
Practical Application of ModelPractical Application of Model--based based
Programming and StateProgramming and State--based based
Architecture to Space MissionsArchitecture to Space Missions

Gregory Horvath, Michel Ingham
Jet Propulsion Laboratory, California Institute of Technology

Seung Chung, Oliver Martin, Brian Williams
Computer Science and Artificial Intelligence Laboratory, MIT

Space Mission Challenges for Information Technology 2006
July 17 – 20, 2006

Pasadena CA

Overview

• Introduction
• Motivation
• Objectives

•Background
• MDS
• Model-based Programming and the Titan Executive

•Detailed Approach
• Compatibility Analysis
• Framework Development
• State Analysis and Modeling
• Adaptation Development
• Testing

•Results

•Conclusions and Future Work

Overview

• Introduction
• Motivation
• Objectives

• Background
• MDS
• Model-based Programming and the Titan Executive

• Detailed Approach
• Compatibility Analysis
• Framework Development
• State Analysis and Modeling
• Adaptation Development
• Testing

• Results

• Conclusions and Future Work

Motivation
• Spacecraft operate in a harsh, uncertain

environment.
• Spacecraft achieve robustness by managing a

complex set of redundant subsystems, over a
range of possible nominal and off-nominal
scenarios.

• Reasoning about interactions within and between
subsystems during sensing and actuation is
complex and error-prone, and requires significant
interaction between systems engineers and
software programmers.

• The traditional gap between systems and software
engineering can lead to errors that manifest
themselves as software defects.

• NASA software engineering practice has been
challenged to create and verify space systems that
assure correctness, reliability, and robustness
in a timely and cost effective manner.

Objective/Vision

Current Practice: System
Software is a Surrogate for
Systems Engineers, and
Software Engineers perform
the transformation.

Our Goal: Models from Systems
Engineers are provided directly to the
embedded system, which is capable of
reasoning through them to accomplish
mission objectives and manage the
health of the system!

Approach
• The State-of-the-Art is still far from fully achieving this Vision
•Yet even incremental steps toward this Vision can greatly

improve on the current practice, producing software that is:
•Less error-prone,
•More robust to off-nominal situations,

• Three facets of our approach:
•Develop representations and algorithms that endow the embedded
system with the requisite reasoning capabilities (Model-based
Programming and Execution)

• Integrate these technologies into a principled software architecture
that facilitates adaptation to a particular application (State-based control
architecture and MDS software framework)

•Provide Systems Engineers with methods and tools that help them
reason through the system design and develop models in a rigorous
way (State Analysis)

• Cheaper,
• Easier to verify, etc…

Overview

• Introduction
• Motivation
• Objectives

•Background
• MDS
• Model-based Programming and the Titan Executive

• Detailed Approach
• Compatibility Analysis
• Framework Development
• State Analysis and Modeling
• Adaptation Development
• Testing

• Results

• Conclusions and Future Work

Background:
The Mission Data System

MDS is a set of technologies and methodologies, including:

•A State-Based Architecture for Control Systems

•A Systems Engineering Process for Control Systems
(“State Analysis”)

•A Software Framework for Control Systems (a state-of-the-
art embedded software framework based on a modular
component architecture implemented in C++ and supported
on multiple operating systems)

Background:
State-based Control Architecture

System
Under
Control

State
Control

Hardware
Adapter

Mission Planning & Execution

Control
Goals

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State Knowledge

Models

Clear delineation
between control
system and system
under control

Explicit state
variables

Separation of estimation
from control; diagnosis and
recovery are integrated
with nominal execution

Models inform
all aspects of
control system

System operation via
overt, objective
statements of intent

Background:
State Analysis

• A uniform, methodical, and rigorous approach for…
• Discovering, characterizing, representing, and documenting

the states of a system
• Modeling the behavior of states and relationships among them, including

information about hardware interfaces and operation

• Capturing the mission objectives in detailed scenarios motivated by operator intent
• Keeping track of system constraints and operating rules, and
• Describing the methods by which objectives will be achieved

• For each of these design aspects, there is a simple but strict structure
within which it is defined…

Available
Power

Power
Margin

Module
Temperature

Battery
State of
Charge

derived effects

derived state
(dependent state)

independent state

independent state

measurement
data state

data effect

state effect

command data
state

RTG
Output
Current

Measurement
s

state

RTG
Output
Current

External
Temperature

Module
Temperature

Measurements

Heater
Switch

Measurements

Battery
State of Charge
Measurements

Heater
Switch
Status

and
Health

Heater
Power

Use

Heater
Switch

Commands

An example
State Effects

Diagram

Msmt: Ant_N
Pointing

Msmt: Ant_N
Motor

Current

Msmt: Ant_N
Mech

OpMode

Msmt: Ant_N
Mech Power

Msmt: Array
Correlator

Power

Simple: Ant_N
Mech OpMode

& Health

Cmd: Ant_N
Mech D.S.

Cmd: Signal
Inclusion

D.S.

Simple: Array
SP Correlator
& Combiner

State

Simple: Background
& Noise

Signal State

Target Signal
State

Msmt: Ant_N
Received

Signal

Simple: Ant_N Received
Signal

Msmt: Correlation
matrix

Msmt: Signal
Weights

Simple: Combined
Signal State Msmt: Combined

Signal SNR

Overview of State Analysis
1. System to be controlled

3. Model informs software design

2. State Analysis produces model

4. Model informs operations

Ant_N Mech OpMode & Health:
Healthy, Tracking & On-point

Target Signal: Always Present

Noise & Background:
Unconstrained

Received Signal 1: Target
Signal present

Received Signal 1:
Is Known

Received Signal 1: Transition to
Target Signal Present

If Ant_N Mech OpMode & Health = not shutdown or offline
if Target Signal State = present
and Ant_N Mech OpMode & Health = on-point
then: Target + Noise + Background

else: Noise + Background

Goal

Supporting Goal

Supporting Goal

Supporting Goal

Supporting Goal

Supporting Goal

Min to Max

Min to Max

Power off

Stowed
or go-idle

End-of-profile or go-idle

Power on

Shutdown

Idle

Off-pnt msmt

On-pnt msmst
Tracking

On-pnt

Off-pnt

Power off
Power off

Go to Stowed
Begin Tracking

Offline &
ready

Come online cmd

Go offline cmd

Repaired msmtOffline &
not ready

Stowing

Ant. N Mech.
Controller

Ant. N
Hardware
Adapter

Ant. N Mech.
Estimator

Measurements
& Commands

Commands

State
Functions

State
Values

Ant. N Mech.
State Variable

Models

Goals

State Variables

Estimators
Controllers

Measurements

Commands

Various Models
Resources

Allocations

State Constraints

Time Constraints

Scenario Fragments

Time

EWS/EWC

Serialization

ACEC++ Standard
Library

Unit Testing RTOS

Naming Time DM/DT/Policy CCSDSELF

Math EstimationException UtilityInitialization

Components/Connectors Data CatalogValue History Data Transport

State Knowledge Goal Achiever: H/w AdapterGoal Network

GEL

Graph State Variable

State Query Visualization Simulation Scheduler

Graph Physics:

Common VocabularyCommon Vocabulary
Reduces Errors of TranslationReduces Errors of Translation

State Analysis:State Analysis:
ModelModel--based Requirements based Requirements

Map Directly to SoftwareMap Directly to Software

Background:
MDS Software Frameworks

System
Under
Control

State
Control

Hardware
Adapter

Mission Planning & Execution

Control
Goals

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Embedded programs interact with
the system’s sensors/actuators:

• Read sensors

• Set actuators

Model-based programs interact with
the system’s (hidden) state directly:

• Read state

• Set state

Embedded Program

State
Plant

Obs Cntrl

Programmers must reason
through interactions between
state and sensors/actuators.

Model-based Executives automatically
reason through interactions between
states and sensors/actuators.

Model-based
Embedded Program

State
Plant

Estimated State
Model-based Executive

Obs Cntrl

Background:
Model-based Programming

Background:
Titan Model-based Executive

•Developed at MIT

• Two-tiered architecture, consisting of
• A control sequencer which executes the model-based control program,

and
• A deductive controller which

• Reads sensors and generates state estimates, (Mode Estimation)
• Uses the state estimates and input from the control sequencer to generate

commands to be sent to the hardware elements (Mode Reconfiguration)

Model-based Execution Architecture

Plant
Commands

Configuration
goals

Observations

Control Sequencer

State
estimates

Plant
Model

Control
Program

Deductive Controller

Model-based
Program

Titan Model-based
Executive

Mode
Estimation

Mode
Reconfigurationestimates

State

Overview

• Introduction
• Motivation
• Objectives

• Background
• MDS
• Model-based Programming and the Titan Executive

•Detailed Approach
• Compatibility Analysis
• Framework Development
• State Analysis and Modeling
• Adaptation Development
• Testing

•Results

•Conclusions and Future Work

Compatibility Analysis of
MDS and Titan Architectures

Titan
Concept

MDS / State Analysis
Concept

Models represented as factored
POMDPs

No prescribed representation, but
Titan representation compatible
with Stats Analysis requirements

System state represented as
discrete assignment to each state

variable in the system

Continuous assignment to a set
of MDS State Variables

Mode Estimation /

Mode Reconfiguration

Estimator /

Controller

Configuration Goal

(Ex. – Transition to and Maintain
State X)

Goals, Elaborations

(Ex. – Transition to State X;
Maintain State X)

Integrating Model-based Programming
and Execution into the Architecture

System
Under
Control

State
Control

Hardware
Adapter

Mission Planning & Execution

Control
Goals

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State Knowledge

Models

Model-based reasoning algorithms to
compute a series of commands that
progress the system towards a least-cost
state that achieves the goal.

Goal
Interpreter

Reactive
Planner

Configuration
Goals

Goal
State Command

Current
State

Model-based reasoning algorithm:
• Tracks a limited set of most-likely states
• Explores state space in best-first order

(1)
1[]ip s+ •

(1)
2[]ip s+ •

(1)
3[]ip s+ •

Models are used
EXPLICITLY by
the control system

State Analysis and Modeling

• IMU subsystem plus associated power switch chosen as
demonstration subsystem
• Leveraged modeling work performed in support of a previous MDS Mars

Lander prototype demonstration

•Modifications to existing products were made to support
Titan integration
• State Effects Diagram modified to separate State Variables which were

previously combined (IMU OpMode & Health, Power Switch OpMode &
Health)

• Software collaboration diagram modified to reflect consolidation of
estimation and control functionality for all State Variables

• Existing estimation and control algorithms no longer necessary (replaced
by Titan ME and MR functionality)

•Modeling activities focused on developing Titan
subsystem models (factored POMDPs)

IMU Subsystem
State Effects Diagram

Titan Subsystem Model:
IMU Health

Integrating Model-based Programming
and Execution into the Software

IMU SV:
OpMode &
HealthState

Titan ME
Estimator

update State

Constraint
Execution

get State

IMU
H/W Adapter

PowerSwitch
Commands

PowerSwitch SV:
OpMode &
HealthState

PowerSwitch
H/W Adapter

PowerSwitch
Measurements

get State

IMU
Commands

IMU
Measurements

Titan MR
Controller

Constraint
Execution

update State

PowerSwitch
Commands

IMU
Commands

get State get State

Testing Program

• Two main thrusts of the testing program
• Software Verification, focused on interfaces between MDS frameworks,

newly-developed adaptation code, and the Titan engine.
• Model Verification, focused on uncovering any latent errors or

incompatibilities in the source subsystem models developed for the task.

•All tests performed against a software simulation,
allowing for testing of both nominal and off-nominal
scenarios

•All tests based on the same operational scenario, and
therefore used the same activity plan or goal network.

IMU OpMode SV:

Transition to measuring

IMU Health SV: Transition

to Healthy

e

[0s,15s]

IMU OpModeSV:

Maintain measuring

IMU Health SV:

Maintain Healthy

[120s,120s]

Overview

• Introduction
• Motivation
• Objectives

• Background
• MDS
• Model-based Programming and the Titan Executive

• Detailed Approach
• Compatibility Analysis
• Framework Development
• State Analysis and Modeling
• Adaptation Development
• Testing

•Results

•Conclusions and Future Work

Computationally Tractable
State Estimation & Fault Diagnosis

• Recast Belief State Update problem as an Optimal Constraint
Satisfaction Problem (OCSP)

• Solve using OPSAT engine:

conflict-directed
best-first search

conflict-directed
best-first search

mostmost--likelylikely
candidatecandidate

mostmost--likely likely
state estimatestate estimate

conflicts (infeasible modes)conflicts (infeasible modes)

consistent with
model & obs?

consistent with
model & obs?

conflict
database

conflict
database

• The belief state can be accurately
approximated by maintain the k most
likely estimates

• The probability of each state can be
accurately approximated by the most
likely trajectory to that state

• The observation probability can be
reduced to
• 1.0 for observations consistent with the state,
• 0.0 for observations inconsistent with the state

Approximations to Estimation

Assumptions made by
Livingstone, Livingstone-2

Assumptions relaxed by
Titan Model-based Executive

Diagnostic Algorithm Performance
• Two primary concerns regarding application of model-based

reasoning onboard spacecraft are processor throughput and
memory limitations

• To address this concern, we have evaluated the performance
of Titan’s state estimation capability in terms of estimation
time and static/heap memory utilization
• Variety of models (up to subsystem-size)
• Variety of nominal and off-nominal scenarios (auto-generated)

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

M
ax

 n
um

be
r

of
 n

od
es

 in
 q

ue
ue

Number of initial states, k

Estimate Enumeration Maximum Queue Size for EO−1 Model

BFTE, single estimate
BFTE, k estimates
BFBSE, single estimate
BFBSE, k estimates

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
el

ie
f s

ta
te

 p
ro

ba
bi

lit
y

de
ns

ity
 m

ai
nt

ai
ne

d

Estimation time−step

Probability Density Maintained over Time for EO−1 Model

BFTE, k=1
BFTE, k=10
BFTE, k=30
BFBSE, k=1
BFBSE, k=10
BFBSE, k=30

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

T
im

e
(m

s)

Number of initial states, k

Estimate Enumeration Time for EO−1 Model

BFTE, single estimate
BFTE, k estimates
BFBSE, single estimate
BFBSE, k estimates

Integration and Test Issues

1. Reconciling Titan’s approximate belief state representation with
the MDS State Variable concept?

1. Can collapse all State Variables into a single ‘System State Variable’
2. Retain individual states by computing each state’s estimate by adding up

probability of each system state estimate that contains the specified state
estimate (preferred)

2. How to integrate Titan with parts of the system which deal with
continuous states?

1. Allow Titan to handle discrete states, and write traditional estimators for
continuous states.

2. Research into hybrid model-based programming environments (possible
direction for future work)

3. Titan improperly diagnosing FAILED states
1. Titan does not properly handle some types of dependencies between state

variables. Future work will need to characterize exactly which type of
dependencies are problematic and possibly modify the existing Titan algorithm,
as well as develop a set of modeling guidelines to ensure that the models
properly express the physical dependencies of the system under control

Demonstrated Benefits
End-to-end
Lifecycle
Approach

• Model-based systems engineering at the core
• Earlier consideration of off-nominal behavior and operations
• Regular architecture allows development of accurate cost and

performance models

Simplified
estimator &
controller
development

• Current ad-hoc algorithm implementation reduced to model development
and use of pre-validated general estimation & control algorithms

• Greater s/w reuse: only application-specific engineering models need to
be developed; the reasoning engine is generic and reusable

Enhanced
diagnosis
and recovery
capabilities

• Uses complete, any-time inference algorithm to detect and respond to
failures “on-the-fly”

• Increased runtime performance using a precompiled model
• Reasons over component interactions and “hidden” states
• Tracks multiple state possibilities; prunes inconsistent states

Inspectable
& verifiable
models

• Models are specified using an intuitive graphical representation
(Factored POMDP)

• Models are compiled offline into a set of rules that can be verified by
systems engineers

• Formal modeling semantics provides greater opportunity for automated
verification (e.g., model-checking)

Overview

• Introduction
• Motivation
• Objectives

• Background
• MDS
• Model-based Programming and the Titan Executive

• Detailed Approach
• Compatibility Analysis
• Framework Development
• State Analysis and Modeling
• Adaptation Development
• Testing

• Results

•Conclusions and Future Work

Next Steps
• Demonstrate integrated architecture and

approach on scaled-up system
• Accommodate other modeling

representations and estimation
algorithms, e.g., hybrid systems
(discrete modes with continuous
dynamics)

• Explore applicability of model-based
programming to other domains of
interest (e.g. planning & scheduling)

• Develop formal V&V approach for
model-based programs
• probabilistic analysis of possible system

executions
• lead to verifiably-correct system behavior for

both nominal and off-nominal execution
• focus on specific validation needs of future

NASA exploration missions

closed part.
open open

stuck
closed

stuck
open

0=x

0>x 2.1>x

0=x 2.1≤x

1.0

9.0

1.0

9.0

2.10 ≤< x
2.1>x

Flow Regulator

Discrete modes

Continuous state: flow x

xq
qx

out

cmdk

=
+= −

+)10,0(4
1 N

0.8=outq

Proposed DSN Array

	Practical Application of Model-based Programming and State-based Architecture to Space Missions
	Overview
	Overview
	Motivation
	Objective/Vision
	Approach
	Overview
	Background:�The Mission Data System
	Background:�State-based Control Architecture
	Background:�State Analysis
	Overview of State Analysis
	Background:�Model-based Programming
	Background:�Titan Model-based Executive
	Model-based Execution Architecture
	Overview
	Compatibility Analysis of �MDS and Titan Architectures
	Integrating Model-based Programming�and Execution into the Architecture
	State Analysis and Modeling
	IMU Subsystem �State Effects Diagram
	Titan Subsystem Model:�IMU Health
	Integrating Model-based Programming�and Execution into the Software
	Testing Program
	Overview
	Computationally Tractable�State Estimation & Fault Diagnosis
	Diagnostic Algorithm Performance
	Integration and Test Issues
	Demonstrated Benefits
	Overview
	Next Steps

