposed SpaceGRID infrastructure is very similar to the service objects and architectural model described 
in this document. It is a layered architectural model, with client applications at the top-most layer making calls 
through an organizational API.  The organization’s API makes use of grid services, which in turn use grid 
infrastructure to access both ‘hard’ (hardware-based) and ‘soft’ (software-based) distributed resources. 

The data that is made available by grid infrastructure in the ESA report is searched using metadata catalogs.  
These catalogs can be thought of as storing metadata objects, which in turn point to data objects desired by the user.  
Effectively, the grid infrastructure described in the SpaceGRID report is distributing, searching, and delivering 
information objects to users.  

 
5. EOSDIS 

NASA’s Earth Observing System Data and Information System, or EOSDIS, was a preliminary investigation 
into how NASA could support data distribution, processing, archival and storage of Earth science data sets produced 
by Earth observing missions.  EOSDIS was an excellent early example of the problems with state-of-the-art 
information systems technology circa 1996.  So-called “one-off” data systems were being produced across the 
country, and viable data sets could not be accessed, distributed and ultimately used. This required sending data on 
removable media and ultimately increased the amount of time necessary to engage in science.  The goal of EOSDIS 
was to bridge the gap between existing Earth science data systems, and unlock their data, and make it available to 
scientists. 

Many of the conclusions from EOSDIS were early precursors to the study and ultimate adoption and acceptance 
of the grid paradigm.  The relation between EOSDIS and RASIM lies in the fact that EOSDIS is a domain-specific 
example of (1) Earth science specific information objects, (2) Earth science meta-models, (3) Earth science metadata 
objects, and (4) Earth science domain models and ontologies.  

 
6. European Data Grid 

The European Data Grid (EDG) is an EU- and ESA-funded project aimed at enabling access to geographically 
distributed data and computational resources17. EDG uses Globus Toolkit technology to support base grid 
infrastructure and then builds data-specific services on top of the underlying grid infrastructure. These data-specific 
services are services such as replica management, metadata management, and storage management. Because of its 
focus on data and metadata, EDG is highly related to RASIM. The EDG system manages, distributes, processes, and 
archives information objects. The metadata objects are stored in metadata catalogs, and the data objects are stored 
transparently in an underlying storage system. Users use software components, similar to those described in section 
Error! Reference source not found., to query for and retrieve application information objects and information 
packages made available by the EDG system. 
 
7. National Virtual Observatory 

The National Virtual Observatory, or NVO, is an NSF-funded project whose goal is to enable science by greatly 
enhancing access to data and computational resources. NVO uses the Globus Toolkit grid middleware infrastructure 
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to distribute, process, retrieve, and search for astrophysical science data. The shared components within NVO and 
RASIM are: (1) a well defined component architecture, including information objects (or astrophysical data 
products), (2) common models to describe the information objects, and (3) software service objects (in the form of 
grid services) to exchange science data.  

 
8. The C3I Initiative 

NEED TEXT FROM PAUL HERE 
 

VI. Conclusion 
In this paper we presented the Reference Architecture for Space Information Management (or RASIM) and 

illustrated how RASIM stresses the importance of separating software that manages information from the models of 
the information being managed. We discussed the core functional software components defined by RASIM, and the 
information models managed by those software components. We explored the architecture’s utility by providing 
examples of RASIM’s usage within existing space data systems and efforts.  
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