
Integrated Planning for Telepresence with Time Delays

Mark D. Johnston and Kenneth J. Rabe
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena CA 91109
{mark.d.johnston,kenneth.rabe}@jpl.nasa.gov

Abstract

Teleoperation of remote robotic systems over time

delays in the range of 2-10 seconds poses a unique set
of challenges. In the context of a supervisory control
system for the JSC Robonaut humanoid robot, we have
developed an “intelligent assistant” that integrates an
Artificial Intelligence planner (JSHOP2) with
execution monitoring of the state of both the human
supervisor and the remote robot. The assistant reasons
simultaneously about the world state on both sides of
the time delay, which represents a novel application of
this technology. The purpose of the assistant is to
provide advice to the human supervisor about current
and future activities, derived from a sequence of high-
level goals to be achieved. To do this, the assistant
must simultaneously monitor and react to various data
sources, including actions taken by the supervisor who
is issuing commands to the robot (e.g. with a data
glove), actions taken by the robot, and the environment
of the robot, both as currently perceived over the time
delay, along with the current sequence of goals.
We have developed a “leader/follower” software
architecture to handle the dual time-shifted streams of
execution feedback. In this paper we describe the
integrated planner and its executive, and how it
operates in normal and anomaly situations.

1. Introduction

Teleoperation of humanoid robotics with medium-
range time delays (e.g. 2-10s) presents a variety of
challenges of direct relevance to NASA’s current
exploration initiatives. Such systems are applicable to a
wide range of tasks, from earth orbit to the lunar
surface, and hold out a promise of safer and cost-
effective operations. As part of a project to
demonstrate the combined use of supervisory control
techniques, operator intent prediction, and an
immersion cockpit for monitoring and control of robot
state, we have developed an intelligent Task Level
Assistant (TLA) that integrates an Artificial
Intelligence planner with execution monitoring of the
state of both the human supervisor and the remote

robot. In this mode the planner must reason about the
world state on both sides of the time delay, which
represents a novel application of this technology. The
application domain of our system is the JSC Robonaut
humanoid robot. The purpose of the assistant is to
provide advice to the human supervisor about current
and future activities, derived from a sequence of high-
level goals to be achieved. To do this, the assistant
must simultaneously monitor and react to various data
sources, including:
• actions taken by the supervisor who is issuing

commands to the robot (e.g. with a data glove),
and actions taken by the robot as reported over the
time delay

• the environment of the robot, as currently
perceived over the time delay

• the current sequence of goals
As any of these change, the assistant must respond
appropriately, detecting normal task completion as well
as exception conditions.

A number of methods have been developed to help
deal with teleoperation of remote robots across a
significant time delay: see Sheridan [1, 2] for an
extensive review. The technique used in our system is
supervisory control, in which the remote robot has
some degree of autonomous capability, and higher
level commands are sent by the human supervisor.
Supervisory control thus includes elements of
autonomy and intelligence, although the intelligence is
usually associated only with the human supervisor.
Other techniques that emphasize machine intelligence
include mixed-initiative control [3] and adjustable
autonomy [4]. A key goal of these approaches is to
shift more responsibility from the human to the
machine.

In the following, we first describe the overall
context of the system (Section 2) and the software
architecture of the Task Level Assistant (Section 3).
We then describe the planning component in more
detail and the requirements derived from its use in a
telepresence environment under active control by a
human supervisor (Section 4). The time delay issue is
addressed in Section 5, including the strategy of having
the planner and associated execution monitor make use

of a “leader/follower” model. This section also
discusses the implications of unexpected events,
including the reaction to failure and the intentional or
unintentional deviation of the supervisor from the
high-level goal sequence. Also included in this section
is a scenario to illustrate the behavior of the system in a
characteristic reactive situation. We summarize our
conclusions, status, and directions for further research
in Section 6.

2. System Overview

Our domain [5] consists of a smart cockpit and a
remote robot, each on separate sides of the time delay.
The robot is the Robonaut [6] anthropomorphic
humanoid robot (Fig. 1), developed at NASA’s
Johnson Space Center specifically for space operations.
The robots have over 40 DOF, with two 7-DOF arms
with 5-fingered hands, and pan/tilt stereo vision
cameras. The Robonaut software provides a number of
autonomous primitive behaviors (e.g. move to touch,
grasp to position or force, etc.) that can be commanded
by the supervisor.

Figure 1. The NASA Robonaut dexterous robot

The human supervisor works in a smart cockpit
environment, which includes the hardware and
software required to support remote operations. There
are video and monitor displays of the remote (time-
delayed) robot. The supervisor has virtual reality (VR)
immersion equipment as well, including a VR helmet
along with a data glove for commanding the robot. The
software in the cockpit includes an Operator Intent
Prediction [7] component, an immersive environment
for the supervisor [8], and the subject of this paper, the

Task Level Assistant (TLA), which plans and monitors
tasks performed by the supervisor and the robot.

The TLA’s fundamental role is to generate an
advisory task list (plan) based on a higher level
sequence of goals, and then monitor execution of those
tasks, advising the supervisor of progress towards
achieving the goals, as well as on deviations from the
plan and potential corrective actions. A key feature of
the TLA is its advisory nature: the human supervisor
remains fully in control of robot commanding. The
TLA must therefore present a stable and accurate view
of the plan status, and of the next steps that the
supervisor is advised to take to achieve the goals in the
sequence.

The Robonaut environment for the system described
here is a simple one: there are vertical and horizontal
handrails that are to be grasped, picked up, and moved
to a storage box. There is also a “button” to be pressed.
These represent prototypes of activities that a robot
might be designed to accomplish in a space or lunar
construction task.

3. Task Level Assistant (TLA) Architecture

The overall architecture of the TLA in the context
of the smart cockpit environment is illustrated in
Fig. 2. Communication with the rest of the system is
via a message bus over which messages and data are
transferred. From this source comes status updates on
those tasks that have been accomplished by the human
supervisor (and thus which are translated into
commands for the robot), and on those tasks
accomplished by the robot (as received over the time
delay). Also externally generated and managed is a
goal sequence representing the intention of the
supervisor. These goals may of course change at any
time, and goals may be added or deleted.

At the core of the TLA is the planner component
(Fig. 2 center), described in detail in Section 4. The
role of the planner is to generate a detailed task list
from the goal sequence, for presentation to the
supervisor. In addition to the goal sequence, the
planner requires two other major inputs:
• a domain model, describing the robot environment

(handrails, buttons, etc.) and the operations of
which the robot is capable (pick up handrail, push
button, etc.)

• current knowledge of the state of the supervisor
and robot

Based on these inputs, the planner converts the goal
sequence and state information into a set of tasks to
present to the supervisor, which will accomplish the
goal sequence starting at the current state.

state

State updates

from:

- operator

- robot

plan

goals

replan

Goal updates:

- add

- delete

- change

to Executive:

- queries

- replan requests

from Executive:

- plan

- next tasks for

 + operator

 + robot

- query responses

- exceptions, e.g.

 + task out of order

 + timeout

 + replan required

 + errors

domain
model

Executive

Planner

NDDS message bus

Figure 2. Architecture diagram of the TLA

The executive component (Fig 2 bottom) plays a

crucial role in positioning the planner in an effective
advisory capacity. It conveys the plan to the rest of the
system. It monitors all changes from the rest of the
system, including state information from the supervisor
and robot, as well as goals. It correlates these changes
with the current plan, and detects situations where a
replan is required, then sends out a notification to this
effect. In this application it does not automatically
replan: it is specifically left up to the supervisor to
request a replan (however such an automatic replan
function would be straightforward to provide). In
addition to “replan required” notification, the executive
also identifies other situations of interest to the human
supervisor, including:
• tasks executing out of plan order, either by the

supervisor or by the robot
• remote robot timeouts, where task completion was

expected to have occurred within some adjustable
time limit, but has not been confirmed

• replan started/completed events
• notification that no feasible plan can be found

The executive also handles queries from the rest of
the system, such as: next task to execute, execution
status of a task, goal completion status, etc.

Finally, the executive handles replan requests from
the supervisor, ensuring that publication of the current
plan is placed on hold while a newly generated plan is
being stored.

The implementation of the TLA is based on the
Ensemble framework, an open architecture under
development at JPL for mission operations software
[9]. Ensemble is an adaptation of the Eclipse Rich
Client Platform [10], and supports a component based
application development model. The TLA has been
developed in Java as a set of plug-in modules for
Ensemble.

4. Integrated Planning

The planner chosen for the TLA is JSHOP2, a
Hierarchical Task Network (HTN) planner developed
at the University of Maryland [11] and presently
available as an open source project [12]. The choice of
JSHOP2 was driven by several considerations:
• HTN planners are complete (guaranteed to find a

plan if one exists), and build up a plan in time-
execution order, which is a natural way for the
human users of the TLA to think about plan
generation, i.e. based on planning a sequence of
defined goals.

• JSHOP2 has a straightforward but comprehensive
domain modeling capability, amply rich for the
TLA Robonaut environment problem. HTN
“methods” expand down into primitive operations
with defined preconditions and effects on world
state. As such, they are relatively straightforward
to define by someone familiar with the domain.

• JSHOP2 is written in Java and was therefore
relatively straightforward to integrate with the
Eclipse Java-based platform chosen for TLA
implementation.

JSHOP2 does not include built-in temporal
reasoning, although it is possible to model a variety of
temporal constraints by using appropriate variables.
However, for this problem domain, temporal reasoning
is much less of an issue than state and operation
modeling, and so is not a serious drawback.

For this domain, the JSHOP2 model consists of the
following:
• the two arms of the Robonaut robot, each with an

availability state, and a “preferred” arm to be used
if available

• a pair of handrails, one horizontal and one vertical,
that can be grasped by the robot, moved, and
placed in storage box

• a pushbutton that can be pressed by either arm
There are five primitive operations in the model, for

picking up a handrail, dropping a handrail into the box,
moving the arm over the box, setting down a handrail
(not in the box), and pushing the button. There are two
compound methods in the model: one for moving a
handrail to the box, and one for pushing the button.

The move-rail-to-box method is shown in Fig. 3.
Variables such as ?arm and ?rail will be bound to
concrete values during the plan search process.

; move a rail to the box

(:method (move-rail-to-box ?arm ?rail ?goal)

 all-done

 (and (accomplished ?goal))

 ()

 arm-holding-rail

 (and (arm-available ?arm1) (holding ?arm1 ?rail)

 (not (accomplished ?goal)))

 ((!move-to-box ?arm1 ?rail ?goal)(!drop-in-box ?arm1 ?rail ?goal))

 arm-clear

 (and (arm-available ?arm) (clear ?arm) (not (in-box ?rail))

 (not (accomplished ?goal)))

 ((!pickup ?arm ?rail ?goal)

 (!move-to-box ?arm ?rail ?goal)

 (!drop-in-box ?arm ?rail ?goal))

pref-arm-not-avail

 (and (arm-available ?arm1) (clear ?arm1) (not (in-box ?rail))

 (not (accomplished ?goal)))

 ((!pickup ?arm1 ?rail ?goal)

 (!move-to-box ?arm1 ?rail ?goal)

 (!drop-in-box ?arm1 ?rail ?goal))

)
Figure 3: An example TLA JSHOP2 method.

A JSHOP2 planning problem is defined by (a) a set

of state values for all relevant variables, and (b) a
sequence of goals to be achieved. The state values
specify the assumed states of all entities at the start of
the plan: e.g. that there are two handrails present, that
both arms are available and not holding anything, etc.
The goals are phrased as methods with specific values
for their arguments, e.g. move rail “horiz- rail1” to the
box with preferred arm “left”, to achieve goal “goal2”.

The result of plan generation is a list of ground
operations, i.e. primitive operations with specific
values for all variables. Because JSHOP2’s HTN
planning algorithm is complete, it is guaranteed to find
a plan if one exists. It may be than no plan exists (e.g.
both arms are unavailable), in which case an empty
operation list will be returned. Our experience has been
that for the TLA Robonaut domain, JSHOP2 runs very
quickly and is not a source of significant delay in the
system. Of course, for large models where more
extensive search is required, this could become an
issue.

5. Leader/Follower Planning and
Execution Monitoring

In a conventional planner/executive architecture, the
preconditions of each task are checked before it is
initiated. In a time-delayed environment, this reduces
to inefficient “bump-and-wait” execution. Feedback
from the human supervisor’s completion of a task is
indeed nearly immediate, but feedback from the remote

robot is delayed, possibly by many seconds. To delay
precondition checking and task dispatching is very
inefficient, as illustrated in the schematic timelines of
Fig. 4. Especially in the case where the time to perform
operations (T) is relatively short compared to the time
delay (D), it is wasteful to command an action and then
wait for its completion before commanding the next
one (Fig. 4a). Instead, it is desirable for the supervisor
to be able to work ahead of the remote robot, thus
realizing efficiencies analogous to “pipelining”
commands (Fig. 4b). The efficiency gain can be
substantial: waiting for remote tasks to complete
lengthens overall execution time by the ratio D/T.

? delay = D/2

Supervisor

Robot

(b)

Supervisor

Robot

(a)

 task duration = T

Figure 4. Time delayed task confirmation

Thus for TLA we were led to implicitly split the

tasks that make up the plan into “leader” (human
supervisor) and “follower” (time-delayed robot) stages.
There are thus dual feedback paths into the executive
(and thus back to the planner) from these split tasks: a
task may be completed by the leader, thus downstream
leader tasks can be dispatched and the leader can
“work ahead” of the follower as in Fig. 4b. However, a
task is not truly complete until it is also done by the
“follower” (the remote robot). Provided this happens in
a timely manner, the plan will progress on track.
Indeed, it is essential for the planner/executive to
operate on the normal assumption that the follower will
indeed follow, until this assumption is violated.
Violations may occur when the human supervisor
deviates from the goal activities, either intentionally or
unintentionally; the robot fails to execute a command
as directed, or times out; or the state of the robot
environment changes or is progressively revealed. In
its role as assistant, the TLA must gracefully handle
these situations and notify the human supervisor. To
replan, the current state model must be “backed up” to
the most recent known state of the robot. Replans must

also recognize which goals are accomplished and not
expand and schedule their constituent tasks again.

The design principles we adopted for the
leader/follower split were as follows:
• allow the leader to work arbitrarily far ahead of

the follower, but keep track of expected time of
completion of follower tasks, and provide
notification if this time expires

• when replanning, fall back to the most recently
confirmed state from the follower, i.e. “roll back”
state changes that are due solely to leader task
completion

• recognize any goals that have been accomplished
and do not re-expand them when replanning

• ensure plan continuity, e.g. if a plan makes use of
the left arm, but the preferred right arm comes
back in service, plan to complete ongoing left arm
activities before planning to use the right arm
again

5.1. Normal Plan Execution

For testing purposes, we have implemented a
zoomable graphical user interface for the TLA based

on the Piccolo toolkit [13][14]. A sample screen
snapshot is shown in Fig. 5. The task sequence (ground
operations and their arguments) is shown as the row of
connected boxes, while the heavy vertical bar
represents the break between the supervisor and the
robot. Tasks to the right of the bar are the next ones for
the human supervisor to execute. Tasks to the left of
the bar have been executed by the human supervisor
and are either confirmed completed by the robot (if
grayed out) or are waiting for the robot to execute. If
the next task for the robot has exceeded the expected
time limit for confirmation, the alert box above it
changes color. Below the task sequence is an event log,
a current state snapshot, and testing controls for
modifying the current state or the current goal
sequence. In normal operation, the human supervisor
can complete a set of tasks ahead of the robot and thus
efficiently pipeline their combined activity. In Fig. 5,
the supervisor has completed three tasks, while the
robot has only acknowledged completing the first.

Figure 5: Normal planning scenario

5.2. Plan Deviations

There are a number of plan deviations that the
TLA must handle gracefully. On the robot side, these
include:
• robot (follower) time out: a task has taken longer

than expected to confirm execution on the robot.
In this case, TLA provides notification but takes
no other action (in keeping with its advisory
role)

• out of order robot (follower) execution: again,
TLA detects and provides notification of this

situation, but takes no other action. Since this
could be due not to failure to execute but simply
to a communication gap, this is not treated by
default by TLA as a reason to require replanning.

• robot capability change: this is a state change
(other than produced by executing a planned
task) that impacts the current plan, for example
the loss of availability of an arm required for
future tasks. In this case, TLA generates
notification of the state change, and that a replan
is required. Replanning is not automatic, as
dictated by TLA’s advisor-only role.

On the human supervisor side, the operator can
deviate from the planned task list, either intentionally
or unintentionally. The approach taken by TLA in
this situation is to assume that the deviation is
unintentional, and that intentional deviations will be
accompanied by goal changes to indicate the revised
intent. Specifically:
• human supervisor executes a task other than the

next one in sequence: TLA sends notification,
and also that a replan is required. If a replan is
requested at this point, TLA will generate a plan
to accomplish the original goals, which may
include additional tasks to return to the original
plan.

• human supervisor changes the goal sequence:
TLA sends notification and also that a replan is
required. If a replan is requested at this point, it
is based on current state and the revised goals.

In addition to plan deviations that fall into the
above categories, other errors and exceptions are
recognized and handled by the executive, e.g.
completing a task twice, completing an undefined
task, etc. In general, these lead to exception
notifications and logging, but no other direct action.

5.3. Replanning

Replanning is done on request to the TLA from
the human supervisor. TLA tracks situations where
the current plan is compromised and a replan is
necessary, but does not generate new plans
automatically. This is to conform with its human
advisory role, and the principle of “no surprises” for
the human supervisor.

Figure 6: Replanning scenario due to change in right arm availability

When a replan is requested, TLA goes through the
following steps:
• notify any listeners that a replan is beginning
• lock the plan against queries while the new plan

is being generated

• roll back any state changes that were recorded

due to the human supervisor (leader) completing
activities and working ahead of the remote robot
(follower).

(b)

(a)

• generate a new plan and replace the old one in
memory, archiving any completed activities for
future reference

• unlock for plan queries, and notify listeners that
the replan is complete

An example replan scenario is illustrated in Fig 6.
In this case, the supervisor and robot have executed
the first goal of a plan with the right arm when it
becomes unavailable (Fig. 6a). Following a replan,
the remaining unaccomplished goals are planned for
execution with the left arm, which remains available
(Fig. 6b). The Event Log (lower left of each figure)
lists routine transitions as well as notifications and
situations in which a replan is detected as necessary.

6. Conclusions

We have described a novel approach to integrating
planning with execution monitoring in the context of
human supervisory control of a robot over a mid-
range time delay. The Task Level Assistant (TLA)
has been developed at JPL and run in a testbed
environment to verify behavior in the Robonaut
example domain. Our experiments to date have
validated the choice of JSHOP2 as the core planner,
and of the leader/follower architecture for tracking
tasks over the time delay. JSHOP2 has provided fast,
straightforward modeling and plan generation. The
only drawback is the mapping to Lisp-like syntax for
input, but we have automated this so it is transparent
to users. It is worth noting that when the planner fails
to find a plan, it is not always easy to determine
exactly why. This is not a specific shortcoming of
JSHOP2, however, but a reflection of the fact that
interactions between plan model elements can be
difficult to debug in general.

We expect to run TLA with the Robonaut
hardware in 2006. The current simple domain model
will be augmented to reflect a more complete model
of states and tasks. Areas for future research and
development include an automatically replanning
version of the system that maintains a current “latest”
plan as well as a stable “baseline” plan, and the
incorporation of temporal constraints. We anticipate
that the TLA may find application to other mission
operations problems as well.

The research described in this paper was carried
out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

[1] T. B. Sheridan, Telerobotics, Automation, and Human
Supervisory Control. Cambridge MA: MIT Press, 1992.

[2] T. B. Sheridan, "Space Teleoperation Through Time
Delay: Review and Prognosis," IEEE Transactions on
Robotics and Automation, vol. 9, pp. 592-606, 1993.

[3] J. A. Adams, P. Rani, and N. Sarkar, "Mixed Initiative
Interaction and Robotic Systems," presented at 2004 AAAI
Workshop on Supervisory Control of Learning and
Adaptive Systems, Technical Report WS-04-08, 2004.

[4] D. Kortenkamp, D. Schreckenghost, and R. P.
Bonasso, "Adjustable Control Autonomy for Manned
Space Flight," presented at IEEE Aerospace Conference,
2000.

[5] K. Hambuchen, W. Bluethmann, M. Goza, R.
Ambrose, K. Wheeler, and K. Rabe, "Towards Supervising
Remote Dexterous Robots Across Time Delay," in
preparation, 2006.

[6] W. Bluethmann, R. Ambrose, R. Diftler, S. Askew, E.
Huber, M. Goza, F. Rehnmark, C. Lovchik, and D.
Magruder, "Robonaut: A Robot Designed to Work with
Humans in Space," Autonomous Robots, vol. 14, pp. 179-
198, 2003.

[7] K. R. Wheeler, R. Martin, V. SunSpiral, and M. Allan,
"Predictive Interfaces for Long-Distance Teleoperation,"
presented at 8th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space (ISAIRAS
2005), Munich, Germany, 2005.

[8] R. A. Peters, K. Hambuchen, D. Kawamura, and D.
M. Wilkes, "The Sensory Ego-Sphere as a Short-Term
Memory for Humanoid Robots," presented at 1st
International Conference on Humanoid Robotics
(Humanoids 2001), 2001.

[9] J. Norris, M. Powell, J. Fox, K. Rabe, and I.-H. Shu,
"Science Operations Interfaces for Mars Surface
Exploration," presented at IEEE SMC 2005, Hawaii, USA,
2005.

[10] Eclipse is described at http://www.eclipse.org

[11] D. Nau, T. C. Au, O. Ilghami, U. Kuter, J. W.
Murdock, D. Wu, and F. Yaman, "SHOP2: An HTN
Planning System," Journal of AI Research, vol. 20, pp.
379-404, 2003.

[12] SHOP and its variants are described at
http://www.cs.umd.edu/projects/shop

[13] B. Bederson, J. Grosjean, and J. Meyer, "Toolkit
Design for Interactive Structured Graphics," IEEE
Transactions on Software Engineering, vol. 30, pp. 535-
546, 2004.

[14] Piccolo is described at the site
http://www.cs.umd.edu/hcil/piccolo

