
DRAFT

Built But Not Used, Needed But Not Built:
Ground System Guidance Based On

Cassini-Huygens Experience

Barbara S. Larsen**

Jet Propulsion Laboratory, Pasadena, CA, 91320 U.S.A.

These reflections share insight gleaned from Cassini-Huygens experience in supporting
uplink operations tasks with software. Of particular interest are developed applications that
were not widely adopted and tasks for which the appropriate application was not planned.
After several years of operations, tasks are better understood providing a clearer picture of
the mapping of requirements to applications. The impact on system design of the changing
user profile due to distributed operations and greater participation of scientists in operations
is also explored. Suggestions are made for improving the architecture, requirements, and
design of future systems for uplink operations.

I. Introduction
It is common wisdom in the development of complex systems, of which the Cassini-Huygens uplink ground

system is certainly an example, that the requirements are fully understood about the time the system is retired. While
we anticipate several more years of successful operation in our tour of Saturn, we now have enough experience to
reflect on how the design and development would have been done differently if we had known a decade ago what
we know now. The focus is not primarily on missteps in software development, since the relevance of many of those
would be diminished by changes in technology. It is rather on ways in which people and processes have changed,
particularly because of the shift in paradigm due to distributed operations, so that tasks needing software support are
different than anticipated. It also looks at the need for software support of small (typically unglamorous) tasks done
repetitively by dozens of people. By analyzing needs that were inadequately met, we aim to enlighten the definition
efforts of future projects.

Planning (i.e. constructing a conflict-free timeline of activities) is one task which has evolved considerably over
the life of the mission. In earlier and simpler missions, planning was done largely by specialists at JPL. In contrast
the plan for Cassini was largely constructed in meetings, often by teleconference. The participants included not only
engineers but also scientists from multiple instrument teams at various institutions around the globe. They needed
not a rigorous analysis of the validity of proposed plan (although this is, of course, eventually essential) but a quick,
uncomplicated assessment of the viability of an option. Tools that weren’t ready when this early planning was done,
that required detailed input, or that ran slowly on dedicated hardware at JPL fell by the wayside. Tools built outside
the formal ground system development and not anticipated in the original design sprung up to fill the void.

Another aspect of distributed operations (and of instrument processors onboard) was dispersing the responsibility
for sequence (commanding) verification and validation. With over 300 flight rules and a like number of constraints
and guidelines, it would have been difficult to accomplish this task without dividing the responsibility. Nonetheless,
it is essential that a collective picture of the results be assembled from the pieces of validation before uplink, a
crucial undertaking that is still inefficiently supported by software.

This paper first addresses addresses delivered applications in the Mission Sequence Subsystem that are used less
than anticipated exploring the reasons that have impeded their adoption. The second section considers tasks for
which no formal application was planned. Some of these are now supported by software built outside the formal
ground development. Other needs are yet unmet with software.

* Cassini Science Planner, m/s 230-205, 4800 Oak Grove Dr.

American Institute of Aeronautics and Astronautics

1

DRAFT

II. Underused Applications and Causes for Lack of Use
The Cassini Mission Sequence System has been successfully used to produce over a million commands for the

spacecraft. A number of workhorse applications are run day in and day out by engineers, scientists, and science
planners to design science pointing, manage data storage and bandwidth, and convert activities to commands with
attendant validation. However, other applications within the subsystem are not utilized as extensively as envisioned
by the ground system developers. The analysis below considers the reasons that these tools have been less successful
in supporting uplink operations and makes suggestions for future systems design.

A. Unwarranted Modeling and Simulation Fidelity
Operation of deep space robotic spacecraft would not be possible without high fidelity modeling and simulation

both to ensure achievement of unique science observations and to preserve the health and safety of the system. Thus
both the science community and the engineering community have vested interests in the availability of tools with
high fidelity models. Why not extend this fidelity to planning tools? The fidelity does not come without cost—it
extends development times, complicates usage, and slows performance. Strategic planning—the division of time
among scientific goals and the negotiation of contested resource—does not require this extreme fidelity. For this
integration, the costs of the “last mile” outweigh the advantages of having a usable product with performance that
supports repeated iteration early in the ground system development cycle. Also, the set of characteristics modeled
needs to correspond to user concerns for the task at hand. For example, APGEN, [description tbs], copied too much
from the engineering simulations of the nuance of pointing design but did not adequately address the points of
planning contention such as agreements on secondary axis pointing. It rigorously modeled the format of telemetry
recording and downlink, but largely ignored the contention for bandwidth and storage. The performance versus
fidelity trade-off is also different for the planning tools than it is for the engineering validation tools. By the time a
full sequence is run through the high fidelity simulations, most of the issues will have been resolved by piece-wise
analysis or can be resolved with limited involvement of the science teams. In contrast, during the early planning
processes evaluating the validity of the design will be a central concern requiring repeated iteration to resolve both
resource and flight rule conflicts. For this purpose, a faster tool with close approximations is more useful than a level
of fidelity that is too slow to run repeatedly.

B. Interface, Not Handover
As mentioned previously, the Cassini uplink process is built on successive refinement from plan to preliminary

implementation to final validation and polishing. Each of these phases employs tools that require as fundamental
input the specification of the intended spacecraft activity. It is obviously inconvenient to re-specify the same activity
for each phase of the sequence development. Unfortunately, to avoid this re-entry, the sequence system design called
for using the output of the planning process as the input to the command generation. So, for example, the activity
planner provides as output that which the sequence generation tool expects as input. The science opportunity
analyzer provides as output that which the pointing design tool expects as input. The drawback to this approach is
that the planning tools then require complete specification of all the parameters necessary for command generation,
which significantly impedes ease of use and requires all planners including scientists to fully understand the
parameters of detailed design. To the extent that development dollars allowed, this was mitigated in the Science
Opportunity Analyzer with different modes of operation. Simplification of planning tools by hiding parameters that
have a nominal value for a large percentage of instances or that represent optimization rather than basic design
would have made them easier and faster to use and thus more popular. Other mechanisms could have been employed
to manipulate the product formats at the interface for further refinement in the detail driven tools.

C. Timely Delivery
For essential tools whose use is required by the project, user response to development schedules that slip or lag

needed use is limited to grumbling. They will be obliged to endure bugs, to put up with awkward workarounds, to
live without desired features. It cannot be overemphasized that this model does not apply to tools whose use is not
mandated. Largely because of management decisions to delay the start of development, Cassini planning tools such
as Science Opportunity Analyzer were not mature when intensive integration of science activities started in 2001.
From the users’ perspective these tools lacked too many features to adequately support the analysis required or were
too buggy to produce reliable results. As described in the second part of this paper, the planners devised other ways
to get the tasks done. They did not, however, revert to the formally delivered tools as these were improved and
matured. This is a critical consideration for schedule development of auxiliary tools—if the tool is not available and

American Institute of Aeronautics and Astronautics

2

DRAFT

usable early in the period when needed, there is significant risk that even its eventual adoption will be impeded. If
the investment necessary to deliver on time is not possible, late push-up may be useless to compensate.

D. Platform Accessibility
For previous flagship missions, most computing was done on project computers in the JPL operations area. No

one other than the ground data system engineers had to worry about platform choice. Users did not generally have
experience with alternative platforms nor were they likely to field requirements like cost, portability, or available
software environments (such as matlab or IDL or Java 3D). In contrast, the scientists planning activities for the
Cassini tour were exposed in other contexts to hardware that was, in most respects, superior to that in the Cassini
ground system. Official software was delivered on Sun workstations that were already several years old when
intensive science planning kicked in with performance inferior to individuals’ personal computers. The supported
platforms were too expensive to replace or to procure at secondary sites. The software also could not be referenced
from the meeting venues were the analysis of opportunities and computations in support of resource allocation were
needed in real time. That supported platform was indeed a significant factor in tool adoption was borne out by a
substantial increase in demand for the Science Opportunity Analyzer when the decision was finally made to deliver
a version for Windows and for Linux. The drivers such as cost and institutional support that steer the selection of a
platform for project mandated tools cannot be assumed to suffice for optional support.

E. Awareness and software accessibility
The Cassini ground system development budget did not stretch to cover user friendly delivery and usage

documentation. User support was also limited. As a result, many of the remote users are unaware of the availability
of utility programs. Development of additional utilities was discouraged by the difficulty of making them accessible
in a user friendly fashion.

III. Tasks with Late or Insufficient Software Support

While essential software support for the uplink process is provided by the Cassini ground system, some tasks

would be improved with support other than that in the ground system design. This is particularly true of those tasks
that are fundamentally different in either function or process from previous missions either because Cassini itself is
different or because of distributed operations. Two categories of such tasks are illustrated in this section. One is
needs which still have inadequate software support and thus require additional staffing to accomplish. The other
describes needs that were met with tools developed outside the formal ground system development. The successful
impact of these on uplink processes suggests the need for reconsideration of the ground system architecture to allow
adoption into the system of tools developed outside it.

A. Summary View of Distributed Analysis Results
The complexity of Cassini compounded by the complexity of distributed operations demands that numerous

avenues of sequence verification and validation are pursued through several repetitions. Sequence checks are made
by members of the science integration teams, science planners serving as virtual team leads, spacecraft team
engineers, sequence leads, the instrument teams and the simulator team. They employ a plethora of software and
processes, using sequence subsystem tools, spacecraft subsystem tools, mission planning tools, data base internal
checks, scripts, team tools, spreadsheets, and hand inspection. Since each sequence passes through at least five ports
of integration and validation, these checks are repeated several times. While this process is inherently complicated,
the complexity of the system offers few alternatives.

From my personal perspective, the largest unmet need is for software and automation support of the re-
integration of the results of the decoupled validation. The same issue, error, or problem is often discovered by
multiple people (which is a good thing) via multiple mechanisms (which is safer but not more efficient than a single
catch point) at multiple times. Although by design the number of actual problems should be less at each checkpoint,
the large majority of checks err on the side of reporting something which may or may not be a problem to reduce the
possibility of missing a true problem. Therefore, even a perfect sequence might have many repetitions of multiple
reports of the same problem.

Sequence validation would be much improved in both accuracy and efficiency with a software mechanism,
perhaps a database, for collecting, correlating, and recording the resolution of detected problems. The analysis for
such a tool would have imposed a systematic enumeration of the errors to be trapped and provided a focal point for
elaboration as the need for additional checks was uncovered. The collective ground system designers would have

American Institute of Aeronautics and Astronautics

3

DRAFT

agreed (although perhaps not easily) on an intentional assignment of the checks to appropriate people, their tools or
processes, and phase of sequence development. The design alone would have imposed some uniformity on error
reporting that would simplify further handling both by software and by human review.

B. Distributed View of Central Analysis from Distributed Inputs
When the conflict-free timelines are integrated into a sequence, refinements are sometimes necessary. The

drivers for these revisions are typically changes in the spacecraft state (especially trajectory) or in the ground
environment due to changes in the DSN station allocation. For example, relatively late in the sequence development
process, when the DSN allocation is relatively stable, it is usually possible to release data volume margin and allow
the collection of more data. This requires negotiation among the various instruments for the available data volume,
cleverly called sponge bits. Additional bits can be made available as long as there is either bandwidth to downlink
them or storage on the SSR. Optimal allocation thus requires knowing fairly precisely how many additional bits
each instrument would like over each period. If each team simply requests what they would like without knowing
what other instruments are requesting, the demand is always higher than the supply. Since time for iteration is
limited, suboptimal allocations suffice.

The cutting edge of web-based applications is now exploring pages that allow simultaneous, interactive input
from multiple users. As this matures, one could envision web-based applications for spacecraft uplink development
wherein each distributed teams specifies their desired resource allocation, the central processing tool evaluates the
net resource consumption based all user requests, and nearly immediately reports in a view visible to all those
supplying input. Immediate iteration would then be possible so with no more work than the current process more
optimal resource allocation could be completed.

C. Automation for mechanical, trivial, repetitive, low-level tasks and process flow
Perhaps because automation of spacecraft operations has vigorously pursued accomplishing even cognitively

challenging tasks or perhaps because the Cassini software development budget was stressed just by its major
applications, many of the menial steps in sequence development remain manual. A personal aggravation is the hand
calculation of duration by subtracting two UTC times. As another example, recall that there is no central mechanism
for capturing and reviewing sequence critique. To make the various reports available to all sequence contributors,
the results from each of the reviewing parties are posted to a web page devoted to that sequence. Since each
sequence goes through at least five cycles and is reviewed by fifteen or more analysts, the posting of that material to
the web page is an example of a trivial but frequent task that ought to be automated.

D. Distributed Planning Without Access to Ground System Workstations
After the tour design was available, a science plan representing the allocation of time, pointing, power, and data

volume (all of which are over-constrained) was needed. In the past this might have been done by a select group of
scientists working together at JPL, Cassini chose to use discipline-focused groups of scientists in order to share the
responsibility and divide the workload.1

The interaction of these groups was different from previous experience. Not only were they not co-located,
working largely by telecon, but they were also not at project workstations. For this interactive but distributed
integration, they needed fast, easy to use, planning tools accessible from meeting rooms to provide the kinds of
information cited in the table below. As described in the first section of this paper, the project planning tools did not
satisfy these requirements especially early in the process. Various participants in this effort filled this hole with
informal software tools aimed at supporting integration decisions.

These tools made significant contributions to the integration process. Independent development conveyed
significant advantages over formal ground system development some examples of which include rapid redelivery in
early phases when new features are added at a rapid pace and when bugs need to be fixed quickly. However, they
have remained separate from the overall ground system design. Future missions should consider a ground system
architecture which explicitly allocates requirements that cannot be met, whether for functionality or delivery speed,
to a more flexible subsystem which does not impose the burdens associated with critical path software but affords
some of the advantages of uniform delivery

American Institute of Aeronautics and Astronautics

4

DRAFT

Table 1. INTEGRATION NEEDS SUPPORTED BY UNPLANNED SOFTWARE

FUNCTION SOURCE
Turn Time Estimation CTV—Cassini Turn Visualizer

Brad Wallis, Science Planner
Visualization of Geometric Constraints i. CTV—Cassini Turn Visualizer

Brad Wallis, Science Planner
ii. Forbidden Zone Plot
Frank Crary, CAPS Scientist

2D Visualization
Fields and Particles Opportunities

MIMI Team

Trajectory Based Opportunity Data:
Range, phase angle, etc.

DIGIT
Dave Seal, Mission Planner

E. Electronic Signature
Some critical decisions including flight rule waivers and sequence change requests require consent verified with

signature of impacted parties. Since the decision maker for the distributed teams is generally not at JPL and since the
time-frame for obtaining the signature is relatively brief, the lead responsible relied on fax transmission of the form
for signature with return fax of the signed paperwork. In addition to incurring costs, the reliability of the approach is
incongruous with the importance of the communication. Ownership of the paper was an issue. Prototype attempts at
electronic signature were overly ambitious for the development effort available and did not realize user adoption.
Very recently, Cassini adopted the JPL multi-mission CM system, which provides among its features electronic
signature. It has, however, suffered from the curse of late-adopted software: the advantages are significantly
degraded by the pain of re-training, glitches at introduction, and mismatch of available features to expectations.

F. Proliferation of Products in Non-Standard Formats
The Cassini ground system, even that part at JPL truly deserves the label system of systems, and this complexity

is amplified by association with the distributed operations systems of the instrument teams. In system design, the
analysis of interfaces focused on connectivity. Process definition concentrated on commitments to product delivery
with considerably more focus on content than format of the products. In the absence of detailed interface
specifications, many products created by multiple teams have as many formats as originators. An example would be
the reporting of the team reviews of sequence products for instrument flight rule satisfaction, correct power modes,
and other validation checks. No format is mandated and there is therefore no uniformity. Some teams provide their
report as an Excel spreadsheet, but since other teams do not use Microsoft Office these must be converted to PDF
for review by other teams. With some checklists as spreadsheets, some as email messages, some otherwise captured,
doing anything automated with the raw reports would first entail considerable effort in extracting relevant data.
These problems suggest the wisdom of rigorously defining data interfaces even when a software interface is not
envisioned at design time.

G. File Access and Management for Uplink Tool Use
The distribution of pointing design and sequence generation among the instrument teams meant that far more

users were operating sequence system tools than in previous missions. Furthermore they were dispersed over many
installation locales some not under control of the project. Also, since the sequence development time is significantly
longer than the sequence duration, multiple sequences each of which have multiple ports are in work at the same
time. For these reasons, complaints about initializing tools with the correct inputs were frequent. Some of the remote
sites had difficulty obtaining and maintaining complete file sets. Some errors in file selection were observed. Also
the process represented inefficient distribution—the identical effort to get the input files and construct configuration
files was repeated by dozens of users.

This problem is an example of an unmet need recognized late in ground system development that was met with
flexible design approaches. Since most pieces of the uplink system were already in use, a glueware approach was
used that built around the existing applications rather than significantly altering their code:

Highlights of the restructured system include the following: (a) an electronic version of the master list of correct ancillary
files updated at each stage of sequence development, (b) a script validating the master ancillary list construction and
verifying that named files exist, (c) a translator to make a web page reference from the master list, (d) a new tool which

American Institute of Aeronautics and Astronautics

5

DRAFT

enables single point construction for all applications of sequence specific configuration files based on the master list of
correct files, (e) alterations to the configuration files themselves and to already existing application wrappers so that those
sequence specific specifications can be used, (f) a configuration file naming convention that allows easy recognition of
the appropriate configuration file for the work at hand, (g) expansion of the project database to include the master
ancillary file lists and the configuration files, (h) a logical file structure that provides the application programs a single
view of the ancillary files while allowing different implementations in various subsystem architectures, and (i) active
maintenance of the ancillary input files within the ground system in a manner expected by the applications.2

IV. Conclusion: Ground System Recommendations
Based on the analysis and examples detailed in this paper, we recommend that ground system designers for

complex spacecraft with distributed operations consider the following guidelines:
1. Design the ground system to allow incorporation of unanticipated applications.
2. Recognize that a uniform trade-off of rigor versus development speed may not be suitable for all

supported tasks.
3. Recognize that distinct user communities weigh application tradeoffs (such as fidelity vs. performance)

differently.
4. Realize that integrating results is as essential to distributed operations as dispersing tasks.
5. Exploit technologies for non-homogenous systems such as glueware and adaptable interface

technologies.
6. Look for cost savings in automation of mechanical, trivial, repetitive, low-level tasks.
7. Support tasks in the environment in which they will be performed. A uniform hardware architecture

may not be feasible if this goal is taken seriously.
8. Apply rigorous system engineering practices such as interface definition to processes as well as

software. The data flows will then support later automation with software.

Acknowledgments
This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract

with the National Aeronautics and Space Administration.

References
1 tbs
2 tbs

American Institute of Aeronautics and Astronautics

6

	I. Introduction
	II. Underused Applications and Causes for Lack of Use
	A. Unwarranted Modeling and Simulation Fidelity
	B. Interface, Not Handover
	C. Timely Delivery
	D. Platform Accessibility
	E. Awareness and software accessibility

	III. Tasks with Late or Insufficient Software Support
	A. Summary View of Distributed Analysis Results
	B. Distributed View of Central Analysis from Distributed Inputs
	C. Automation for mechanical, trivial, repetitive, low-level tasks and process flow
	D. Distributed Planning Without Access to Ground System Workstations
	Electronic Signature
	F. Proliferation of Products in Non-Standard Formats
	G. File Access and Management for Uplink Tool Use

	IV. Conclusion: Ground System Recommendations
	Acknowledgments
	References

