

American Institute of Aeronautics and Astronautics

1

A Reference Architecture for Space
Information Management

Chris A. Mattmann* and Daniel J. Crichton.†
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

J. Steven Hughes‡ and Paul M. Ramirez§
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109and

Daniel C. Berrios**
University of California, Santa Cruz ,NASA AMES Research Center, Moffett Field, CA 94035

We describe a reference architecture for space information management systems that
elegantly overcomes the rigid design of common information systems in many domains. The
reference architecture consists of a set of flexible, reusable, independent models and
software components that function in unison, but remain separately managed entities. The
main guiding principle of the reference architecture is to separate the various models of
information (e.g., data, metadata, etc.) from implemented system code, allowing each to
evolve independently. System modularity, systems interoperability, and dynamic evolution
of information system components are the primary benefits of the design of the architecture.
The architecture requires the use of information models that are substantially more
advanced than those used by the vast majority of information systems. These models are
more expressive and can be more easily modularized, distributed and maintained than
simpler models e.g., configuration files and data dictionaries. Our current work focuses on
formalizing the architecture within a CCSDS Green Book and evaluating the architecture
within the context of the C3I initiative.

I. Introduction
Today’s software systems are growing in complexity, dynamicity, heterogeneity, and becoming increasingly

more costly to operate. Space data systems are no exception to this emerging trend; they are highly distributed,
complex software entities that must manage information from the point of generation, during distribution via one of
many existing CCSDS protocols (e.g., CFDP, Proximity-1), at arrival on Earth, during delivery to processing
centers, distribution to mission personnel and scientists, and ultimately for long-term archiving. Space data systems
should be developed and operated using models of the information that they manage. There are many different
models that need to be managed across an end-to-end space data system. These should include scientific and
engineering data models (e.g., models of images taken on a spacecraft, of control center operations), and even
models of other models (meta-models). To avoid rigidity, however, software used by a space data system should be
flexible: it should be driven by the models that it operates on, and not vice versa.

Current space data systems are not flexible, and are extremely tied to the information on which they operate.
However, they are not unique in this regard. Bio-medical computing systems, science data processing systems, space
flight operation systems all exhibit the same brittle design – software and model tied together – a change in the
model requires a change in the software, a change in the software leads to a change in the model.

* Staff Software Engineer, Modeling and Data Management Systems Section, 4800 Oak Grove Drive, M/S 171-264.
† Principal Computer Scientist, PDS Engineering Node Office, 4800 Oak Grove Drive.
‡ Principal Computer Scientist, Modeling and Data Management Systems Section, 4800 Oak Grove Drive, M/S 171-
264.
§ Staff Software Engineer, Modeling and Data Management Systems Section, 4800 Oak Grove Drive, M/S 171-264.
**Project Scientist: University of California, Santa Cruz, University Affiliated Research Center, NASA Ames
Research Center

American Institute of Aeronautics and Astronautics

2

Over the course of the past three years within the CCSDS Information Architecture Working Group (IAWG), we
have been formalizing a Reference Architecture for Space Data Systems (or RASIM for short) whose goal is to
elegantly tease apart the staunch dependency between software component and software model. RASIM was
inspired by the success of the Object Oriented Data Technology (OODT) project1 that originated at the Jet
Propulsion Laboratory. OODT’s carefully crafted reference architecture consists of a set of eight software
components, and two software connectors that are instantiated and tailored for each deployment domain. Inspired by
OODT, our work within CCSDS has resulted in the formalization of several core software components within
RASIM including those that deal with registries and repositories, data products, archives, and query aggregation. In
addition, the RASIM identifies the core data and metadata models that facilitate interoperability between
information systems domains, and explores the relationships between data, metadata, and meta-metadata within
space data systems. In this paper, we describe RASIM in detail, illustrate its utility through several case studies in
different space data systems including NASA’s Planetary Data System (PDS), and NASA’s Deep Space Mission
Systems (DSMS). The rest of this paper is organized as follows. Section II discusses the data and metadata models
identified within RASIM. Section III discusses the software components identified within RASIM. Section IV
illustrates the applicability of RASIM by applying its models to the PDS, and DSMS. Section V discusses related
efforts in formalizing space data systems architecture, including those within the C3I initiative. Section VI
concludes the paper.

II. Data and Metadata Models within RASIM
RASIM identifies the application information object††. The application information object is the cornerstone of

defining and constructing a data-driven system where models and software function in unison, but are separate
entities. An application information object is an independent, flexible model of the data and corresponding metadata
in an information system, and is meant to be reusable across many information system domains. The main guiding
principle of the information object is to separate the models of information (e.g., data, metadata, etc.) from the actual
implemented system code. In this fashion the software system and the models that describe the information in the
system may both evolve independently of one another.

The information object is composed of the data object, a sequence of bits responsible for physically representing
data, and the metadata object, information about the data object including, but not limited to, structure, semantic,
and preservation information2.

A. DATA OBJECTS
Data objects are either physical objects or digital objects as illustrated in Figure 1. A physical object is a tangible

thing (e.g., a moon rock) together with some representation information bringing to light the fact that any object that
can be described with data is a data object. On the other hand, a digital object is a sequence of bits, representing a
thing that is not tangible (e.g., an electronic document, image file, a ‘folder’ of files). In contrast to the widely cited
OAIS reference model3, RASIM focuses on the digital object specialization of the data object and does not focus on

the physical object specialization.

B. METADATA OBJECTS
Metadata objects provide information (or metadata)

about the data object. Similar to the OAIS reference
model, a metadata object comprises representation and
preservation description information as two broad
classifications of metadata. As shown in Figure 2,
representation information includes structure (syntactic)
and semantic information and preservation information
includes reference, provenance, fixity, and context
information. Metadata objects might be atomic or
comprised of a set of metadata sub-objects. Data objects
and metadata objects are highly interdependent. Without
the metadata object, essentially the data object is just a

self-contained sequence of bits about which nothing is known: systems cannot unlock its information. When a

†† Also used and described throughout the document as an information object.

Figure 1. A Data Object

American Institute of Aeronautics and Astronautics

3

metadata object and data object are present (e.g., an information object), a myriad of capabilities are available to the
user (or system). If the data object is an image, most likely the metadata object will describe what kind of image
(JPEG or ‘raster’ for example). If the metadata object mandates that the data object has a field called pixel, an
examination of a specified (by the metadata object) location within the data object will reveal the value of the pixel.

C. INFORMATION OBJECTS
Information objects (shown in Figure 3) build upon the data and metadata object by logically associating them

together. Information objects are components in information systems architecture that model both a granule of
information (i.e., the bits) and its corresponding metadata. An information object consists of a data object and one or
more metadata objects: the latter models the aforementioned information and metadata properties. The metadata
object can describe the data object’s structure, such as what fields it is composed of, the fields’ valid values (e.g., in
the case of ‘Uplink Speed’, the data may have a controlled list of available speeds such as 1MB or 2MB/sec), and
the semantic relationships between the structural elements (such as ‘Uplink Speed must always equal Downlink
Speed’).

1. Classes of Information Objects

There are several different classes of information objects. For brevity, in this paper we will only focus on three
of the classes, however, many other classes of information objects are currently being classified and identified
within the context of our CCSDS Green Book4. The three fundamental classes of information objects are: (a) the
primitive information object, (b) the standard
information object, and (c) the complex information
object.

Primitive Information Object – A primitive

information object is an information object with simple
metadata information that contains a small amount of
metadata with a data object. Simple metadata indicates
that the only metadata captured for a particular data
object are primitive attributes such as name, format, or
modification date. These are attributes typically
associated with a file in a file system and seldom provide
any information about content or relationships.

Metadata
Object

Representation
Information

Preservation
Description

Structure
Information

Semantic
Information

Context
Information

Reference
Information

Provenance
Information

Fixity
Information

Figure 2. A Metadata Object, Adapted from reference 3.

Figure 3. An information object

American Institute of Aeronautics and Astronautics

4

An example of a primitive information object is a data file
managed in a solid state recorder. Minimal metadata exists for
it other than basic properties that define its name, type, and
size. A name often is used to denote specialized information
about an object. In practice, it is preferable to separate the
name of an object from other information such as creation
date, sequence numbers, etc. Many space data systems have
typically focused on the management of primitive information
objects and have not made metadata objects (with more
complex attributes) first-class citizens

Standard Information Object – A standard information
object is an information object that has well-defined metadata
and a data object. The metadata is an instance of one or more
domain models. The data object can be null. A number of data
systems throughout the space agencies have standard
information objects as part of their system design (incl. the
SpaceGRID study16 by ESA, and NASA’s Planetary Data

System). Standard information objects have been predominately used within archive and science processing data
systems. The metadata for these information objects are often defined by some data description language like XML
and may be stored in an online registry or database to enable effective search and browsing. Increasing emphasis on
constructing end-to-end space information system architectures is suggesting the use of standard information objects
at a variety of stages within the mission pipeline including: observation planning, execution, processing, and
distribution. Standard information objects are applicable across this entire pipeline since it is a mechanism to enable
interoperability between systems as long as the information objects and their associated models are carefully
developed, and not intertwined with the software that supports them.

Complex Information Object – Complex information objects (shown in Figure 5) are information objects that
encapsulate one or more information objects, coupled with a metadata object containing packaging information.
Similar to the OAIS reference model, packaging information is the set of information, consisting primarily of
package descriptions, which is provided to data management to support the finding, ordering, and retrieving of
information holdings by consumers. Additionally packaging information is the information that is used to bind and
identify the components of an information package. For example, it may be the ISO 9660 volume and directory
information used on a CD-ROM to provide the content of several files containing content information and
preservation description information. It also can describe the algorithms and formats of the package structure itself
(e.g., whether or not the package was compressed, which compression algorithm was used, such as ZIP, TAR,‡‡
etc.).

Each information object in a complex information object
includes its own metadata that may or may not correlate
with other metadata from the other information objects in
the package. This makes it difficult to interpret and compare
information objects, even ones that come from the same
repository, unless they conform to a standard meta-model,
e.g., such as the XFDU packaging model6.

The purpose of the complex information object is to
provide the aggregation of related data to the user. It is
assumed that the user typically knows how to use each
information object within the set. If the user does not know
how to correlate the information, then descriptive
information related to the complex information object (such
as index information regarding the individual information
objects in the complex information object) can be used to

deduce package properties.

‡‡ See reference 5 for definitions of ZIP and TAR.

Data Metadata

[0101011110..] Name
Type
Date
….

Primitive Application
Information Object

Figure 4. Primitive Information Object

Example

Figure 5. A Complex Information Object

American Institute of Aeronautics and Astronautics

5

III. Software Components within RASIM
RASIM software components are higher level software components built using primitive data store and retrieval

functions to arrive at complex capabilities. Examples of these capabilities include ingestion of data into repositories,
federated search across heterogeneous repositories using registries, and the like. The set of reference components
within RASIM is not meant to be comprehensive, though the RASIM set represents a sound cross-section of
advanced components that span the typical usage scenarios involved in data systems. The core RASIM software
components are: Repository Service Objects, Registry Service Objects, Product Service Objects, Archive Service
Objects, and Query Service Objects.

D. REPOSITORY SERVICE OBJECT
The repository service object component is depicted in Figure 7. Repository service objects are responsible for

management of an underlying data store object or the physical data store. The repository service object differs from
a data store object by a myriad of properties that are typically considered non-functional. These properties include
scalability, dependability, uniformity, and other quality attributes. In this context, repository service objects provide
the same get and put methods that a typical data store object provides. However, whereas a data store object may not
scale across many underlying physical data stores, may not be dependable 24×7, and may not provide a uniform
software interface, a repository service object is responsible for delivering non-trivial quality of service in each of
these non-functional properties.

Figure 6. A Registry Service Object.

Figure 7. Repository Service Object

American Institute of Aeronautics and Astronautics

6

Its primary interface is a repository request that can be used to manage information objects. Information objects
can be retrieved from the repository via the repository request interface, and a response from the repository is
provided. The repository service object also provides basic get and put capabilities of information objects using the
capabilities of its associated data store object.

2. Taxonomy of Repository Service Objects

Our work within RASIM has led us to identify several different types of repository service objects. Each of the
repository service object types we have identified so far are explained below.

First, repository service objects are identified via their type. Type provides a quantifiable grouping for a family of
repositories with similar functional and non-functional properties. We have identified three key repository types: data
Store, operational archive, and long-term archive. The object properties dimension serves as a general grouping of
various functional and non-functional properties a repository might have. At the time of preparing this paper the properties
dimension covers the entire scope of properties for a particular repository. In the long term however, properties will be
categorized as dimensions of comparison and classification between different repository service objects. Potential
dimensions of repositories include compositionality, referring to the lower-level and higher-level organization of the sub-
components of a repository; supported data objects, referring to the type of data objects that a repository is responsible for
storing; permanence, referring to the non-functional property of how long the data is guaranteed safe and reliable shelter
within a repository; and finally interface richness, referring to the repository’s ability to natively handle either primitive
get/put operations, or higher level operations possibly requiring both querying and processing of data being returned. The
last dimension in the current taxonomy, object description, identifies key services and responsibilities of the repository
when deployed together with a set of other software components. Table 1 lists the current taxonomy and classification of
repositories.

Table 1. Taxonomy of Repository Service Objects

Repository Object Type Object Properties Object Description

Data Store Primitive Component (e.g.,
DBMS, and File system).

Basic Data Store component sits behind
Data Store Object and supports
Repository Interface to get and put data
(lower level data such as streams and
bits).

Operational Archive Component that stores data
products and higher level
products, possibly including
metadata. Supports retrieval of
data products through possibly
complex methods, and
processing. No support for
permanence. Stores products for
short term (e.g., less than 10
years), and allows retrieval of
products.

Advanced Component supporting
retrieval of possibly complex data
products, including their metadata.
Repository where writes are frequent
and reads are frequent. Data products
stored in this type of archive will be
updated and versioned. Examples of
products stored in this archive are
command sequence products sent using
spacecraft telemetry.

Long-term Archive Stores products for long term
archiving, and supports basic
archive functionality.

Archive for long-term preservation of
data products, and data permanence.
Supports basic archive functional
interfaces (e.g., get, put).

E. REGISTRY SERVICE OBJECT
The registry service object component provides an interface to retrieve metadata objects. There are two special

types of metadata objects which most current registries are able to return, other than the basic metadata object
aforementioned. The first type is a service description metadata object. A service description is some metadata
document that describes the basic components of a service, such as its interface and its accepted parameters and
values; a Web Services Description Language (WSDL) document7 would be an example of this. The second type of

American Institute of Aeronautics and Astronautics

7

metadata object returned by most registry service objects is the resource metadata object. A resource metadata
object is typically simple keyword-value paired information about an information object, such as an individual
science data product, or a science data set. The registry service object returns metadata objects which satisfy a
particular query expression provided by the user of the metadataQuery interface. Figure 6 depicts a registry service
object.

Similar to the repository service object, there also exist different classes of registry service objects. A
representative subset of these classes is identified below.

3. Taxonomy of Registry Service Objects

We have identified three main classes of registries and then classified them along a particular set of dimensions:
the registry type, the return object types, and query interface parameters.

The three main types of registries are metadata registry, service registry, and resource registry. The metadata
registry returns structural information describing the structure of the metadata. This is sometimes referred to as a
meta-meta-model. Subsequently, the object returned from a metadata registry is a meta-metadata object. Queries to
the metadata registry are formulated via specification of constraints and values assigned to a set of attributes.
Constraints and values are specified either implicitly by querying the attribute’s properties, or explicitly by
specifying the data element’s identifier.

The service registry provides an interface to search for functional services that perform a needed action specified
by a user. Service registries manage descriptions of service interfaces (called service descriptions), including their
respective locations, methods, and method parameters. New technological standards such as WSDL provide an
implementation-level facility for service descriptions. An additional implementation of a service description and its
respective service registry exists in the form of the Profile Server and Resource Profile components specified in
references8, 9, 10. Service descriptions are important because they describe software methods, software systems, and
Web resources using metadata. Because of this, they can be queried to retrieve a service endpoint (essentially a
pointer to the service’s location), and metadata describing how to invoke the particular service. This helps to
facilitate the use and consumption of services dynamically via software rather than explicit invocations and requests.

The third type of registry, the resource registry, while capable of describing any resource or object, is used
specifically for describing information objects such as science data products and data sets. Science catalogs such as
the SIMBAD Astrophysics Catalog11 are examples of resource registries that serve information objects. Resource
registries can also point to other resource registries to enable discovery of information objects across distributed
registries.

The classification dimensions introduced here effectively categorize the functional properties of each type of
registry, leaving the non-functional classification unspecified at this point. This type of classification of non-
functional registry service properties is very important, and this contribution is an element of on-going work within
the Information Architecture (IA) Working Group. The taxonomy of registry service objects is summarized in Table
2.

Table 2. A Taxonomy of Registry Service Objects

Registry Type Return Object Types Query Interface Parameters

Metadata Registry Data Dictionaries, Data
Elements

Query for Data Element properties,
or Data Element IDs, or Data
Dictionary IDs

Service Registry Service Endpoints, Service
Metadata (interface properties,
interface type, return schema)

Query for Service properties

Resource Registry Data Products, Resource
Registry Locations

Data Resource properties

F. PRODUCT SERVICE OBJECT
The product service object contains a repository service object, coupled with a query object, and a domain

processing or transformation object. The domain processing object is a functional component that provides

American Institute of Aeronautics and Astronautics

8

specialized processing of a data object to transform it from one object type to another. This is critical in the era of
providing on-the-fly processing of data to other users and systems and allows for specialization of a core software
infrastructure on a product-type specific basis. In fact, domain processing objects can be externalized and registered
on a product-type basis so as to require that the object is called as part of the retrieval process. Processing can
involve functions such as science level processing, compression, decompression, scaling (in the case of an image),
format conversion, and many other transformations

The product service object serves as a common interface to heterogeneous data sources and allows for the
querying the information objects (shown as IO in Figure 8) via a query expression. The query expression is passed
along to the internal query object, which in turn evaluates the query expression and transfers it into a sequence of get
calls to the repository service object, including execution of any specialized data processing objects. A product
service object is shown in Figure 8.

G. ARCHIVE SERVICE OBJECT
Archive service objects are responsible for (a) ingestion of data objects into a repository, and (b) ingestion of

metadata objects into an accompanying registry. The ingestion of both metadata and data objects can be performed
using a task processing approach: the users define tasks formulating the ingestion process of information objects
(shown as IO in Figure 9). These tasks can then be managed via a rule-based policy which, given a set of criteria
such as time, task type, ingestion type, etc., determines when a particular task, or set of tasks, should be executed for
a given ingestion. This rule-based task processing is often referred to as workflow10, 12, 13 and can execute
externalized objects such as the Domain Processing Object discussed prior. This would enable a workflow-oriented
archive service to construct a pipeline for ingestion and processing of level science products from missions. The
externalization of a domain processing object would allow science data processors to run on appropriate scalable
hardware, such as computational clusters, constructing an architecture for science processing and archiving. In fact,
this component was implemented for the SeaWinds Earth science instrument that was part of the payload for the
ADEOS II satellite. This type of ingestion process is shown as the ingest service object component in Figure 9.

Figure 8. A Product Service Object

American Institute of Aeronautics and Astronautics

9

Archive service objects
also have the capability of
handling transaction-based
ingestion of data and
metadata objects, similar to
the ingestion interface
described in the OAIS model.
This type of transaction
capability would be provided
by the ingest service object in
Figure 9, managing all
aspects of ingesting an object
into the archive (e.g.,
validation, registration, etc.).
An archive service object is
shown in Figure 9.

H. QUERY SERVICE
OBJECT

The query service object
manages routing of queries in
order to discover and locate
product service objects,
repository service objects and
registry service objects which
contain information to satisfy
user queries. Routing is accomplished by querying registry service objects in order to discover the location of the
appropriate repository, or product service objects to ultimately locate the information objects (shown as IOs in
Figure 10) that satisfy a user’s query. Once the service objects have returned the information objects that satisfy the
query, the information objects are aggregated and returned to the query service object. At that point, the query
service object can perform processing such as packaging, translations to other formats, and other types of advanced
processing. These advanced processing capabilities are shown as the domain processing object in Figure 10 and are
utilized as an externalized component of the product service (recall Section III.F). Figure 10 depicts a query service
object.

IV. Applying the RASIM
architecture

To demonstrate the applicability
of RASIM, in this section we will
model three distinct types of
information objects using RASIM.

For ground data systems, a
spacecraft command message file
information object is discussed. For
archive data systems, a planetary data
system information object is
discussed. Finally, for space data
systems, a service link exchange
(SLE) information object is
discussed.

<<Component>>
Archive

Service Object
1

1

<<Component>>
Ingest

Service Object

<<Component>>
Repository

Service Object

1

1

<<Component>>
Registry Service

Object

1

1

Has A

<<Interface>>
Archive Service

+ingestPackage(IO):Identifier
+retrievePackage(Identifier):IO

Figure 9. An Archive Service Object

Figure 10. A Query Service Object

American Institute of Aeronautics and Astronautics

10

Table 3. A Spacecraft Command Message file information object

I. Spacecraft Command Message File
A spacecraft command message file is a telemetry uplink packet sent from a ground station to a spacecraft. It can

be modeled using an information object. The information object is made up of a sequence of bits representing the
command to be sent to the spacecraft. This bit sequence is mapped to an application information object consisting of
one data object, command sequence. The associated structural information for the telemetry uplink packet consists
of three data elements, ground station name (representing the ground station that sent the command to the
spacecraft), instrument name (representing the instrument on-board the spacecraft that this sequence of commands is
intended for), and packet sent-time (a timestamp representing the exact time the packet was sent from ground to
space). Semantic information about these three data elements consists of valid values for the data element instrument
name (e.g., spectrometer, or hi-resolution imager), and min value for the timestamp, which states that the timestamp
for packet sent-time should be less than or equal to the current time on the sending system. This example is
summarized in Table 3.

J. Planetary Data System Product
A Planetary Data System (PDS) product is an archive structure consisting of one or more science data files (e.g.,

image files, calibration files, SPICE files) and a PDS Label file in the ODL format. It can be represented using the
information object construct. The information object consists of a set of data objects, such as image or SPICE files.
Each data object is described by a metadata object, the PDS Label. For the SPICE files, metadata objects defined
data elements such as file name to identify the name of the SPICE file, Orbit Numbers to identify the spacecraft orbit
numbers that the SPICE file data covers, and Mission Name for which the SPICE file describes the navigation data.
Each of the data elements for the SPICE files has semantic constraints. For instance, the mission name element’s
value must be a valid PDS mission. The orbit number element’s value must be a valid orbit number from the
mission. The file name of the SPICE file must exist in the PDS volume. For each the image file data objects, there
are single metadata objects containing the data element image dimensions, which describes the width and height of

Data Object Metadata Object
Name Type Data

Element
Data
Element
Type

Semantic Constraints

Ground
Station
Name

String None

Packet-Sent
Time

Timestamp ≤ Current System Time

Command Sequence
of bits

Instrument
Name

String Value:=
{ }| spectrometer, hi-resolution imagera a ∈

Table 4. A Planetary Data System product information object

Data Object Metadata Object
Name Type Data

Element
Data
Element
Type

Semantic Constraints

File Name String Must exist in the volume

Orbit
Numbers

Long
Integer

Must be valid orbit within the mission

SPICE files Set of
ancillary
spacecraft
data files

Mission
Name

String Must be valid PDS Mission

Image Files Raster
Image

Image
Dimensions

W x H
image
dimensions

Dimensions must not exceed 1024 pixels by
768 pixels

American Institute of Aeronautics and Astronautics

11

the image in pixels. There is a single semantic constraint on this element; for example, in this case, the width of the
image must not exceed 1024 pixels, and the height must not exceed 768 pixels. This example is summarized in
Table 4.

K. Space Link Extension (SLE) Service Management Objects
CCSDS is developing standards to support automation of requests between agencies for managing space link and

SLE services known as ‘SLE-SM. SLE-SM defines a set of information objects called service management objects
for automating the exchange of SLE-SM information. The service request includes the service agreement,
configuration profiles, trajectory predictions, and service packages. The SLE Service Management Objects can be
modeled as an information object in the same fashion shown in previous examples. The SLE Service Management
information object would consist of a set of data objects including a service agreement, trajectory prediction
constraints, a forward carrier agreement. Each data object would have a corresponding metadata object. In Table 5,
the Trajectory Prediction Constraints data object has a metadata object associated with it that contains three data
elements: Maximum Size Storage, of type long integer, that represents the maximum amount allowed for storage by
a content manager (CM); Allowed Trajectory Formats is a list of acceptable CCSDS and non-CCSDS formats that
this service agreement defines; and Operation Timeout Limits is a list of timeout values on operations involved in
this service agreement. Examples of semantic constraints in the above metadata objects would be verifying that the
operation timeout limits do not exceed pre-specified values, that the formats correspond to known mime type
specifications, and checking to ensure that the maximum size storage does not exceed a pre-specified value.

Table 5. SLE Service Link Exchange information object

Data Object Metadata Object

Name Type Data
Element

Data
Element
Type

Semantic Constraints

Maximum
Size Storage

Long integer Maximum CM allowed size of storage does
not exceed a pre specified value.

Allowed
trajectory
formats

List Formats conform to standard mimeType
specifications.

Trajectory
Prediction
Operations
Constraints

TBD

Operation
Timeout
Limits

List Timeouts cannot exceed pre specified value.

Service
Agreement

Aggregatio
n of SLE
objects

Service
agreement
identifier

URN Identifier URN should be within an accepted
SLE namespace

American Institute of Aeronautics and Astronautics

12

V. Related Work
In this section, we provide information about related space data system projects which use components of RASIM.
The use of information architecture components in each project is summarized in Table 6.

Table 6. Example Projects Using Related RASIM Concepts
Project Information Architecture Concepts Used

OAIS CCSDS reference model describing information objects,
information packages, archive service object.

SPACEGRID Uses concept of information objects and registry service objects.
EOSDIS Uses concepts including meta-models, domain models, metadata

objects, information objects for a national Earth science program
within NASA.

European Data Grid Uses concept of information objects, information packages, archive
service object, registry service object for a national grid system.

National Virtual Observatory Uses concepts of information objects, information packages, archive
service object, registry service object for an international
astrophysics interoperability effort.

Planetary Data System Uses concepts of information objects, information packages, archive
service object, registry service object for a national planetary
science grid system within NASA.

L. OAIS
The CCSDS OAIS reference model has made metadata a key element in terms of the ability to validate ingestion

of data products and understand data product format, which is a key element of RASIM. OAIS defines the notion of
an ‘open archive’. An open archive is an archive service object that interacts with three main outside entities:
Producers, Consumers and Management. In general:

• producers produce Submission Information Packages (SIPs) to send to the OAIS compliant archive;
• consumers consume Dissemination Information Packages (DIPs) that they retrieve from the OAIS

compliant archive;
• management constitutes outside entities responsible for managing data within the archive and are not

involved in the day-to-day operations of the component.

In addition to SIPs and DIPs, OAIS archives also deal with Archival Information Packages (AIPs), which are

created within the OAIS archive from SIPs. Within RASIM, the OAIS DIPs, SIPs, and AIPs are each information
objects conforming to each respective package format specified in the OAIS model.

Figure 11. The Open Archival Information System Reference Model

American Institute of Aeronautics and Astronautics

13

OAIS-compliant archives are in the business of preserving, providing, managing, and collecting information.
Inherently they are domain specific implementations of the archive service object (recall Section III.G) described
within RASIM.

M. GRIDS
Recent work in the grid community has characterized a class of distributed data interoperable systems as data

grids14, 15. Data grids involve the identification of (different classes of) metadata objects, used to make
heterogeneous software systems interoperable. In the next paragraphs, some overviews of grid projects at various
space agencies are listed. Each subsection details how the core concepts and components from RASIM are in heavy
use within each of these large scale projects.

4. SpaceGRID

ESA’s SpaceGRID Study16 commenced in 2001 and concluded in 2003 with the goal of assessing how ESA
could infuse grid technology into various Earth observing and space missions to support (1) distributed data
management, (2) data distribution, (3) data access, and (4) a common architectural approach to designing,
implementing, and deploying software to support such activities. The study spanned several different disciplines
including Earth Observation, Space Research, Solar System Research, and Mechanical Engineering. Results of the
study included identification of 240 user requirements for grids, 146 of which were considered ‘common’, denoting
the fact that the requirement was considered useful for at least three of the study domains.

The proposed SpaceGRID infrastructure is very similar to the service objects and architectural model described
in this document. It is a layered architectural model, with client applications at the top-most layer making calls
through an organizational API. The organization’s API makes use of grid services, which in turn use grid
infrastructure to access both ‘hard’ (hardware-based) and ‘soft’ (software-based) distributed resources.

The data that is made available by grid infrastructure in the ESA report is searched using metadata catalogs.
These catalogs can be thought of as storing metadata objects, which in turn point to data objects desired by the user.
Effectively, the grid infrastructure described in the SpaceGRID report is distributing, searching, and delivering
information objects to users.

5. EOSDIS

NASA’s Earth Observing System Data and Information System, or EOSDIS, was a preliminary investigation
into how NASA could support data distribution, processing, archival and storage of Earth science data sets produced
by Earth observing missions. EOSDIS was an excellent early example of the problems with state-of-the-art
information systems technology circa 1996. So-called “one-off” data systems were being produced across the
country, and viable data sets could not be accessed, distributed and ultimately used. This required sending data on
removable media and ultimately increased the amount of time necessary to engage in science. The goal of EOSDIS
was to bridge the gap between existing Earth science data systems, and unlock their data, and make it available to
scientists.

Many of the conclusions from EOSDIS were early precursors to the study and ultimate adoption and acceptance
of the grid paradigm. The relation between EOSDIS and RASIM lies in the fact that EOSDIS is a domain-specific
example of (1) Earth science specific information objects, (2) Earth science meta-models, (3) Earth science metadata
objects, and (4) Earth science domain models and ontologies.

6. European Data Grid

The European Data Grid (EDG) is an EU- and ESA-funded project aimed at enabling access to geographically
distributed data and computational resources17. EDG uses Globus Toolkit technology to support base grid
infrastructure and then builds data-specific services on top of the underlying grid infrastructure. These data-specific
services are services such as replica management, metadata management, and storage management. Because of its
focus on data and metadata, EDG is highly related to RASIM. The EDG system manages, distributes, processes, and
archives information objects. The metadata objects are stored in metadata catalogs, and the data objects are stored
transparently in an underlying storage system. Users use software components, similar to those described in section
Error! Reference source not found., to query for and retrieve application information objects and information
packages made available by the EDG system.

7. National Virtual Observatory

The National Virtual Observatory, or NVO, is an NSF-funded project whose goal is to enable science by greatly
enhancing access to data and computational resources. NVO uses the Globus Toolkit grid middleware infrastructure

American Institute of Aeronautics and Astronautics

14

to distribute, process, retrieve, and search for astrophysical science data. The shared components within NVO and
RASIM are: (1) a well defined component architecture, including information objects (or astrophysical data
products), (2) common models to describe the information objects, and (3) software service objects (in the form of
grid services) to exchange science data.

8. The C3I Initiative

NEED TEXT FROM PAUL HERE

VI. Conclusion
In this paper we presented the Reference Architecture for Space Information Management (or RASIM) and

illustrated how RASIM stresses the importance of separating software that manages information from the models of
the information being managed. We discussed the core functional software components defined by RASIM, and the
information models managed by those software components. We explored the architecture’s utility by providing
examples of RASIM’s usage within existing space data systems and efforts.

Acknowledgments
This effort was supported by the Jet Propulsion Laboratory, managed by the California Institute of Technology.

R. Roshandel provided valuable input into earlier versions of this paper. The authors would like to acknowledge the
contributions of the CCSDS Information Architecture Working Group, who provided helpful suggestions and input
into material used in this document. The authors would like to acknowledge the financial support of Peter Shames
and the JPL Data Standards program.

References

1. Mattmann, C., Crichton, D., Medvidovic, N., and Hughes, J. S. A Software Architectural Framework for Highly
Distributed and Data-Intensive Scientific Applications. Proc. of the 28th International Conference on Software
Engineering, Shanghai, China, May 2006.

2. The Data Description Language EAST Specification (CCSD0010). Recommendation for Space Data System
Standards, CCSDS 644.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, November 2000.

3. Reference Model for an Open Archival Information System (OAIS). Recommendation for Space Data System
Standards, CCSDS 650.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, January 2002.

4. Information Architecture Reference Model. Draft Informational Report, CCSDS-312.0-G-0. Draft Green Book – Issue
1. Washington D.C., CCSDS, March 2006.

5. Hyperdictionary. http://hyperdictionary.com/
6. Lou Reich. “XML Packaging for the Archiving and exchange of Binary Data and Metadata.” In Proceedings of the

2003 Open Forum on Metadata Registries (Santa Fe, New Mexico). 2003. http://metadata-standards.org/
7. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. Web Services Description Language (WSDL) 1.1. W3C

Recommendation, 2001, http://www.w3.org/TR/wsdl
8. Crichton, D., et al. A Component Framework Supporting Peer Services for Space Data Management. In Proc.of the

2002 IEEE Aerospace Conference (Big Sky, Montana), 2639-2649. Piscataway, NJ: IEEE, 2002.
9. Crichton, D., Hughes, J.S. and Kelly, S. A Science Data System Architecture for Information Retrieval. In Clustering

and Information Retrieval, edited by W. Wu, H. Xiong, and S. Shekhar, 261-298. Network Theory and Applications.
Norwell, Massachusetts, USA, and Dordrecht, The Netherlands: Kluwer, 2003.

10. Deelman, E et al. Mapping Abstract Complex Workflows onto Grid Environments. Journal of Grid Computing 1, no.
1 (2003): 9-23.

11. The SIMBAD Astronomical Database. Centre de Données Astronomiques de Strasbourg. http://cdsweb.u-
strasbg.fr/Simbad.html

12. Blythe, J., Deelman, E., and Gil, Y. Automatically Composed Workflows for Grid Environments. IEEE Intelligent
Systems 19, no. 4 (July/August 2004): 16-23

13. Deelman, E., et al. Grid-Based Galaxy Morphology Analysis for the National Virtual Observatory. In Proc.s of the
2003 IEEE Conference on Supercomputing (Phoenix, AZ). Los Alamitos, CA, USA: IEEE Computer Society, 2003.

14. Chervenak, A. et al.. A Framework for Constructing Scalable Replica Location Services. In Proc.s of the 2002
ACM/IEEE Conference on Supercomputing (Baltimore, Maryland), 1-17. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2002.

15. Chervenak, A., et al. The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets. Journal of Network and Computer Applications 23 (2001): 187-200.

American Institute of Aeronautics and Astronautics

15

16. SpaceGRID Study Final Report. SGD-SYS-DAT-TN-100-1.2. Issue 1.2. SpaceGRID Consortium, 2003.
17. Roberto Puccinelli. “An Introduction to DataGrid.” Illustrated by Aldo Stentella. March 2004. The DataGrid Project.

<http://web.datagrid.cnr.it/LearnMore/index.jsp>

