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Motivation
• Spacecraft operate in a harsh, uncertain 

environment.
• Spacecraft achieve robustness by managing a 

complex set of redundant subsystems, over a 
range of possible nominal and off-nominal
scenarios.  

• Reasoning about interactions within and between 
subsystems during sensing and actuation is 
complex and error-prone, and requires significant
interaction between systems engineers and 
software programmers.

• The traditional gap between systems and software 
engineering can lead to errors that manifest 
themselves as software defects.

• NASA software engineering practice has been 
challenged to create and verify space systems that 
assure correctness, reliability, and robustness
in a timely and cost effective manner. 



Objective/Vision

Current Practice: System 
Software is a Surrogate for 
Systems Engineers, and 
Software Engineers perform 
the transformation.

Our Goal: Models from Systems 
Engineers are provided directly to the 
embedded system, which is capable of 
reasoning through them to accomplish 
mission objectives and manage the 
health of the system!



Approach
• The State-of-the-Art is still far from fully achieving this Vision
•Yet even incremental steps toward this Vision can greatly 

improve on the current practice, producing software that is:
•Less error-prone,
•More robust to off-nominal situations,

• Three facets of our approach:
•Develop representations and algorithms that endow the embedded 
system with the requisite reasoning capabilities (Model-based 
Programming and Execution)

• Integrate these technologies into a principled software architecture
that facilitates adaptation to a particular application (State-based control 
architecture and MDS software framework)

•Provide Systems Engineers with methods and tools that help them 
reason through the system design and develop models in a rigorous
way (State Analysis)

• Cheaper,
• Easier to verify, etc…
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Background:
The Mission Data System

MDS is a set of technologies and methodologies, including:

•A State-Based Architecture for Control Systems

•A Systems Engineering Process for Control Systems 
(“State Analysis”) 

•A Software Framework for Control Systems (a state-of-the-
art embedded software framework based on a modular 
component architecture implemented in C++ and supported 
on multiple operating systems)



Background:
State-based Control Architecture
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Background:
State Analysis

• A uniform, methodical, and rigorous approach for…
• Discovering, characterizing, representing, and documenting

the states of a system
• Modeling the behavior of states and relationships among them, including 

information about hardware interfaces and operation

• Capturing the mission objectives in detailed scenarios motivated by operator intent
• Keeping track of system constraints and operating rules, and
• Describing the methods by which objectives will be achieved

• For each of these design aspects, there is a simple but strict structure
within which it is defined…
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Embedded programs interact with
the system’s sensors/actuators:

• Read sensors 

• Set actuators

Model-based programs interact with 
the system’s (hidden) state directly:

• Read state

• Set state
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Background:
Titan Model-based Executive

•Developed at MIT

• Two-tiered architecture, consisting of
• A control sequencer which executes the model-based control program, 

and
• A deductive controller which 

• Reads sensors and generates state estimates, (Mode Estimation)
• Uses the state estimates and input from the control sequencer to generate 

commands to be sent to the hardware elements (Mode Reconfiguration)



Model-based Execution Architecture
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Compatibility Analysis of 
MDS and Titan Architectures
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Integrating Model-based Programming
and Execution into the Architecture
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State Analysis and Modeling

• IMU subsystem plus associated power switch chosen as 
demonstration subsystem
• Leveraged modeling work performed in support of a previous MDS Mars 

Lander prototype demonstration

•Modifications to existing products were made to support 
Titan integration
• State Effects Diagram modified to separate State Variables which were 

previously combined (IMU OpMode & Health, Power Switch OpMode & 
Health)

• Software collaboration diagram modified to reflect consolidation of 
estimation and control functionality for all State Variables

• Existing estimation and control algorithms no longer necessary (replaced 
by Titan ME and MR functionality)

•Modeling activities focused on developing Titan 
subsystem models (factored POMDPs)



IMU Subsystem 
State Effects Diagram



Titan Subsystem Model:
IMU Health



Integrating Model-based Programming
and Execution into the Software
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Testing Program

• Two main thrusts of the testing program
• Software Verification, focused on interfaces between MDS frameworks, 

newly-developed adaptation code, and the Titan engine.
• Model Verification, focused on uncovering any latent errors or 

incompatibilities in the source subsystem models developed for the task. 

•All tests performed against a software simulation, 
allowing for testing of both nominal and off-nominal 
scenarios

•All tests based on the same operational scenario, and 
therefore used the same activity plan or goal network.
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Computationally Tractable
State Estimation & Fault Diagnosis

• Recast Belief State Update problem as an Optimal Constraint 
Satisfaction Problem (OCSP)

• Solve using OPSAT engine: 

conflict-directed
best-first search
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• The belief state can be accurately 
approximated by maintain the k most 
likely estimates

• The probability of each state can be 
accurately approximated by the most 
likely trajectory to that state

• The observation probability can be 
reduced to
• 1.0 for observations consistent with the state,
• 0.0 for observations inconsistent with the state
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Diagnostic Algorithm Performance
• Two primary concerns regarding application of model-based 

reasoning onboard spacecraft are processor throughput and 
memory limitations

• To address this concern, we have evaluated the performance 
of Titan’s state estimation capability in terms of estimation 
time and static/heap memory utilization
• Variety of models (up to subsystem-size)
• Variety of nominal and off-nominal scenarios (auto-generated)
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Integration and Test Issues

1. Reconciling Titan’s approximate belief state representation with 
the MDS State Variable concept?

1. Can collapse all State Variables into a single ‘System State Variable’
2. Retain individual states by computing each state’s estimate by adding up 

probability of each system state estimate that contains the specified state 
estimate (preferred)

2. How to integrate Titan with parts of the system which deal with 
continuous states?

1. Allow Titan to handle discrete states, and write traditional estimators for 
continuous states.

2. Research into hybrid model-based programming environments (possible 
direction for future work)

3. Titan improperly diagnosing FAILED states
1. Titan does not properly handle some types of dependencies between state 

variables.  Future work will need to characterize exactly which type of 
dependencies are problematic and possibly modify the existing Titan algorithm, 
as well as develop a set of modeling guidelines to ensure that the models 
properly express the physical dependencies of the system under control



Demonstrated Benefits
End-to-end 
Lifecycle 
Approach

• Model-based systems engineering at the core
• Earlier consideration of off-nominal behavior and operations
• Regular architecture allows development of accurate cost and 

performance models

Simplified 
estimator & 
controller 
development

• Current ad-hoc algorithm implementation reduced to model development 
and use of pre-validated general estimation & control algorithms

• Greater s/w reuse: only application-specific engineering models need to 
be developed; the reasoning engine is generic and reusable

Enhanced 
diagnosis 
and recovery 
capabilities

• Uses complete, any-time inference algorithm to detect and respond to 
failures “on-the-fly”

• Increased runtime performance using a precompiled model
• Reasons over component interactions and “hidden” states
• Tracks multiple state possibilities; prunes inconsistent states

Inspectable
& verifiable 
models

• Models are specified using an intuitive graphical representation
(Factored POMDP)

• Models are compiled offline into a set of rules that can be verified by 
systems engineers

• Formal modeling semantics provides greater opportunity for automated 
verification (e.g., model-checking)
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Next Steps
• Demonstrate integrated architecture and 

approach on scaled-up system
• Accommodate other modeling 

representations and estimation 
algorithms, e.g., hybrid systems 
(discrete modes with continuous 
dynamics)

• Explore applicability of model-based 
programming to other domains of 
interest (e.g. planning & scheduling)

• Develop formal V&V approach for 
model-based programs
• probabilistic analysis of possible system 

executions
• lead to verifiably-correct system behavior for 

both nominal and off-nominal execution
• focus on specific validation needs of future 

NASA exploration missions
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