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OverviewOverview

• Introduction 

• Extreme Environments 

– Venus  

– Titan

• Mission Concepts

– Venus Mobile Explorer Concept

– Titan Explorer Concept

• RPS options for Venus and Titan

• Conclusions 

Venera Image of the surface of Venus

Titan: Mercator Projection of Huygens's View at Different Altitudes



Pre-decisional – for discussion purposes only Page: 4

P
re

p
a

re
d
 b

y
 T

. 
B

a
lin

t,
 J

P
L

 –
J
u

n
e

 2
1

, 
2

0
0
6

IntroductionIntroduction

• The 2006 SSE Roadmap Update2006 SSE Roadmap Update is currently 
under way

• The Roadmap identifies proposed long-lived 
Flagship class missionsFlagship class missions to both Titan and Venus 

Ref: Solar System Roadmap 2006
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Extreme Environments Extreme Environments –– 1: Venus (High 1: Venus (High T,pT,p))

• Greenhouse effect results in VERY HIGH SURFACE TEMPERATURES

• Average surface temperature: ~ 460 to 480°C

• Average pressure on the surface: ~ 92 bars

• Cloud layer composed of aqueous sulfuric acid droplets at ~45 to ~70 km attitude

• Venus atmosphere is mainly CO2 (96.5%) and N2 (3.5%) with: 
• small amounts of noble gases (He, Ne, Ar, Kr, Xe)

• small amount of reactive trace gases (SO2, H2O, CO, OCS, H2S, HCl, SO, HF …)

• Zonal winds: at near surface ~ 1 m/s; at 60 km altitude ~ 60+ m/s

Ref: E. Kolawa, “Extreme Environments Technologies”
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Extreme Environments Extreme Environments –– 2: Titan (Low T)2: Titan (Low T)

• The temperature at the surface 

is VERY COLD: about -178°C

• Pressure is ~1.5 bars

• ~2-10% methane clouds 

and about 90% Nitrogen

Titan by HuygensRef: http://www.atmo.arizona.edu/students/courselinks/spring05/atmo336s2/TitanTemperatureProfile.jpg
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Venus Mobile Explorer ConceptVenus Mobile Explorer Concept

Scientific Objectives:

• Composition and isotopic
measurements of surface
and atmosphere

• Near IR descent images

• Acquire and characterize 
a core sample at multiple
sites.

• Demonstrate key
technologies for VSSR

Science Payload:

• Neutral mass spectrometer 
with enrichment cell. 

• Instruments to measure 
elements and mineralogy 
of surface materials.

• Imaging microscope

Technology & Heritage:. 

• Sample acquisition and 
handling in Venus 
environment

• Thermal control technology

•Long duration operation in situ

Mission & LV Class:

• Flagship Class

• LV: Delta-IV-H / Atlas V

Earliest Launch Opportunity:  Technology Readiness: 2022 Programmatic Slot: 2025

Mission Technology Studies:

• Decadal Survey 2002 - none. 

• Technology studies at JPL for 
definition of advanced RPS
systems, 2005

• Extreme Environments
Technologies at JPL, FY06. 

POC: Tibor.Balint@jpl.nasa.gov

Exploration Metrics:

• Operate in Venus surface
environment for 90 days+

• Range and altitude if 
aerial vehicle TBD

• Range across surface if
rover TBD

OR

Ref: T. Balint, “SSE DRM Set” & 2006 SSE Roadmap
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High Temperature Mitigation High Temperature Mitigation –– Mission Architecture OptionsMission Architecture Options

OPTION2. 

Use only components capable of 

surviving in extreme environment

Prohibitively expensive for many 

technologies

Hybrid Solution: 1+2
Use  a combination of advanced thermal control and components

able to operate at extreme HT/high pressure environments

The hybrid option offers the best solution for optimizing 

mission architecture; This requires power + active cooling

OPTION 1

Use conventional components

and provide survivability

solely through thermal control

Impractical or not possible 

for some missions

Ref: E. Kolawa, “Extreme Environments Technologies”



Pre-decisional – for discussion purposes only Page: 9

P
re

p
a

re
d
 b

y
 T

. 
B

a
lin

t,
 J

P
L

 –
J
u

n
e

 2
1

, 
2

0
0
6

Titan Explorer (Orbiter & In Situ) ConceptTitan Explorer (Orbiter & In Situ) Concept

Scientific Objectives:

• Map Titan with high 
resolution radar.

• Characterize prebiotic
chemistry and search 
for past life.

• Characterize surface and
subsurface materials. 

Exploration Metrics:

• Orbiter with lifetime of 
about two years

• Operate on Titan for at least
90 days – aerial mobility,
with Montgolfier & 
surface sample

• Proximity communications
from orbiter to Titan Explorer

Science Payload:

• Imaging radar and other 
remote sensing on orbiter. 

• Remote sensing and in situ
instruments from Titan
Explorer 

Technology & Heritage:

• Aerocapture for Titan orbit
insertion.   

• RPS power on orbiter and 
in situ vehicle.  

• Aerial mobility with sampling

Mission & LV Class:

• Flagship Class

• LV - TBD

Earliest Launch Opportunity:  Technology Readiness: 2017 Programmatic Slot: 2020

Mission Technology Studies:

• Decadal Survey 2002

• Two Vision Mission studies 
in 2005 

• Technology studies in: 
In Space Propulsion, 
Low Temperature Materials, 
and Autonomy.

• Titan Explorer JPL Study in 2006 

POC: Tibor.Balint@jpl.nasa.govRef: T. Balint, “SSE DRM Set” & 2006 SSE Roadmap

(Design concept)
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General Purpose Heat Source Module (GPHS)General Purpose Heat Source Module (GPHS)

Building Block of Radioisotope Power Systems

• Module Mass:

– 1.6 kg  per GPHS module

– Includes 0.6 kg of Pu238O2 fuel

• Dimensions: 

– 9.96 x 9.32 x 5.82 cm including 

• Power:

– ~250 Wth (BOM) total 

– ~62.5 Wth per fuel capsule

• Operating Temperature:

– Iridium clad operation 1150K, 

and 1600K, to maintain ductility 

and limit grain growth

Ref: Abelson, Balint, Evans, Schriener, Shirley, Spilker: “Extending Exploration with Advanced Radioisotope Power Systems”, JPL D-28903, PP-266 0333

Step-2 Enhanced GPHS Module
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Advanced Radioisotope Power SystemsAdvanced Radioisotope Power Systems

• Multi-Mission Radioisotope Thermoelectric 
Generator (MMRTG) would have these 
characteristics 

– L66 cm x W64 cm x H64 cm

– Uses 8 GPHS modules (2000Wt)

– Generates ~125 We (BOM)

– Mass ~43 kg

– Specific power ~2.3 We/kg

• Stirling Radioisotope Generator (SRG) would 
have these characteristics 

– L104 cm x W29 cm x H38 cm

– Uses 2 GPHS modules (500Wt)

– Generates ~116 We (BOM)

– Mass ~34 kg

– Specific power ~3 W/kg

• RPSs for Titan and Venus would have to be 
modified for the environment

– Titan: MMRTG fins would be adjusted for the 
low temperature, to achieve the required heat 
rejection rate

– Venus: requires NEW DEVELOPMENT to 
address the environment; a special Stirling
Generator with active cooling might provide a 
good development path 

MMRTG concept

Stirling Generator concept

Cryocooler

Ref: Abelson, Balint, et al., “Expanding Frontiers with Standard Radioisotope Power Systems”, JPL D-28902 PP-266 0332 
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RPS Requirements for the Proposed RPS Requirements for the Proposed Venus Mobile ExplorerVenus Mobile Explorer MissionMission

• The proposed VME spacecraft would operate near the surface of Venus:

– It would operate continuously at the surface and in the lower 
atmosphere for many months

– The RPS would need to tolerate the 480°C and 90 bars extreme 
environment 

• This would require properly sized heat rejection 
system and pressure vessel

– The RPS would need to tolerate the highly corrosive supercritical 
carbon dioxide environment

• This would require a suitable coating

• Russian landers used enamel coating; 

• Kepton coating of US probes failed: 12.5 km anomaly

• Power system would need to provide both power AND active cooling 
to the instruments

– Generator would produce electricity by converting radioisotopic heat, 

• similar to outer planets missions, but more difficult.

– This RPS would enable the hybrid thermal management system, 
where a mechanical refrigerator cools non hardened payload 
elements, for example microprocessor and imaging sensor

• High specific power (this might be a challenging due to the environment)

– An air mobility system would require a light power source
due to limited lifting capacity

– A specially developed Stirling Radioisotope Generator with 
active cooling could point to an suitable RPS development direction

Design concept
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RPS Requirements for the Proposed RPS Requirements for the Proposed Titan ExplorerTitan Explorer MissionMission

• Hot air balloons, by definition, require heat, therefore,

– This concept would not only utilize the electric power from

the RPS, but also the thermal power (excess heat) to keep 

the balloon afloat

– Therefore, plutonium reduction for this this concept is 

not considered to be a key driver

– However, improved conversion efficiency could provide more 

power for the same amount of Pu-238, enabling higher 

telecom data rates, more instrument operations, etc. 

• RPS thermal design would need to be adjusted for the cold Titan 

environments

– Fin size would need to be adjusted to achieve the required heat 

rejection, and the temperature drop across the thermoelectrics

• MMRTG could be considered with the above fin modifications

• Number of RPSs:

– A single MMRTG could work

– Two MMRTGs would provide more power, and more thermal 

power, which would reduce the size of the hot air balloon 

(Montgolfier), countering the mass penalty of the additional 

power source

– Two MMRTGs would possibly require special accommodation 

during cruise, and operations, to provide good heat rejection

Design concept
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Operation Through All Mission PhasesOperation Through All Mission Phases

• RPS generates heat continuously (radioisotope decay)

• This would need to be mitigated through all mission phases!

• Earth storage phase;

– Earth environment; convection + conduction + radiation

• Launch (and pre-launch integration) phase;

– Earth environment; convection + conduction + radiation

• Cruise phase;

– RPS enclosed inside the aeroshell; would require active 

cooling and heat rejection to space through external 

radiators; forced convection fluid loop + conduction + 

radiation

• Entry, Descent, and Landing (EDL) phase;

– Short period, but active cooling disabled, limited heat 

transfer; radiation and conduction only during entry; 

aeroshell would need to absorb excess heat

• In situ operations phase (Titan/Venus);

– Planetary atmosphere; RPS design would need to address 

extreme environment; heat rejection system is specific to 

environment

Back-to-back Titan aeroshell concept

Venus mission environment:

- Hot inside aeroshell during cruise

- Very hot operational environment

Titan mission environment:

- Hot inside aeroshell during cruise

- Extremely cold during operations
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ConclusionsConclusions

• The extreme environments of Titan and Venus introduce many 

technical challenges:

– at Titan: low temperature

– at Venus: high temperature, high pressure, corrosion

• Long lived Flagship class in situ missions referenced in this study 

require reliable internal power sources, such as RPSs

• RPSs would require modifications to mitigate these extreme 

environments, but

– a Titan mission could use existing designs, such as an MMRTG

– A Venus mission would require a new RPS development; 

providing both power and active cooling to the spacecraft

• RPS technology is considered enabling for these proposed 

missions
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The EndThe End


