NASA - Software Estimating Tool (N-SET)

A NASA Research Project

NASA Cost Analysis Symposium

20-22 June 2006

Sherry Stukes
Jet Propulsion Laboratory
Pasadena CA

sherry.a.stukes@jpl.nasa.gov
Briefing Structure

Background

User Interface Features – Input Data

Data Analysis Process LOCOMO

User Interface Features – Output Results

Summary
Topics

- Background
 - Project Overview
 - Project Description
 - Approach
- User Interface Features – Input Data
- Data Analysis Process (*Dr. Tim Menzies*)
- User Interface Features – Output Results
- Summary
 - Benefits and Beneficiaries
 - Deliverables and Schedule
 - Next Steps
Project Overview

• **NASA Research Project funded by HQ IPAO**
 – FY05 and FY06

• **The Problem**: NASA is unable to estimate software size/cost early in a project because the software requirements/architecture are not complete and cost model inputs, primarily size, are not available

• **The Purpose** is to develop an early life cycle software estimation tool so that it can be used by the entire NASA community, including NASA contractors without restriction
Project Overview (cont)

• The objective is to leverage existing assets that will allow us to establish a capability to help cost analysts create software estimates early in a program development

• Team has over 100 years of cross organizational cost data collection and cost model development experience

• Integrated development team includes:
 – Task Sponsor: Tom Coonce (NASA HQ IPAO)
 – Task Manager: Sherry Stukes (JPL)
 – Technical Lead: Jairus Hihn (JPL)
 – Task Engineer: Michael Luna (JPL)
 – University Collaboration: Tim Menzies (West Virginia University)
Project Description

- Develop an early lifecycle software cost estimation tool leveraging existing data and capabilities
- Collect additional software data from:
 - Jet Propulsion Laboratory
 - Goddard Space Flight Center
 - Marshall Space Flight Center
- Analyze, normalize, evaluate, stratify, and validate data
- Create a calibrated, validated, and documented tool initially using available data and subsequently using newly collected data
Approach

Data Analysis
- Normalize
- Stratify
- Evaluate
- Validate

Develop Tool
- User Friendly
- Documented

Validated Tool

Proof of Concept

GSFC

JPL

MSFC

Collect Data

Modify collection forms

Determine integrated mission parameter set

Collect Data

= current activities
User Interface Features

Input Data

• Required Input
 – User information
 – Project descriptive information
 – Technical parameters

• Technical Parameters based on:
 – Generally available information
 – Information available in CADRe

• Features
 – Pull-down menus
 – Context sensitive definitions
Sample User Interface Screen

Mike’s Splash Screen
Sample User Interface Screen

Mike’s Splash Screen
Sample User Interface Screen

Mike’s Splash Screen
LOCOMO: building “local” cost models for N-SET

tim@menzies.us, LCSEE, WVU
Sherry.A.Stukes@jpl.nasa.gov, JPL

NASA cost analysis symposium,
June 20-22, 2006
Cleveland, Ohio
Motivation

- Should you let an electrician fix your pipes?
 - No- the skill of electricians and plumbers comes from different training.

- Should you build one cost model to cover all your projects?
 - Not sure… lets check
An experiment

- Take a “partial description” of a project
 - E.g. we use “standard analysts” (in COCOMO speak; “acap=1”)

- Go to a log of old projects
 - E.g. the nasa93 COCOMO-I data sets.

- Find some projects “near” the partial descriptions
 - E.g. find the 20 “nearest neighbors” in nasa93 to acap=1

- Build some cost models from those 20

- Compare those cost models to other “partial descriptions”
Median performance statistics

<table>
<thead>
<tr>
<th>A, b, mmre, pred(30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.21, 1.07, 19.5, 79.1</td>
</tr>
<tr>
<td>4.31, 1.06, 19.6, 80</td>
</tr>
<tr>
<td>4.35, 1.06, 19.9, 79.4</td>
</tr>
<tr>
<td>3.3, 1.14, 20.1, 80.6</td>
</tr>
<tr>
<td>4.29, 1.06, 20.2, 77.8</td>
</tr>
<tr>
<td>4.5, 1.05, 20.3, 70.3</td>
</tr>
<tr>
<td>4.35, 1.06, 20.4, 75.5</td>
</tr>
<tr>
<td>3.97, 1.09, 20.7, 81</td>
</tr>
<tr>
<td>3.72, 1.09, 24.1, 66.7</td>
</tr>
<tr>
<td>3.9, 1.1, 25.6, 72.0</td>
</tr>
</tbody>
</table>

Goal:
- Keep it simple for the users
- Details hidden from users.
- All automatic (“under the hood”)

“A” values different to standard COCOMO Values (≤ 3.2)

PRED(30) = % of tests whose predicted is within 30% of actual

MMRE = mean magnitude relative error

\[\text{MMRE} = \frac{\text{abs}(\text{actual} - \text{predicted})}{\text{actual}} \]
e.g. COCOMO models learned from 20 nearest neighbors to acap=1

<table>
<thead>
<tr>
<th>a,</th>
<th>b,</th>
<th>mmre,</th>
<th>pred(30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.82</td>
<td>1.05</td>
<td>46.8</td>
<td>73.2</td>
</tr>
<tr>
<td>4.87</td>
<td>1.05</td>
<td>47.9</td>
<td>73.2</td>
</tr>
<tr>
<td>4.84</td>
<td>1.05</td>
<td>48.5</td>
<td>72.9</td>
</tr>
<tr>
<td>4.77</td>
<td>1.06</td>
<td>49.5</td>
<td>72.5</td>
</tr>
<tr>
<td>4.84</td>
<td>1.05</td>
<td>50.6</td>
<td>72.2</td>
</tr>
<tr>
<td>4.91</td>
<td>1.05</td>
<td>52.4</td>
<td>71.8</td>
</tr>
<tr>
<td>5.02</td>
<td>1.04</td>
<td>54.9</td>
<td>71.0</td>
</tr>
<tr>
<td>5.11</td>
<td>1.04</td>
<td>57.2</td>
<td>70.5</td>
</tr>
<tr>
<td>5.09</td>
<td>1.04</td>
<td>59.2</td>
<td>69.6</td>
</tr>
<tr>
<td>5.06</td>
<td>1.04</td>
<td>60.9</td>
<td>68.6</td>
</tr>
</tbody>
</table>

Median performance statistics

“A” values very different to those seen before

PRED(30) = % of tests whose predicted is within 30% of actual

MMRE = mean magnitude relative error = abs(actual - predicted) / actual

• High-reliability systems,
• Some time pressure on development

time = 1.1, rely=1.2
Urgent need to collect more localized data from local sites

- Current NASA initiative:
 - Tune cost models to specific NASA Center products

- LOCOMO:
 - Proof positive that such tunings are essential
Why use LOCOMO?

- **LOCOMO.cost = $0**
 - http://unbox.org/wisp/trunk/locomo

- **LOCOMO based on COCOMO**
 - COCOMO: white box
 - Other commercial tools: black box

- **LOCOMO: uses NASA-specific data**
 - Other commercial tools: mostly DOD
 - Often over-estimate NASA projects since they assume MIL standards
 - MIL assumes more documentation/ testing/ security requirements than NASA

- **Estimation with smallest number of variables**
 - In our example, only 1 or 2
 - Other tools: dozens to hundreds of variables

 - So, given minimal project information
 - Can still get project estimates

 - And, with more data,
 - Can select more relevant data and get better estimates
LOCOMO: next steps

• Apply this to different NASA sites

• Assess manual vs automatic stratifications
 – Manual: “earth orbit”, “deep space”, “mars projects”
 – Automatic: LOCOMO
 – Which is better?

• Many studies inside “the guts” of LOCOMO
 – Effects on variance of automatic stratification
 – Why pick “20” nearest
 • Why not 5? Or 50?
 – What does “nearest” mean?
 • ? Log transform on the numerics
User Interface Features

Output Results

• Estimate reflecting the responses to the input screen
 – Effort months
 – Schedule duration

• Assumes size and attribute factor is “learned” from the data

• Uses COCOMO I as the basis of estimate, but is hidden from the user
• Statistical characteristics of the model
 – Y-intercept
 – Exponent
 – Range
 – Standard deviation
 – R^2
 – Mean, Median, and Mode
Benefits and Beneficiaries

<table>
<thead>
<tr>
<th>Beneficiary</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAO</td>
<td>Data and metrics for use in Independent Cost Estimates (ICEs) and Source Selection evaluations. Tool consistent with CADRe data.</td>
</tr>
<tr>
<td>NASA HQ</td>
<td>Can be used to develop “Should Cost” estimates.</td>
</tr>
<tr>
<td>NASA Centers</td>
<td>Will help with analogy for proposals and other types of estimate preparation.</td>
</tr>
<tr>
<td>NASA Support Contractors</td>
<td>Will provide general information about historical programs so that they can do a better job of preparing their products and estimates for NASA.</td>
</tr>
</tbody>
</table>
Deliverables and Schedule

• Deliverable Items
 – Estimating Tool (Excel based, open source)
 – Calibrated and validated tool
 – Tool documentation
 – User Guide
 – List of technical parameters to be included in CADRe

• Schedule
 – User Focus Group meeting – Jul 06
 – Data Collection – On-going
 – Update User Interface (Focus Group feedback) – Aug 06
 – Update LOCOMO learning based on new data – Sept 06
Next Steps

• Collect additional software data
 – Jet Propulsion Laboratory
 – Goddard Space Flight Center
 – Marshall Space Flight Center
 – Kennedy Space Center
 – Glenn Research Center

• Analyze, normalize, evaluate, stratify, and validate data
• Run LOCOMO learning tool on additional stratified data sets
• Dynamically link the learning tool into the N-SET input data and produce formatted output report
• Perform validation exercise on randomly selected data
• Document the process and tool (N-SET)