N recent years, there has been a strong interest in the architecture and protocol design for challenged network
environments where continuous end-to-end connectivity may not exist and/or round-trip latency can be high.
amples of such Delay Tolerant Networks (DTN) are the interplanetary network, mobile tactical military
networks, and rescue/response networks. In graph theoretic terms, DTN is modeled as a directed multi-graph where

Some ex

Autonomous Congestion Control in
Delay-Tolerant Networks

Scott Burleigh” and Esther Jennings' and Joshua Schoolcraft*
Jet Propulsion Laboratory, Pasadena, CA, 91109

Congestion control is an important feature that directly affects network performance.
Network congestion may cause loss of data or long delays. Although this problem has been
studied extensively in the Internet, the solutions for Internet congestion control do not apply
readily to challenged network environments such as Delay Tolerant Networks (DTN) where
end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-
end rate control is not feasible. This calls for congestion control mechanisms where the
decisions can be made autonomously with local information only. We use an economic
pricing model and propose a rule-based congestion control mechanism where each router
can autonomously decide on whether to accept a bundle (data) based on local information
such as available storage and the value and risk of accepting the bundle (derived from
historical statistics). Preliminary experimental results show that this congestion control
mechanism can protect routers from resource depletion without loss of data.

Nomenclature

acknowledgement
= custody-transfer acknowledgement
Delay-Tolerant Network
conveyance fee per byte upon delivery of a bundle of priority q
= projected net growth in buffer occupancy over interval R
Internet Control Message Protocol
the router’s maximum capacity of all bundle buffers, in bytes
= mean net growth per second over the most recent T seconds
= number of bytes occupied by a given bundle
= current number of bytes that are queued up for transmission at the router
= mean risk rate over interval T
= residual time to live
= Transmission Control Protocol
= time to live

I. Introduction

the link capacities are time varying .

The s

uccess of the Internet depends on many factors. An important one is the end-to-end congestion control
mechanism provided by TCP that prevents congestion collapse. The main idea behind TCP’s end-to-end congestion
control is for each source to be sensitive to resource depletion in the network, to determine the supportable rate of

* Senior
91109.

T Member Technical Staff, Communication Architectures and Research, 4800 Oak Grove Drive M/S 238-343,

Software Engineer, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490, Pasadena, CA

Pasadena, CA 91109.

! Member Technical Staff, Communication Architectures and Research, 4800 Oak Grove Drive M/S 238-420,

Pasadena, CA 91109.

1
American Institute of Aeronautics and Astronautics

data injection into the network. An end-to-end TCP ACK is used to notify a source of data arrival so that the source
can pace its data injection rate accordingly (sources are self-clocking).

However, this technique cannot be applied to DTN directly because we cannot assume continuous end-to-end
paths in the network. Due to potentially intermittent connectivity, we need to design a congestion control
mechanism that does not depend on end-to-end dialogue. Intuitively, the congestion control decisions should be
made autonomously at each router using local information only.

Therefore, we propose to use an economic model and a rule-based congestion control mechanism that relies only
on local state information. The main challenge is to autonomously make local (non-cooperative) decisions to
achieve network performance that maximizes the successfully delivered information value.

II. Background

The performance of a network degrades when congestion occurs. Congestion is caused by heavy traffic load; it
results in data loss due to buffer exhaustion at routers or long delays in data transmission due to retransmission in
response to data loss.

Numerous congestion control mechanisms have been developed for the Internet as well as for wireless networks.
The optimization criteria for these mechanisms may be high throughput and low latency, or high information (in
bits) per unit energy. In Ref. 2, Keshav advanced a theoretical basis for congestion control mechanism design. He
suggested that the key issue was efficient resource allocation and proposed that an economic model can be used to
derive the congestion control mechanism based on resource availability. Similar pricing methods are used by
Heikkinen® and Siris, Briscoe and Songhurst”,

We present an alternative economic model and devise simple rules for each router to make local decisions
autonomously (in non-cooperative fashion) to avoid network congestion in the DTN. The general network
performance objectives we are concerned with are high throughput (information value) and low delay.

The definitions of flow control and congestion control can be found in widely used networking textbooks™®.
Flow control is needed to ensure the destination can handle all of the incoming data from the source; this mechanism
controls the rate of traffic injection by applications into a network. Congestion control is needed when buffers in
routers are oversubscribed; this mechanism minimizes data loss within a network due to buffer space limitations at
routers. Congestion control indirectly induces flow control, but flow control may also be induced on a pairwise
basis in a network that is not congested.

A. Flow Control and Congestion Control in the Internet

In the Internet, continuous end-to-end connectivity is expected; this enables instantaneous rate matching where
transmission rate is always expected to be equal to the arrival rate. Any violation of this expectation (e.g. excessive
transmission rate at a source causing an excessive arrival rate which results in rapid depletion of buffer space) will
trigger immediate corrective action (flow control). Since the signal propagation delays are low in the Internet, any
required corrective action can immediately be performed at the source of the traffic.

Flow control in the Internet is handled end-to-end. TCP at the destination detects growth in its buffer space
occupancy, signifying that the destination application is receiving (from TCP, via a socket) at a slower rate than the
data arrival rate at TCP. TCP at the destination responds by reducing the acknowledgement (ACK) rate, which will
be detected by TCP at the source. Then TCP at the source will reduce its transmission rate. This imposes flow
control at the source application (the source socket) that indirectly relieves the excessive growth rate in buffer space
occupancy at the destination.

Congestion control is handled from router-to-source. Heavy traffic load causes instantaneous growth in buffer
space occupancy at a router — that is, the router is transmitting at a slower rate than the data arrival rate. Two
solutions are available:

1) Explicit: the router sends an ICMP source quench packet to the source, resulting in reduced TCP
transmission rate. As above, the reduced TCP transmission rate imposes flow control at the source
application.

2) Implicit: the router discards datagrams, causing absence of TCP ACK, which causes TCP at the source to
detect reduced acknowledgement rate, again causing TCP at the source to reduce its transmission rate and
imposing (once again) flow control at the source application.

B. Flow Control and Congestion Control in DTN
In DTN, continuous end-to-end connectivity cannot be expected: any single point-to-point link may be disabled
at any moment. Instantaneous rate matching is not expected and instantaneous growth in buffer space occupancy is

2
American Institute of Aeronautics and Astronautics

not anomalous. Only sustained net growth in buffer space occupancy is anomalous, and such anomalies are not
trivially detected binary phenomena: how long is “sustained”?

Unlike TCP, DTN protocols include no end-to-end acknowledgement mechanism that can be the vehicle for
performing the corrective actions at the traffic source immediately. The acknowledgement mechanism that is
available is a hop-by-hop custody transfer acknowledgement (CT-ACK, either custody acceptance or custody
refusal). Even this cannot solve the congestion problem in Internet-like fashion because signal propagation delays
may be high, and the urgent corrective action cannot wait for arrival of a CT-ACK; it must be performed /ocally and
autonomously:

= Flow control can only be local: sustained net growth in buffer space occupancy at the source, for whatever
reason, must result in the imposition of flow control on the source application.

= Congestion control can only be local: sustained net growth in buffer space occupancy at the router,
however caused, cannot be solved by explicit congestion control because a source quench message might
be irrelevant by the time it arrives at the source host. The only plausible option seems to be implicit
congestion control: a router discards a bundle due to resource depletion, causing absence of custody
acceptance (and, eventually, arrival of a custody refusal CT-ACK), which causes sustained net growth in
buffer space occupancy at the current custodian (the upstream router), which in turn causes that bundle
node to discard bundles due to resource depletion, etc. Ultimately the source bundle node detects sustained
net growth in its own buffer space occupancy, resulting in imposition of flow control at the source
application.

III. Method

In short: congestion control in DTN as in the Internet is accomplished by inducing flow control at the
applications that are the source of the excess traffic and, since that flow control is driven by sustained net growth in
buffer space occupancy, a natural way to implement DTN congestion control is to propagate buffer utilization stress
back through the network to the source bundle nodes. We accomplish this by declining to take custody of bundles,
forcing the sending Bundle node to retain the bundles and thereby increasing that node’s local demand for buffer
space, forcing it in turn to refuse custody of bundles, and so on.

Given this strategy, the remaining question is how to determine when to decline to take custody of a bundle in
order to conserve local buffer space prudently. This is where we apply a financial model of buffer space
management. The basic notion is that (a) unoccupied buffer space is regarded as analogous to money and (b)
routing network traffic is regarded as analogous to the daily financial activities of an investment banker.

A. Financial Model

A router has limited buffer space, analogous to the fixed amount of capital a banker has to work with.
Notionally, we imagine that the application that owns the sender and receiver of a bundle will pay a conveyance fee
to get the bundle delivered. The fee will be a function of the bundle size and the transmission priority requested;
the fee is not a function of the number of forwarding hops. (That is, the application is in effect paying a fixed price
for performance rather than a cost-plus price for level of effort.) The banker (router) will receive a commission for
completing one hop of each bundle’s end-to-end route, and the commission will be some fraction of the bundle’s
total conveyance fee.

Accepting custody for an inbound bundle for forwarding equates to a banker buying a non-interest-bearing
debenture: the bundle is acquired at the cost of certain amount of free buffer space.

A standard feature of the DTN bundle protocol is that every bundle is assigned by the issuing application a time
to live (TTL), which is the length of time following initial transmission after which the bundle, if not yet delivered to
its destination, may be assumed undeliverable (at least, undeliverable in a timely manner) and may therefore be
deleted from the network. The bundle’s TTL corresponds to the due date on a debenture: the “banker” knows that,
in the worst case, he will recover his investment capital (buffer space) when the TTL expires. However, the
banker’s rate of compensation — his commission — is a function of his rate of conveyance activity (traffic,
throughput). That is, the router’s incentive is to accept the largest possible volume of traffic (that is, number of
bytes of bundle payload, weighted by priority as discussed below) per unit of time. As the router’s resources are
limited, in order to convey a large volume of traffic the router must move the traffic (find “buyers” for it) as rapidly
as possible so as to free up his investment capital for new purchases. That is, the constraint on the activity of the
router is in essence “cash flow”, which limits his ability to accept (“purchase”) new bundles.

There is a negative incentive to accept custody of bundles with large TTLs, i.e., there is a higher risk that this
bundle may tie up its allocated buffer space for a long time because one cannot predict how fast this bundle will sell
(be forwarded). The risk is the chance of experiencing the worst-case scenario, in which the router never manages

3
American Institute of Aeronautics and Astronautics

to forward the bundle — the banker never finds a buyer for the debenture — and is forced to hold it to maturity (TTL
expiration). This would crowd out the router’s ability to accept other bundles that are potentially more marketable
and would therefore reduce his compensation.

B. Rule-Based Congestion Control Mechanism

We implement negative purchasing decisions by refusing to accept bundles for forwarding. Refusing a bundle
that is flagged for custodial forwarding constitutes an explicit custody refusal, which results in transmission of a
Custody refused message. But whether the refused bundle is flagged for custody transfer or not, discarding it
relieves buffer distress at the receiving router.

Imagining oneself as a bundle banker, one would freely use one’s capital to purchase bundles until the remaining
capital balance is reduced to a level that makes one uneasy, and at that point one would start to economize: one
would spend less readily on high-risk bundles. When one’s available capital increases (when cash flow improves or,
in bundle protocol terms, when one’s outbound bundles begin to be accepted by downstream forwarding nodes so
that one’s buffer space can be reclaimed), one’s uneasiness begins to diminish and one tends to take a little more risk
in buying, knowing that one is making purchases for which one is more confident there is a market.

Let N = the number of bytes occupied by a given bundle.

Let Q = the current number of bytes (aggregating all bundles occupying buffer storage) that are queued up for
transmission at the router.

Let K = the router’s maximum capacity of all bundle buffers, in bytes.

Rule I: if (Q + N) > K, refuse the bundle.

Otherwise, consider worst-case opportunity cost in order to decide whether or not to reject the bundle.

The residual TTL (RTTL) of a bundle, R, is the remaining number of seconds before the bundle expires, i.e.,
before the bundle may be discarded from buffers.

Net growth in buffer space occupancy over a given interval is the sum of the sizes of all bundles accepted
(inserted into buffer space) over that interval minus the sum of the sizes of all bundles successfully forwarded
(removed from buffer space) over that interval.

Assume that records are kept regarding net growth in buffer space occupancy such that Mr, the mean net growth
per second over the most recent T seconds, can be computed for any value of T.

Let G be the projected net growth in buffer occupancy over interval R; we compute it as

G, =RxM, (1)
The worst-case total number of bytes D of bundle payload that might have to be refused due to acceptance of
custody of a given bundle is computed as

D=(G,+0+N)-K ()

That is, accepting custody of a bundle has a cost (a worst-case opportunity cost) only if D > 0, i.e., if available
buffer space might completely fill before the bundle is either forwarded or discarded. Otherwise it has no real cost
at all; there is no reason to reject the bundle.

Rule 2: if D <= 0, then accept the bundle (the projected usage of buffer space is less than the total buffer
capacity).

If D > 0, then we must compute the bundle’s acceptance risk in order to decide whether to accept this bundle
(and potentially be compelled to refuse some future bundles) or, alternatively, refuse this bundle so that we can
accept future bundles of potentially higher value.

It is at this point that priority becomes a factor. In addition to TTL, every bundle is assigned by the issuing
application a priority level that indicates the application’s assessment of the urgency of getting this particular bundle
successfully delivered. Notionally, the conveyance fee “charged” for conveying a bundle of a given size through the
network will vary depending on the specified priority. Let Fq be the conveyance fee per byte that is charged upon
delivery of a bundle whose priority is q; then the total fee P that will be charged upon delivery of a bundle of length
N and priority q is given by

P=(NxF,) 3)

The value of accepting a given bundle is some function of (i.e., is the commission on) the fee that will be
charged upon delivery of the bundle, P. That is, the router (banker) has positive incentive to accept custody of
bundles, with a bias toward bundles of high priority.

Assume that records are kept regarding the aggregate value of bundles accepted in the past such that Vr, the
mean value accepted per second over the most recent T seconds, can be computed for any value of T.

4
American Institute of Aeronautics and Astronautics

The risk of accepting a given bundle is the worst-case number of byte-seconds of buffer space that may be
consumed by this bundle. It is simply the product of the bundle’s size, in bytes, and its residual TTL.

Assume that records are kept regarding the aggregate risk of bundles accepted in the past such that Ry, the mean
risk accepted per second over the most recent T seconds, can be computed for any value of T.

The risk rate of a given bundle is its risk divided by its value.

The mean risk rate over interval T is the mean risk Ry for that interval divided by the mean value Vr for the
same interval.

Rule 3: if the risk rate of a given bundle exceeds the mean risk rate over the bundle’s residual TTL, then the
bundle is of above-average risk; refuse it. Otherwise, accept the bundle.

C. Discussion

The congestion control algorithm is always applied, whether the inbound bundle is flagged for custody transfer
or not. If the bundle is non-custodial and the congestion decision is to refuse it, then the bundle is simply lost; this is
exactly analogous to UDP datagram loss in a congested IP-based network.

When the decision is to accept the bundle and the bundle is custodial, a custody acceptance message is sent back
to the current custodian (nominally, the proximate sender). Reception of this message causes the bundle to be
removed from the custodian's buffers, reducing buffer space occupancy and net buffer space occupancy growth, and
thus relieving congestion at the custodian. This is somewhat analogous to the function of the ACK in TCP.

When the decision is to refuse the bundle and the bundle is custodial, a custody refusal message (an explicit
NAK) is sent back to the current custodian. Reception of this message triggers retransmission of the bundle
(potentially on a different route and/or at a time when the proximate recipient is less congested and better able to
receive the bundle). At the same time, the absence of a custodial acceptance message — whether the custodial refusal
message arrives or not — triggers congestion control: congestion pressure at the current custodian remains unrelieved
because the custodial bundle remains in the custodian's buffers, causing net buffer space occupancy to increase over
time.

Note that this is unlike TCP/IP, which normally relies on timer expiration (an implicit NAK) to trigger both
segment retransmission (potentially on a different route and/or at a time when the proximate recipient is less
congested and better able to receive the bundle) and also congestion control (exponential backoff). Timer-based
custodial retransmission is also possible in the bundle protocol but is problematic: it is still not clear how to compute
a reasonable custodial timeout interval in a network characterized by highly variable round-trip times.

Routers, motivated to maximize throughput with bias toward high-priority bundles, refuse bundles as they deem
necessary — i.e., in response to congestion. Their storage resources are protected from over-subscription.

When custodial bundles are refused by a router, current custodians upstream of the router that are themselves
routers experience increased buffer occupancy — they become congested themselves, triggering an increased
likelihood of bundle refusal . Custody refusal therefore effects congestion control by propagating congestion back
along the path to the original sender.

When the original sender’s bundle node experiences congestion — i.e., its buffer space begins to be
oversubscribed — flow control reduces the rate at which new bundles are issued, and the congestion eventually
abates.

Note that a bundle with higher priority not only has greater value than one with a lower priority, it also will be
forwarded sooner than one with low priority and is therefore more likely to get forwarded before a given time. This
means that its end-to-end delivery latency is likely to be lower. While this is beneficial in itself, it also means that
the sender can declare a marginally lower TTL for the bundle upon originating it, without diminishing likelihood of
delivery. Since a lower TTL always means a lower residual TTL at every point in the end-to-end path, a higher
priority thus tends to further reduce the likelihood of refusal and therefore increase the likelihood of delivery.

The combination of reduced delivery latency and enhanced likelihood of delivery justifies “charging” more for
bundle transmission as a function of priority.

Note also that as a bundle progresses along its end-to-end route, its residual TTL decreases. This too diminishes
its acceptance cost (by reducing Gg) and its risk, reducing the likelihood that a router will refuse to accept it. This
aligns precisely with our desire to avoid wasting the amount of transmission energy invested to date in a bundle by
letting it be discarded late in its path when it is close to being delivered to its destination.

IV. Experimental Results

This congestion control mechanism has been tested in several scenarios. These scenarios involved two to five
computers connected in a line topology. Although multiple bundle nodes can be run on a single computer, we chose

5
American Institute of Aeronautics and Astronautics

to run a single bundle node on each computer. This enabled us to refer to each computer by its bundle node’s
endpoint ID without confusion.

We use A, B, C, D, E to refer to the participating bundle nodes. As the source, bundle node A ran a driver
(source) application to inject bundles into the network as rapidly as possible in a continuous tight loop. Bundles
from the driver application on node A were addressed to the “sink™ application on bundle node E. All nodes used
TCP as a convergence layer protocol for pairwise transmission between adjacent bundle nodes, and all TCP
connections utilized an isolated 1000 Mbit LAN on which a maximum TCP/IP throughput of 800 Mbps had been
measured. Network topology remained unchanged throughout each test.

Using nodes A and E (driver and sink) only (Figure 1), the maximum throughput of our DTN implementation
was observed to be 300 Mbps.

Driver Sink
]| ——[]

A E

Figure 1. Driver and sink application nodes, basic scenario.

In our congestion control experiments, from one to three intermediate routing nodes were inserted between
nodes A and E to vary network size (Figure 2). In all scenarios, flow control at the source was the only mechanism
preventing immediate buffer collapse at A. The driver application sent bundles of 60k bytes each with custody
transfer requested and with a time to live (TTL) of one day; these parameters assured that all transmission from A to
E was reliable, i.e. every bundle transmitted by A reached E eventually.

In scenarios with more than two nodes, there was no direct connection between nodes A and E. In these cases,
bundles were routed through all routing nodes.

A line of five nodes (Figure 2) was initially assembled to demonstrate the basic functionality of the delay-
tolerant protocol implementation. In this scenario, bundle node C was configured to run a script to disrupt network
connectivity. The script edited the IP routing table, telling node C to reject or accept connections with the IP
addresses associated with nodes B and D at scheduled intervals. The intervals implemented a simple alternation:
first, connection CD was blocked while connection was CB left open for 7.5 seconds. Then connection CB was
blocked and connection CD was opened for another 7.5 seconds. This process repeated continuously. The
connections CB and CD were never open concurrently, creating a situation where no end-to-end connection from
node A to node E could ever exist. Node C effectively acted as a waterwheel, first scooping up data from node B
and then releasing it to node D.

This scenario exercised a key feature of DTN-based networks: if node A had tried to use TCP/IP or another end-
to-end protocol to directly connect to node E (routing through nodes B, C and D), the attempt would have failed. In
DTN environments, however, the links of an end-to-end path need not ever exist simultaneously.

Continuous transfer rates can be maximized for predictable connection intervals by optimizing buffer size.
However, we did not focus on buffer size impact for this initial proof-of-concept data transaction experiment.

Driver Sink

A B C D E

Figure 2. Five-node line routing topology with periodic disconnection at C.

6
American Institute of Aeronautics and Astronautics

Observation of this experiment revealed that data bundles were delivered from A to E without difficulty,
confirming basic DTN functionality.

With this established, we set about testing our congestion control mechanism by creating a set of scenarios
where the links are always up, i.e., no connections blocked (Figure 3). Keeping all link states constant assured that
the changes we observed in network behavior were due solely to congestion (and congestion control) rather than
variation in link performance.

Driver Sink Driver Sink
—O O—O—0O
e E _! E _! E _! —
A E A B

S—A—A—H

A B C E
Driver Sink
O0—0O0—O0—3O0—[O

= = = = —
A B C D

Figure 3. Two, three, four and five-node congestion scenarios.

We artificially imposed congestion by slowing down bundle node E (the sink). This was achieved by forcing a
delay of some milliseconds per byte before accepting each bundle. The imposed delay at node E caused bundle
traffic to back up all the way to the driver node. The resulting bundle injection rate at driver node A was then
measured, and an average throughput rate was calculated after sending 5000 bundles. All throughput rates were
calculated at the source (A) node by measuring the amount of time required for node A to inject 5000 bundles of
61,440 bytes each into the network and then dividing the total number of bytes sent by this total elapsed time.
Buffers were arbitrarily and identically sized to cause quick propagation of congestion, providing consistent and
accurate measurements in all scenarios.

These observed throughput rates were compared to theoretical throughput limits at each level of induced delay.
To compute these theoretical rates, we used the equation Throughput = Dt * B, where throughput is in bps, Dt is the
induced delay per second (Dt = 1000 mSec / delay in mSec), and B is the number of bits in each data bundle being
transferred (in our case, B=60 kilobytes or 491520 bits). Figure 4 shows a graph of this calculation, which we
reckoned to be the maximum possible throughput for each delay interval: it represented the number of bits that could
be conveyed per second if the only factor retarding delivery were the induced delay, i.e., ignoring protocol
processing overhead and signal propagation latency.

7
American Institute of Aeronautics and Astronautics

Throughput (Mbits / sec)

Reception Delay (mSec)

Figure 4. Theoretical throughput rates for all scenarios.

For our experiments, we used delays of 5 to 50 mSec (in increments of 5 mSec). This range was used to establish
the reference curve shown in Figure 4. (Note that with imposed congestion set to zero, the theoretical maximum
throughput is infinite; thus this point is excluded from the plot.) We expected our testing results to follow this
model, since the limiting factors in achieving throughput are bundle processing time and transfer medium. Recall
that we had already observed 300Mbps between two DTN nodes, which is more than three times the maximum
theoretical throughput at a SmSec congestion delay (Figure 4). Clearly signal propagation latency could be
discounted as a constraint on throughput, so we expected our experimental results to describe this same curve,
approaching the theoretical limit as the delay was lengthened and bundle processing time became a less significant
factor.

The first congestion testing scenario used only driver bundle node A and sink bundle node E (Figure 3, top left)
and served as a performance benchmark as previously mentioned. The injection rate at A was measured first without
induced congestion, and then with increasing induced delays added at E.

The second scenario was a three-node line (Figure 3, top right). Since nodes A and E were not directly
connected, all bundles were routed through node B. To test low-level scalability, the line topology was tested again
with four and five nodes (Figure 3, middle and bottom respectively).

The final plot of observed throughput rates for each scenario along with the theoretical limits appears in Figure
5.

8
American Institute of Aeronautics and Astronautics

¢ 5nodes
vV 4 nodes
A 3 nodes
> 2 nodes
< Theoretical

Throughput (Mbits / sec)

Reception Delay (mSec)

Figure S. Throughput rates for theoretical limit and 2-5 node topologies with induced congestion rates.

We see that the experimental results show a close match between measured throughput and the theoretical limits.
With congestion delays below 20 mSec, the processing time per bundle becomes an increasingly significant factor,
resulting in a wider gap between the measured and theoretical throughput.

V. Conclusions and Future Work

In this preliminary study, we proposed a simple autonomous local congestion control mechanism for DTN. In
our experiments, the congestion control mechanism is functioning as expected, effectively minimizing data loss
within the network due to finite buffer space. The merit of this congestion control mechanism is that each router
only needs local information to make custodial decisions autonomously; it does not add any communication
overhead to gather network information for decision-making, and it is not subject to failure due to loss of
connectivity or large variations in signal propagation latency.

For future work, we intend to run extensive experiments to further validate the congestion control mechanism
and evaluate its performance varying different network parameters. As a first study, our economic model is simple;
investigation of more sophisticated modeling or algorithms may lead to improved network performance. Another
possible trade study is whether additional information will enable routers to make better decisions to achieve
improved network performance, and what would be the overhead cost for getting these information.

Acknowledgments

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

References

Jain, S., Fall, K., and Patra, R., “Routing in a Delay Tolerant Network,” ACM SIGCOMM, Portland, Oregon, Aug. 30—Sep.

3, 2004, pp.
’Keshav, S., “A Mechanism for Congestion Control in Computer Networks,” unpublished preprint, 1989, URL:

http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/8§9/mechanism.pdf [cited 8 March 2006].
3Heikkinen, T. M., “On Congestion Pricing in a Wireless Network”, Wireless Networks 8, 347—354, 2002.

9
American Institute of Aeronautics and Astronautics

4Siris, V. A., Briscoe, B., and Songhurst, D., “Economic Models for Resource Control in Wireless Networks”, IEEE PIMRC
2002, Lisbon, Portugal, Sep. 15 — 18, 2002.

SBertsekas, D. and Gallager, R. “Data Networks”, Prentice Hall, 1987.

®Peterson, L. L., and Davie, B. S., “Computer Networks, A Systems Approach”, Morgan Kaufmann Publishers, 2" Edition,
2000.

10
American Institute of Aeronautics and Astronautics

