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Abstract 
 
START is a tool to optimize research and development primarily for NASA missions. It 
was developed within the Strategic Systems Technology Program Office, a division of 
the Office of the Chief Technologist at NASA's Jet Propulsion Laboratory. 
 
START is capable of quantifying and comparing the risks, costs, and potential returns of 
technologies that are candidates for funding. START can be enormously helpful both in 
selecting technologies for development -- within the constraints of budget, schedule, and 
other resources -- and in monitoring their progress. 
 
START's methods are applicable to everything from individual tasks to multiple projects 
comprising entire programs of investigation. They can address virtually any technology 
assessment and capability prioritization issue. In this report, START is used to analyze 
the capability needs using data from NASA’s Exploration Systems Architecture Study 
(ESAS). 

1. Introduction 
 
START is used to analyze the capability needs using data from NASA’s Exploration 
Systems Architecture Study (ESAS). 
 
Exploration Systems Architecture supports NASA’s vision for space exploration: 

• Requirements-driven technology program 
• Annual “go-as-you-pay” budget planning 
• Develop and fly the Crew Exploration Vehicle (CEV) no later than 2014. 
• Return to the Moon no later than 2020. 
• Implement a sustained and affordable human and robotic program. 
• Develop supporting innovative technologies, knowledge, and infrastructures. 
• Develop a U.S. system capable of servicing the International Space Station 
• Enable a permanent human presence while preparing for Mars 

 
It's important to note, however, that analysis isn't a one-time event, and changes occur. 
Assessment is a continuous process throughout a project lifecycle and, commensurately, 



data such as cost estimates should be frequently updated to provide the best information 
for management decisions. 

Key questions 
 
This study was part of an effort to develop a systematic process to help NASA select a 
group of capabilities for development, based on the probability that they will lead to 
mission success. 
 
Key questions addressed include how budget allocations are affected by: 

• Cost uncertainties 
• Reduction in available budget levels 
• Shifting funding within constraints imposed by mission timeline  

2. Input Database 
 
Our sponsor at NASA Headquarters provided a database of inputs to our analysis. This 
section describes the organization of the data. 

Capability Hierarchy 
 
The capabilities are organized into twelve capability areas shown in Table 1. This 
hierarchy helps to organize the requirements and capabilities. 
 

1 Structures 
2 Protection 
3 Propulsion 
4 Power 
5 Thermal Control 
6 Avionics & Software 
7 Environmental Control & Life Support 
8 Crew Support & Accommodations 
9 Mechanisms 
10 In-Situ Resource Utilization (ISRU) 
11 Analysis & Integration 
12 Operations 

 
Table 1:  Top-Level Capability Areas 

Mission Set 
 The four missions are: 

• CEV to ISS 
• Lunar sortie – CEV to moon (short stay) 
• Lunar outpost base 
• Mars outpost base 



Mission importance weights 
 
The four missions have different relative importance, as shown by their given weight in  
Table 2. This is an illustrative weighting demonstrating the form of the inputs needed. 
 

Mission Importance weight 
CEV to ISS 9 
CEV to moon 6 
Lunar outpost base 1 
Mars outpost base 0.1 

 
Table 2: Mission Importance Weights 

 
Although the Mars mission was included structurally in the analysis, a complete dataset 
was not available; thus incorporation of R&D for human-robotic Mars missions was 
deferred to a subsequent study. 

Figures of Merit 
 
Six figures of merit (FOM) defined by the sponsor are associated with each capability for 
each mission (3). The FOMs are defined in Table 3. Each FOM is assigned a 
High/Medium/Low label corresponding to weights 9, 3 and 1 respectively. 
 
Figure of Merit Definition 
Overall criticality Impact of the need on the architecture 
Safety and mission success Probability of loss of crew, 

Probability of loss of mission 
Extensibility / flexibility Lunar, Mars, other destinations, 

Commercial activities, 
National security 

Programmatic risk reduction Technology development risk, Cost risk, 
Schedule risk, Political risk 

Affordability Technology development cost, Facilities 
cost, Ops cost, Cost of failure 

Technical performance How the technical performance affects the 
architecture 

 
Table 3:  Figures of Merit Defined 

Cost profiles 
 
Each capability has a cost profile outlining its cost requirements per year to bring it to 
TRL 6. The database also contains absolute start and end years for each cost profile. The 
base case does not allow time shifting of the funding profiles, thus fixing the cost profiles 



in time. Later a temporal analysis relaxes this such that profiles are only constrained to fit 
within the missions’ capability development timelines. 

Probability of Successfully Developing a Capability 
 
Success in fulfilling a capability for a mission is defined for this study as the capability 
development reaching a technology readiness level (TRL) of 6 within the specified 
budget and schedule. TRL 6 requires a system/subsystem model or prototype 
demonstration in a relevant environment. 
 
A measure of the probability of this success can be taken from the parameter for 
quantifying the difficulty of maturing a particular capability, the “Research and 
Development Degree of Difficulty” (R&D3) [Mankins, 1998]. The sponsor provided the 
R&D3 levels for each capability for each mission, and each level was then linked to a 
corresponding probability of success for fulfilling the capability for each mission using 
table 4.  
 

R&D3 Probability of Success 
1 99% 
2 90% 
3 80% 
4 50% 
5 20% 

 
Table 4:  Probability of success of “Normal” R&D effort for different R&D3 
levels. 

Center splits 
 
Multiple centers can contribute to a capability. Individual center contributions associated 
with each capability have been provided as a percentages of the cost. Validation of the 
center splits is needed since the capabilities were not broken down into individual tasks, 
where center splits can be easily identified. 

3. Assumptions and Caveats 
Capabilities Require Full Funding 
 
We assume a capability needs to be fully funded each year to achieve its mission impact. 
Therefore, partial funding does not provide any benefit and therefore partial funding of a 
capability is not allowed. 



Capability Dependencies Are Not Included in Input Data  
 
The analysis assumes independent capabilities, i.e., the decision on whether or not to 
fund a capability is independent of the decision of whether or not any of the other 
capabilities are selected. The results may be inconsistent where dependencies actually 
exist. The analysis can be updated when dependency data becomes available. 

Data Validation/Verification May Be Warranted in Some Cases  
 
The analysis assumes priority is based only on FOM data. Large cost capabilities without 
correspondingly large FOMs should be reviewed. An example of such a capability is 8e, 
Crew Healthcare Systems. Due to this, the results may not reflect actual priorities. 

4. Optimization Formulation 
 
The objective was to assemble an optimal portfolio of capabilities for development. To 
do this, a unitless value of utility is calculated for each capability (see section below) 
representing its predicted effective benefit to the Exploration Systems Architecture. The 
optimization algorithm then builds portfolios with the highest possible total benefit, 
subject to budget and schedule constraints. 

Defining the Benefit Function 
 

Nmissions 
 

Number of missions under consideration 

Wi 
 

Weight of the ith mission 

Mcapabilities 
 

Number of capabilities under consideration 
 

Pi,j 
 

Probability of fulfilling the jth capability for the ith mission 
 

R 
 

Number of Figures of Merit 
 

FOMi,j,k 
 

kth Figure of Merit, of the jth need, with respect to the ith mission 
 

Xi,j 
 

Binary control variables indicating if capability j for mission i is 
selected for funding. Xi,j = {0,1}. 

 
Table 5:  Benefit Function Parameter Definitions 

  



The benefit function (BF) is a weighted sum of expected Figures of Merit (summed per 
capability, per weighted missions). 
 
If Xi,j equals 1, the capability is selected for funding; if it equals 0 then it is not funded. 
The portfolio is optimized by finding the set of Xi,j that maximizes: 
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Subject to annual cost constraints: 
 

! 

i=1,Nmissions

"
j=1,M capabilities

" Xi , j *C
( t )

i , j # B(t ) for all years t    (2) 

 
Where t = 2006, 2006+T (T number of years in portfolio).  
 
The optimization problem is solved using the Branch and Bound algorithm [Martello & 
Toth, 1988]. 

5. Sensitivity Analysis  
 
Sensitivity analysis involves adjusting model input values to determine the impact on 
portfolio. Our sensitivity analysis estimates robustness of the funding for each capability. 
Funding recommendations are compared under perturbations of the cost and different 
budget levels.  
 
A number of cases using various budget scenarios were examined. A representative 
example is reported here. 

1) Case 1:  The baseline – the full capability set at the full budget 
2) Case 2:  $100M/year budget reduction  

The Beta Density Function and Cost Uncertainties 
 
Ideally, cost distributions should be based on engineering estimates, with the costs and 
probabilities for various contingencies provided by engineers and cost analysts. If details 
of this type are unavailable, the beta distribution is commonly used to model cost 
uncertainty. 
 
This study fits a beta density function distribution based on three costs: minimum, mean, 
and maximum values. It is a rounded version of a triangular distribution. The random 
value from the beta distribution is the percent cost variation from nominal. The beta 
function parameters are α = 1.5, β = 3, minimum = 98 %, maximum = 300 %. 



Monte Carlo Simulation 
 
The Monte Carlo simulation repeatedly generates random values used to model the cost 
uncertainties. An iteration of the Monte Carlo simulation starts by multiplying a random 
number drawn from the Beta distribution by each cost for each year for each capability. 
The optimization algorithm is then run on this modified data. The optimum portfolio is 
found. Each capability’s status as in or out of the portfolio is recorded. 
 
Once 1000 iterations have been completed, the percentage of time each capability was 
chosen in the optimization is tabulated and is used as the measure of robustness for the 
given capability. The accuracy of the Monte Carlo estimate is based on the number of 
iterations; with 1000 iterations the 95% confidence interval for true percentage is +/- 
1.5%. 

Case 1:  The Baseline 
 
The initial optimization with no cost uncertainties resulted in each capability being 
funded. However, for the first 6 years, the cost of the capabilities met the budget line 
exactly as shown in figure 1 below. In this case the slightest cost overrun by a capability 
during any of these years would cause a cost overrun in the portfolio. A sensitivity 
analysis was run on the baseline to see which capabilities would be recommended for a 
budget cut if an overrun occurred. 
 

Total Cost for Level 1 Requests Included by the Optimization and Total Budget Available  vs Year for Level 1
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Figure 1. The total capability costs for the first 6 years all meet the budget 
exactly, threatening budget overruns if a capability cost is underestimated. 
Optimization of the portfolio is trivial since all requested capabilities’ costs 
fit under the given budget cap for each year, thus allowing for all 
capabilities to be funded. 
 



The results are shown in table 6. Nine of the 52 capabilities from the baseline set enter 
the portfolio less than 90% of the time, and four of those twelve enter less than 50% of 
the time. Capability 8e never enters the portfolio. 
 
8e Crew healthcare systems (medical tools and techniques, countermeasures, exposure limits) 0.0%

8f Habitability systems (waste management, hygiene) 10.1%

8b EVA Suit (surface including portable life suppport system) 23.8%

3a Human-rated, 5-20 K lbf class in space engine and propulsion system 47.2%

5b Surface heat rejection 52.7%

6l Low temperature electronics and systems (permanent shadow region ops) 57.4%

3h Long-term, cryogenic, storage, management and transfer (for lunar surface module) 76.2%

6j Autonomous precision landing  and GN&C (Lunar & Mars) 84.6%

10c Demonstration of polar volatile collection and seperation 88.4%  
 

Table 6:  Capabilities selected for full funding less than 90% in the 
Baseline Monte Carlo case. 

Data such as this indicates a preliminary suggestion to reprioritize capabilities due to 
insufficient availability of funding, provided that the given figures of merit, costs, and 
probabilities etc. were accurate, and there were no other extenuating circumstances. 
Review of this table is an excellent starting point for contingency mitigation; it is not 
meant as a final recommendation. 

Case 2 – Baseline Minus $100M/year  
 
Case 2 is a repeat of case 1, but with the budget cap decreased by $ 100 M/year.  
 
The results are shown in table 7. In Case 2 there are 12 capabilities below the 90th 
percentile. 
 
Compared to case 1, there are some changes in the rankings of the capabilities. The 
bottom 5 capabilities keep their rankings, but 10f, which was in the 90th percentile before 
reducing the budget by $100 M/year, is now the 6th least robust capability. For non-robust 
capabilities competing to enter a portfolio, the change in rankings at different budget 
levels is a result of the changing “competition border” [Derleth, 2005]. For a given 
budget level, the first capabilities entering the portfolio are the highest scoring 
capabilities that can enter without putting the portfolio over budget. As the budget cap is 
approached, a weaker scoring capability can become more competitive by simply fitting 
into the portfolio better when other remaining, better scoring capabilities are too large 
cost-wise to fit. This dynamic drives the changing of the order of robustness rankings 
seen here and in the results that follow as well. From this it can be concluded that while a 
capability might be one of the most robust at one budget level, it can be eliminated from 
the optimum portfolio by lesser capabilities as a large budget change shifts the location of 
the competition border. 
 
While the competition border can lead to drastic drops in robustness for some 
capabilities, it can also boost the robust for other capabilities. The budget reduction of 



$100 M/year raised 8b’s robustness from 23.8% to 30.5%, and bumped 10c into the 90th 
percentile. The number of capabilities who see their robustness increase by budget cuts, 
however, is only a few. 
 
8e Crew healthcare systems (medical tools and techniques, countermeasures, exposure limits) 0.0%

8f Habitability systems (waste management, hygiene) 9.8%

8b EVA Suit (surface including portable life suppport system) 30.5%

3a Human-rated, 5-20 K lbf class in space engine and propulsion system 40.7%

5b Surface heat rejection 47.5%

10f Extraction of water/hydrogen from lunar polar craters 64.0%

6l Low temperature electronics and systems (permanent shadow region ops) 64.8%

3h Long-term, cryogenic, storage, management and transfer (for lunar surface module) 73.1%

4i Surface power management and distribution (e.g., efficient, low mass, autonomous) 75.1%

6j Autonomous precision landing  and GN&C (Lunar & Mars) 84.2%

12c Surface handling, transportation, and operations equipment (Lunar or Mars) 85.1%

4f Surface solar power (high efficiency arrays, and deployment strategy) 88.7%  
 

Table 7: Capabilities selected for full funding less than 90% for case with 
reduced budget of $100M/year. 

6. Temporal Optimization 
 
As seen earlier, figure 1 shows the baseline case had the feature that funding every 
capability resulted in total costs meeting the budget cap in the early years, but lying far 
below the budget cap in later years. Due to this, another optimization was run in parallel 
to the sensitivity analysis to try to take advantage of this untapped budget in the later 
years of development. This temporal optimization calculates not only which capabilities 
to fund, but also when to fund them, by moving the cost distribution profiles for each 
capability against the development timeline. The capability portfolio is optimized while 
taking advantage of  budget surpluses by allowing capabilities costs are to move to 
different years.  
 
There are many methods to explore the possible combinations of capability funding 
schedules. One option is a “just in time” (JIT) approach, in which capability development 
for each mission is funded as late as possible while enabling the mission to launch at its 
scheduled time. This approach reduces the risk that funds will be spent prematurely for a 
capability or a mission that is ultimately canceled, or that capabilities will become 
obsolete before utilized. It also increases the ability to take advantage of separate 
technological improvements, such as faster computers, developed outside of the mission 
itself. 
 
However, this system increases the risk that one or more capabilities will have to remain 
unfunded in order to avoid exceeding the development budget for a given year. This 
problem can be avoided by eliminating the “just in time” constraint and permitting the 
development schedules to slide to earlier years if that would better accommodate the total 
aggregate of capabilities in the portfolio. 
 



By eliminating the just in time constraint, our temporal optimization searches all possible 
combinations of capability funding schedules across all capabilities and all missions. In 
essence, the optimization explores the total development costs of each configuration by 
“sliding” each capability cost distribution along a timeline.  
 
The temporal model, shown in figure 2, takes into account a capability development time 
range where all development for a given mission would occur. Before this development 
time, one year of delay is allocated for the time between the funding decision and the 
start of development. 
 

 
 
Figure 2:  Mission Capability Development Timeline 
 
All capability development of a mission occurs between Tstart, and Tfreeze. This is the 
length of time required by the most demanding capability in the mission; all other 
capabilities either have an equivalent or lesser time to full development. Figure 3 shows 
the temporal alignment of the developments. 
 

Assumptions for Time Dependence 
 
For the ISS mission with launch date 2011, all capability development must be complete 
by 2007. This yields a 4-year freeze time duration for ISS. For Lunar Sortie with a launch 
date of 2020, a 6-year freeze time was given. However, some capabilities required for 
Lunar Sortie have 10-year development requirements. If the earliest development can 
start is next year, then the earliest time the development could possibly finish is in 2015 - 
yielding a 5-year freeze time, which we have assumed. For Lunar Outpost, we used the 
typical 3-year freeze time.  
 
The temporal optimization assumes that the portfolio investment is of independent 
capabilities (no dependencies), that the funding profile for individual capability 
development is constrained within the mission timeline, and that capabilities must be 
either fully funded or not funded at all for each mission.  



 

 
 
Figure 3:  Exploration of cost distribution profiles for each capability. With 
the just in time method, all capabilities’ funding is constrained such that 
their last year of funding ends at the freeze date. Relaxing this constraint 
allows the funding profiles of each capability to be moved in time (blue 
arrows) to find the best total portfolio funding profile. 

Temporal optimization formulation 
 
The optimization in equations 1 and 2 is generalized by adding multiple cost profiles for 
each capability. Additional constraints force the restriction of only funding a capability at 
most once.  If Xi,j equals one then capability j for mission i is selected for funding; if it 
equals zero then it is not funded. The portfolio is optimized by finding the set of Xi,j and 
Yi,j,q that maximizes equation 3 subject to constraints 4 and 5. 
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If Yi,j,q equals one then the qth cost profile is used for funding capability j for mission i. 
The annual cost constraints are given by equations 4 and 5: 
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i=1,Nmissions

"
j=1,M capabilities

"
q=1,Qcos t profiles

" Yi , j , q*C
(t )

i , j , q # B(t ) for all years t   (4) 

 
 



! 

i=1,Nmissions

"
j=1,M capabilities

"
q=1,Qcos t profiiles

" Yi , j , q = Xi , j for all i and j    (5) 

 
Where t = 2006, 2006+T (T number of years in portfolio). Each cost profile Ci,j,q  is 
checked that it ends by the freeze date of the capability for the mission. Equation 5 
enforces the constraint that only one cost profile is used to fund a capability for a 
mission. The optimization problem is solved using the Branch and Bound algorithm 
[Martello & Toth, 1988]. Figure 4 shows an example showing two capabilities and 
representative cost profiles. 
 

 
 
Figure 4:  Model constraints where only one cost profile should be chosen 
such that the annual cost sums are within the annual budget cap. 

Temporal Optimization Results 
 
We ran several temporal optimizations based on different scenarios from the ESAS 
dataset. Again, since the given capabilities all fit under the given budget constraint, we 
wanted to stress the data to identify the least robust capabilities when taking into account 
all time shifted schedules.  
 
To do this, the given annual budget curve was adjusted by adding and subtracting funds 
uniformly across all years. After running temporal optimization runs of different annual 
budget below and above the given budget, from -$250M to $200M, we computed the 
percentage of times each capability was selected by the optimization. The following 
shows which capabilities were selected the least amount of times. 
 



 
 

Figure 5:  Temporal optimization results showing least robust capability 
needs. 
 
A summary of the results is shown in figure 5. The results show that capability 8e, “Crew 
healthcare systems (medical tools and techniques, countermeasures, exposure limits)” is 
least robust and highly likely to be flagged for funding cuts, even with increased funding 
to the annual budget.  
 
The classification of capability 8e as one large conglomerate makes it highly volatile in 
the temporal optimization. There is also no room for temporal displacement as the cost 
distribution covers the full 14-year timeline. By breaking up capability 8e up into smaller 
parts on the order of magnitude of those capabilities it is competing with, a more optimal 
scenario may be achieved.  

Finding a Better Annual Budget Curve 
 
The given annual budget had a maximum annual cost of $527.9M at year 2012. We asked 
the question of whether or not there is a better annual budget distribution profile that 
would fund all capabilities while requiring a smaller maximum annual budget. We were 
able to compute a better annual budget curve by using a flat annual budget curve of 
varying levels of funding. 
 
The results shown in figure 6 indicate that the smallest annual budget that can be used 
and still fund all capabilities is $459.5M per year. This does not necessarily mean that all 
funds are used. Rather, this explores all time displacements at multiple annual budget 
caps to find the best annual budget curve. 



 
 
Figure 6:  Optimal Annual Curve by Areas for Flat Budget of $459.6M. 
Given annual budget curve has peak of $528M. 
 
This computed annual budget decreases the given just-in-time annual budget curve by 
funding all capabilities at a maximum annual budget of $459.6M, as opposed to $528M. 
This computed sliding-schedule curve also provides a relatively flatter cost utilization. 

7. Conclusions  
 
Results of the START system are reported based on data from ESAS capability needs 
prioritization. The key questions addressed are sensitivity of budget allocations to cost 
uncertainties, reduction in available budget levels, and shifting funding within constraints 
imposed by mission timeline. 
 
The capability now exists to optimize portfolio investment including annual as well as 
total cost constraints. The process is transparent and auditable, and would benefit by 
continuous update and data validation. A methodology is demonstrated for systematically 
dealing with uncertainties in costs and in available budgets. The methodology allows one 
to include non-technical constraints if such is desired. Temporal optimization gives the 
decision maker the ability to analyze scheduling capability developments in time. 
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