Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

Yeou-Fang Wang, Ph.D.
Allan Wax
Ray Lam
John Baldwin
Chet Borden

JPL/CalTech
Overview

• A proof-of-concept prototype successfully demonstrated a collaborative scheduling solution for future NSAS Deep Space Network application

• A prototype distributed computing environment was established for collaborative scheduling

• Java Message Service (JMS) was used in a mixed Java and .NET environment for messaging
Agenda

• NASA Deep Space Network scheduling
• Collaborative scheduling concept
• Distributed computing environment
• Platform concerns in a distributed environment
• Messaging and data synchronization
• The prototype
• Conclusion
Scheduling is to arrange antenna times for space flight missions and ground-based science observations (requirements) under certain restrictions (constraints).

Requirement:
- N tracks every M days,
- Complex pattern-based coverage,
- Antenna arraying,
- Multiple Spacecraft Per Antenna, …

Constraint:
- Ground assets: Antenna, Equipment, Downtimes, …
- Mission: Viewperiod, Horizon mask, Setup/teardown, …
- Combined: BOT, RFI, …
DSN Scheduling Users

• DSN schedulers:
 – Schedule owner
 – Prepare maintenance schedule
 – Coordination

• Space flight project schedulers:
 – Provide requirements
 – Negotiation and proposals
 – Submit changes

• Station operators:
 – Carry out schedule
 – Handle contingency and anomalies
Current Scheduling System

- Mainly a manual process with software support
- Long-range, mid-range, near-real-time processes handled by different groups
- Various tools are deployed for each process
- Meetings to resolve conflicts
Future Scheduling System

- Seamless scheduling for all planning horizons
- A master schedule always exists, visible to all users
- Requirements and schedules are fully traceable
- Conflicts are resolved at the lowest level possible in a peer-to-peer fashion
- Meetings are called only as needed
- Workspace is provided to users to develop requirements and for what-if analysis
- Distinguish global (shared) workspace and local (private) workspace
- Private workspace may span a set of peers
- Need scalability (loading, # users, # assets) and extensibility (evolving technology)
- Intelligent assistants for decision support
Collaborative Scheduling Concept

- Decision Makers (DM): DSN schedulers, project schedulers, managers, operators, …
- Every one knows their specific requirements and constraints
- No single DM makes decisions for others (distributed decision making)
- DMs share information
- Shared responsibility to create a successful schedule
- Work as a team to resolve conflicts
Collaborative Scheduling Prototype Features

- Single master schedule shared by all users
- Conflict-aware scheduling
- Dynamic workspace/static workspace
- Private workspace with limited sharing
- Scenario management for comparison
- Synchronous/Asynchronous collaboration (e.g. conflict resolution, negotiation)
- Ownership and workflow management
- Data synchronization
- Messaging/notification/alert
- Intelligent assistant
- Traceability
- Distributed computing environment
Distributed Computing Environment

• **Objective:** To connect users and resources in a transparent, open, and scalable manner.

 – **Transparency:** distributed experts are working together as if they are co-located

 – **Openness:** provides each project with a continually open environment that enables interaction with other projects until a satisfactory condition exists.

 – **Scalability:** The solution should be able to accommodate changes in the number of user projects and ground resources in the DSN domain.
Architecture

- Data
- Data access
- Legacy information
- Business logic
- Web services
- Messaging
- Client interfaces
Platform concerns in a distributed environment

- Distributed computing environment should be open and flexible for multiple frameworks.
- JAVA and .NET are two major players now:
 - It is expected that they will reach a 50-50 market share by the end of this year (based on articles from Gartner, Meta group, ZDNet, ...). Each will probably share 30%-40% market.
 - Java: large-scale enterprise, multi-platform
 - .NET: small/mid-size development, easy to use, performance/speed advantage
- There may be other frameworks emerging in the future
- Take advantage of each framework based on our needs
Possible Cross-Platform Solutions

- Java: through virtual machines for many platforms
- .NET and Mono: provides the necessary software to develop and run .NET client and server applications on Linux, Solaris, Mac OS X, Windows, and Unix.
- Mainsoft: .NET to J2EE
- Others such as Qt (Trolltech)
Messaging & Data Synchronization

- Collaboration requires instant communication
- All users are notified in real-time regarding data changes
- JMS is used for centralized messaging
- Time synchronization is the base for data synchronization
- Keep messages in messaging bus and keep data in data bus
Prototype Implementation

- Use SOAP/XML-based Web services
- Agents and backend are implemented using .NET
- Web services are in ASP.NET
- Clients are in Java and .NET
- JMS for messaging
- IKVM is used for .NET to communicate with JMS
IKVM

• IKVM.NET is an implementation of Java for Mono and the Microsoft .NET Framework.

• It includes
 – a Java Virtual Machine implemented in .NET
 – a .NET implementation of the Java class libraries and
 – tools that enable Java and .NET interoperability.

• Using IKVM, we can take advantages from both Java and .NET
The Prototype

• Database
 – Master schedule
 – Dynamic workspace/static workspace
 – Time-based ownership
 – Traceability information

• Middle-tier
 – Conflict-aware scheduling
 – Private workspace sharing
 – Scenario management for comparison
 – Synchronous/Asynchronous collaboration (e.g. conflict resolution & negotiation)
 – Workflow management
 – Data synchronization
 – Notification/alert

• Web services wrapper

• Clients
 – Java client for schedule viewing with dynamic update under user’s control
 – .NET Integrated Analysis Environment for complete analysis experience
 – Web pages to view schedule
Java Client
.NET Integrated Analysis Environment
<table>
<thead>
<tr>
<th>LINE</th>
<th>START</th>
<th>ITEM</th>
<th>DAY</th>
<th>SOA</th>
<th>EDN</th>
<th>FAC USER ACTIVITY</th>
<th>TIME</th>
<th>FREQUENCY</th>
<th>EOT</th>
<th>POST WORK</th>
<th>CONFIG</th>
<th>XFLCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 1</td>
<td>72</td>
<td>0000</td>
<td>1200</td>
<td>016</td>
<td>010</td>
<td>DSS STATION CLOSED</td>
<td>000 0000</td>
<td>1200 000</td>
<td>2B4</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 2</td>
<td>72</td>
<td>0000</td>
<td>1500</td>
<td>013</td>
<td>010</td>
<td>DSS STA DIRECTED ACT</td>
<td>000 0000</td>
<td>1600 000</td>
<td>2B2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 3</td>
<td>72</td>
<td>0025</td>
<td>0245</td>
<td>54</td>
<td>024</td>
<td>DSS STA DIRECTED ACT</td>
<td>000 025</td>
<td>0245 000</td>
<td>2B2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 4</td>
<td>72</td>
<td>0025</td>
<td>0355</td>
<td>65</td>
<td>024</td>
<td>DSS STA DIRECTED ACT</td>
<td>000 025</td>
<td>0355 000</td>
<td>2B2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 5</td>
<td>72</td>
<td>0055</td>
<td>0355</td>
<td>10</td>
<td>024</td>
<td>DSS PREPAS V31 TAPE</td>
<td>000 055</td>
<td>0355 000</td>
<td>1A4</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 6</td>
<td>72</td>
<td>0055</td>
<td>0355</td>
<td>60</td>
<td>024</td>
<td>DSS PREPAS V31 TAPE</td>
<td>000 055</td>
<td>0355 000</td>
<td>1A4</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 7</td>
<td>72</td>
<td>0140</td>
<td>0320</td>
<td>46</td>
<td>010</td>
<td>STL TR DUMP 131S</td>
<td>025 0205</td>
<td>0310 010</td>
<td>3C1</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 8</td>
<td>72</td>
<td>0205</td>
<td>0825</td>
<td>45</td>
<td>010</td>
<td>MGS MAX3</td>
<td>115 0320</td>
<td>0825 000</td>
<td>1A1</td>
<td>N03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 9</td>
<td>72</td>
<td>0205</td>
<td>1140</td>
<td>45</td>
<td>010</td>
<td>M010 MA11 0825DH012</td>
<td>115 0320</td>
<td>1125 015</td>
<td>1A1</td>
<td>N006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 10</td>
<td>72</td>
<td>0215</td>
<td>0500</td>
<td>54</td>
<td>010</td>
<td>CHDR TKG PASS</td>
<td>100 0345</td>
<td>0455 015</td>
<td>1A1</td>
<td>N063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 11</td>
<td>72</td>
<td>0315</td>
<td>0500</td>
<td>43</td>
<td>010</td>
<td>SOHO LGA HR D/L PASS</td>
<td>030 0345</td>
<td>0545 015</td>
<td>1A1</td>
<td>N073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 12</td>
<td>72</td>
<td>0320</td>
<td>0555</td>
<td>46</td>
<td>010</td>
<td>SOHO LGA HR U/L PASS</td>
<td>025 0345</td>
<td>0545 010</td>
<td>3C1</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 13</td>
<td>72</td>
<td>0335</td>
<td>0955</td>
<td>15</td>
<td>010</td>
<td>DSN RFC CLK SYN D-M4</td>
<td>130 0525</td>
<td>0925 030</td>
<td>1A4</td>
<td>F302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 14</td>
<td>72</td>
<td>0335</td>
<td>0955</td>
<td>65</td>
<td>010</td>
<td>DSN RFC CLK SYN D-M4</td>
<td>130 0525</td>
<td>0925 030</td>
<td>1A4</td>
<td>F302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 15</td>
<td>72</td>
<td>0430</td>
<td>0800</td>
<td>66</td>
<td>010</td>
<td>DSN PERF EVAL TEST</td>
<td>030 0430</td>
<td>0730 030</td>
<td>2A5</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 16</td>
<td>72</td>
<td>0435</td>
<td>0700</td>
<td>55</td>
<td>010</td>
<td>DSS STA DIRECTED ACT</td>
<td>000 0435</td>
<td>0700 000</td>
<td>2B2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 17</td>
<td>72</td>
<td>0435</td>
<td>0705</td>
<td>14</td>
<td>010</td>
<td>DSS TDF PROF</td>
<td>000 0435</td>
<td>0705 000</td>
<td>2C2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 18</td>
<td>72</td>
<td>0435</td>
<td>0745</td>
<td>26</td>
<td>010</td>
<td>DSS TDF PROF</td>
<td>000 0435</td>
<td>0745 000</td>
<td>2C2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 19</td>
<td>72</td>
<td>0435</td>
<td>0755</td>
<td>63</td>
<td>010</td>
<td>VGR1 TKG PASS</td>
<td>030 0505</td>
<td>0740 015</td>
<td>1A1</td>
<td>N007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 20</td>
<td>72</td>
<td>0500</td>
<td>0550</td>
<td>54</td>
<td>010</td>
<td>DSS STA DIRECTED ACT</td>
<td>000 0500</td>
<td>0650 000</td>
<td>2B2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 21</td>
<td>72</td>
<td>0500</td>
<td>1235</td>
<td>34</td>
<td>010</td>
<td>DSS MSFA TDN DEV</td>
<td>000 0500</td>
<td>1235 000</td>
<td>2C2</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 22</td>
<td>72</td>
<td>0555</td>
<td>0830</td>
<td>46</td>
<td>010</td>
<td>POLAR PB OPS</td>
<td>025 0620</td>
<td>0820 010</td>
<td>3C1</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 23</td>
<td>72</td>
<td>0630</td>
<td>1130</td>
<td>43</td>
<td>010</td>
<td>MSG T/P CONTINUOUS</td>
<td>100 0700</td>
<td>1115 015</td>
<td>1A1</td>
<td>N032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 24</td>
<td>72</td>
<td>0650</td>
<td>1055</td>
<td>46</td>
<td>010</td>
<td>WIND TR DUMP</td>
<td>100 0750</td>
<td>0950 015</td>
<td>1A1</td>
<td>N033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed 25</td>
<td>72</td>
<td>0730</td>
<td>1515</td>
<td>55</td>
<td>010</td>
<td>DSS MAINTENANCE</td>
<td>000 0700</td>
<td>1515 000</td>
<td>2A1</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How this works

1. Proposal
2. Share with B*
3. Sync
4. Request*
5. See request
6. Approve if it owns*

* Trigger server to send message

Proposed change with ownership and no conflict: automatically accepted and sync
Proposed change without ownership: workflow & ownership determine approval process
Conclusion

• We have prototyped a collaborative environment for DSN scheduling and successfully proved the concept
• DSN scheduling is a system that involves multiple agents
• Collaborative scheme needs to be developed in a multi-agent environment
• Efficient communication and data synchronization is a key for collaboration