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ABSTRACT 

As part of DARPA's MARS2020 program, the Jet Propulsion Laboratory developed a vision-based system 
for localization in urban environments that requires neither GPS nor active sensors. System hardware 
consists of a pair of small FireWire cameras and a standard Pentium-based computer. The inputs to the 
software system consist of: 1) a crude grid-based map describing the positions of buildings, 2 )  an initial 
estimate of robot location and 3) the video streams produced by each camera. At each step during the 
traverse the system: captures new image data, finds image features hypothesized to lie on the outside of a 
building, computes the range to those features, determines an estimate of the robot's motion since the 
previous step and combines that data with the map to update a probabilistic representation of the robot's 
location. This probabilistic representation allows the system to simultaneously represent multiple possible 
locations, For our testing, we have derived the a priori map manually using non-orthorectified overhead 
imagery, although this process could be automated. The software system consists of two primary 
components. The first is the vision system which uses binocular stereo ranging together with a set of 
heuristics to identify features likely to be part of building exteriors and to compute an estimate of the 
robot's motion since the previous step. The resulting visual features and the associated range measurements 
are software component, a particle-filter based localization system. This system uses the map and the then 
fed to the second primary most recent results from the vision system to update the estimate of the robot's 
location. This report summarizes the design of both the hardware and software and will include the results 
of applying the system to the global localization of a robot over an approximately half-kilometer traverse 
across JPL'S Pasadena campus.* 
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INTRODUCTION 

This paper describes a vision-based system that performs localization in outdoor urban environments by 
detecting building features and relating those features to an a priori map derived from an aerial image. Our 
approach is motivated by the desire to enable a human operator to intuitively direct an autonomous 
unmanned vehicle (AUV) to a specific goal location without the use of GPS. Implicit in this problem is 
the presumption that operator has sufficient knowledge of the environment to identify a desirable goal 
location based. This goal location would, we expect, be selected because it placed the robot's sensors 
andor actuators in some particular relationship to features of interest in the environment. 

The approach described here allows the operator to specify the goal position as a point within an overhead 
image. Given the rapidly expanding capability of commercial and military satellites as well as the 
availability of unmanned aerial vehicles, we believe assuming the availability of such imagery is reasonable 
particularly considering the benefits. Perhaps the greatest benefit is the ease of developing a simple and 
intuitive operator interface. In fact, the operator could also suggest a particular path or impose constraints 
on the path by which the robot navigates to the goal in a similar manner. This would allow the operator to 
make use of any knowledge he might have regarding desirable paths as well as various tradeoffs, for 
example between transit speed and stealth. Given that autonomous path following has already been 
demonstrated [Hogg 20011, the fundamental problem becomes that of localizing the vehicle with respect to 
the provided overhead image. 

* Micliael.C.h4cHe~~~i~l.nasa.aov: Telephone (8 18) 354-2445 hm,:i'irobotics.iDl.nasa.gov. This work was supported 
by the Mobile Autonomous Robot Software Robotic Vision 2020 Program of the Defense Advanced Projects Agency 
(DARPA), Information Processing Technology Office under contract ????, task order ????. 



Our localization approach is currently purely vision based, no IMU or wheel encoder data is collected. The 
sensor system consists of a stereo camera pair containing two 1394 blw cameras with image resolution of 
640 by 480. The cameras are separated by a distance of 15 cm. The field of view (FOV) of each camera is 
75' vertical and 90' horizontal. The results described in this paper were computed offline from a data set 
collected with the sensor system mounted on a four-wheeled pull cart at a height of approximately one 
meter. Stereo imagery was collected at approximately 4 Hz while the cart was manually steered at a 
moderate walking pace across the JPL campus for a distance of more than 500 meters. The cart remained 
on road surfaces during the entire traverse 

The software processing consists of three major components. 
Visual Odometry 

0 

0 Particle Filter-based Localization 
Urban Feature Detection and Ranging 

Visual Odometry automatically tracks point features in the imagery and computes the relative camera 
motion between sequential frames. The urban feature detection and ranging component uses the same 
imagery to identify and measure the 3D position of linear features that are likely to lie on the exterior wall 
of a building. The output of each of these components is fed to the third component, an implementation of 
particle-filter based localization developed by Sebastian Thrun et a1 and freely available as part of the 
CARMEN robot software distribution [Thrun 20011. 

VISUAL ODOMETRY 

Visual Odometry is used to provide incremental motion estimates. The visual odometry or ego-motion 
estimation algorithm was originally developed by Matthies [Matthies 19891. Following this work, some 
minor variations and modifications were suggested for improving its robustness and accuracy [Olson 
20001 [Olson 20011. In a nutshell, the algorithm selects point features, uses multi-resolution area 
correlation to match them in stereo, tracks them through the image sequence, and uses the tracking results 
to estimate the six degree of freedom camera motion between consecutive stereo pairs. In preparation for 
fielding the algorithm on the MER rovers currently operating on Mars, we have evaluated its performance 
using earth-based rover testbeds and found that it can achieve 2% accuracy over distances of 30 meters 
TODO GET [VO CITATION???]. 

The basic steps of visual odometry are as follows. First, features that can be easily matched between stereo 
pair images and tracked between image steps are selected using the Forstner interest operator. A minimum 
distance between features constraint is enforced to ensure features are selected evenly across the image 
scene. Next, stereo matching is used to determine the 3D positions of each point feature. The same 
process is then repeated for the next stereo pair. Correspondences between the features in consecutive 
stereo pairs are determined by performing area-based correlation in a 2D window. Figure 1 shows an 
example of the features detected and the motion of those features from the previous frame. 



Figure 1 Example of features used by Visual Odometry. The vectors show the displacement of 
features between sequential images. In this image, one can see there is both forward camera motion 
(as evidenced by those features on the ground) as well as a strong rotational component (as evidenced 
by those features lying on the buildings). TODO GET SECOND PIC AND MAKE VECTORS 
APPARENT 

A maximum likelihood estimator takes into account the 3D position differences and an associated error 
model to estimate the relative camera motion between frames. Let Qpi and Qcj be the observed features 
positions before and after a robot motion. Then we have 

Q, = RQ, + T i- ej 
where R and Tare the rotation and translation of the robot and ej is the error in the observed position of the 
j-th feature. The 3 axis rotations and translation Tare directly determined by minimizing the summation 

r: Wjrj , where rj = Qcj - Repj  - T and wj is the inverse covariance matrix of e, which is a 3x3 

matrix determined by the feature location relative to the camera positions and to the quality of the 
correlation. The minimization of this nonlinear problem is solved using an iterative linearization 
technique[Olson 20031. Two desirable properties of maximum-likelihood estimation make the algorithm 
powerful. First, it estimates the 3 axis rotations directly so that it eliminates the error caused by rotation 
matrix estimation such as by the least-squares estimation. Secondly, it incorporates error models in the 
estimation, which greatly improves the accuracy. 

The errors associated with position estimates derived solely from visual odometry, or any incremental 
approach (commonly referred to as “dead reckoning”), will grow without bound. Figure 2 shows the 
complete path reconstructed from visual odometry. In examining the results, we identified two brief 
intervals in which the computed incremental heading measurements were substantially poorer than during 
the rest of the traverse. In the first such interval, the rotation rate exceeded a software threshold defining 
the maximum frame-to-frame pixel displacement. In the second interval, a bus passing directly in front of 
the cameras caused the system to mistake the motion of the bus with motion of the camera. In order to 
illustrate the level of performance we believe to be achievable with modest improvements, Figure 2 also 
shows the reconstructed path with the heading at those two locations manually corrected. Planned 
improvements include the addition of a compass and the incorporation of PL’s  vision-based moving object 
detection capability described in [Talukder 20041. 



Figure 3 The result of Visual Odometry overlaid on the overhead imagery. X marks the actual traverse 
end point. TODO MAKE THIS FONT CONSISTENT AND SHOW ONLY FIRST PLOT AND ADD X 

URBAN FEATURE DETECTION 

The second major component of our localization system is urban feature detection. Robustly recognizing 
buildings and determining their boundaries in 3 dimensional space is challenging for many reasons: 

0 

0 

Many building walls lack texture which makes stereo ranging difficult. 
The diversity of building types and construction (e.g. width, height, color, texture, materials and 
geometric complexity) makes it hard to automatically extract relevant features. 
Even when a building feature has been recognized, computing the 3D position of that feature may 
not be feasible using simple binocular stereo. For example, as horizontal lines become coincident 
with the epipolar line, the mathematics of binocular stereo (in a stereo pair with horizontally 
mounted cameras) become singular. 

Rather then try to create an explicit 3D model of the buildings we adopted a more modest goal, namely 
detecting and computing the 3D coordinates of vertical and horizontal lines which are likely to be part of or 
close to a building exterior. The basic processing sequence is as follows: 

0 Edge Detection 
0 Straight Line Detection 
0 Gradient Filter 
0 Roofline Detection 
0 3D Reconstruction 
0 Heuristic Pruning 

1. Edge Detection 

Edges are first extracted using a Canny edge detector [Canny 19861. This results in a set of linked lists of 
edge pixels and two gradient (horizontal and vertical) images. 

2. Straight Line Detection 



The straight lines are extracted from the linked list via a recursive method which cuts divides linked list 
into straight line segments. A straight line is formed from two ends of a linked list and the maximum 
distance (dm) between that line and any contained edge pixel is found. If dm is less than a threshold, the 
process then stops and the line segment is returned. Otherwise the linked list is divided at the pixel that 
determined dm and the process continued on the two resulting linked lists (Fig. 2). The process stops only 
when every edge has been decomposed into straight-line segments. The length of each segment is 
computed and short segments are discarded. 

1 

Figure 2. A recursive method is used to extract straight-line segments from a linked list of edge pixels. The 
numbers indicate the level of recursion. 

3. Gradient Filter 

Any line segments of length greater than some threshold (currently 30 pixels) are presumed to be man- 
made and are automatically passed on to the next processing stage. For shorter line segments we use a 
heuristic that the intensity gradient along man-made features will be similar across the length of the 
segment. Thus we apply the following test at each pixel within the segment: 

’ *g 
PiPi-1 + DigYi-1 

sqrt(gx? + a; )sqrt(gXE1 + a;, 1 

where gx and gv are the intensity gradients and tg is a threshold, which is close to but less than 1. At those 
edge pixels where the fails, the line segment is sub-divided and processing continues on the remaining edge 
pixels. A more accurate line fit based on all the constituent pixels is then computed using the least squares 
method. Fig 3.3 shows an example result at this stage in the computation. 

4. Roofline Detection 

Detecting rooflines in the ground imagery is important for two reasons. First these rooflines correspond 
directly to the building extents visible from the aerial image and hence our map. Secondly, identifying the 
roofline provides valuable context that aids in the identification of other prospective building features. Our 
simple heuristic for identifying rooflines is that any line that is more than 30 pixels long and has no other 
prospective roofline anywhere above it is a potential roofline (pending the 3D analysis described below). 
All features that are entirely above the set of prospective rooflines or below the horizon line (as determined 
by the visual odometry derived camera pose) are discarded. 



Figure 4 Results of Edge detection, Straight-line fitting and roof-line extraction. TODO YANG 
TO GET NEW PIC HERE 

5. 3-D Reconstruction 

This step computes the 3D position of the detected linear segments. The required triangulation can be 
performed by either binocular stereo (using the knowledge of the relative positions between the left and 
right cameras determined through camera calibration) or by wide-baseline stereo (using the relative camera 
position between two successive frames as determined by visual odometry). Although the relative position 
between the left and right cameras in a calibrated stereo pair is far more accurate than the camera positions 
derived from visual odometry, the accuracy with which each approach can determine 3D feature position 
depends on two key factors: 

0 

0 

0 

The baseline length. The longer the baseline is, the more accurate the position estimation is. 
The matching error. When the image gradient direction is close to perpendicular to the epipolar 
line, a large matching error frequently results. 
The position of the feature with respect to the cameras. 

Matching error will be greatest when there is little intensity gradient along the epipolar line (the 
intersection of the plane determined by the camera centers and the target feature with the second image) . 
Our stereo pair has the cameras mounted horizontally (Le. at the same height), thus the epipolar lines are 
approximately horizontal. The result is that matching errors for binocular stereo will be most pronounced 
when viewing horizontal lines in the image. 

Care must be taken when using wide-baseline stereo since the effective baseline length is a function of both 
where in the field of view the feature appears and also the relative position of the camera in the two frames. 
If the camera is moving in straight line along the optical axis, the effective baseline to features close to the 
center of expansion (in the center of the image) approaches zero. 



Our algorithm chooses between binocular stereo and wide-baseline stereo by first determining the angle 
between the intensity gradient and the (binocular stereo) epipolar line. If this angle is below a 
predetermined threshold we use binocular stereo to compute the feature's 3D position. Otherwise, we 
evaluate the suitability of wide-baseline stereo by computing the angle between the epipole (the line 
through the two camera centers) and ray the determined by the camera position in the first frame and the 
feature in question. If this angle exceeds a threshold, meaning the feature is sufficiently far from the center 
of expansion, the feature's 3D position is computed using wide-baseline stereo. 

The mathematics for triangulation is the same for both the binocular and wide-baseline stereo cases. In 
both cases, the linear features are selected from the left camera of the stereo pair. If binocular stereo is 
being used, the other image is the right image from the same stereo frame. Whereas if wide-baseline stereo 
is being used, the other image is the left image from the following frame. In either case, the 3D position of 
each endpoint can then be calculated as follows: 

Where PI and P2 denote the 3D positions of the two line-segment endpoints, Cle* and Cother are the camera 
locations when the left and the other image were acquired, and r and r' denote rays from the camera centers 
to the end points on the first and second image respectively. 

6. Heuristic Pruning 

The last step of urban feature detection filters the remaining linear segments using the computed 3D data. 
In particular, 

0 

0 

All lines that are not approximately vertical or horizontal are discarded. 
Horizontal lines above 2 meters are selected. 
Vertical lines that extend above 2 meters are selected. 
Sets of parallel lines are selected. 

Figure 5 shows some representative examples of the features detected during the traverse through the JPL 
campus. 



Figure 5:  Images collected during the traverse annotated with the building features detected. 

PARTICLE-FILTER BASED LOCALIZATION 

This section describes how the results of visual odometry and building feature detection are integrated with 
particle-filter based localization software publicly available as part of the CARMEN robot software library. 
Typically the a priori map used by this software would be constructed automatically from data previously 
collected as the robot traversed through an environment making measurements with the same LIDAR range 
sensor(s) used for online localization (for traverses through the same environment). 

The problem addressed in the work described here is more challenging in several ways. First, the vision- 
based ranging used here does not match the accuracy of time of flight LIDAR ranging. And while most 
LIDARS used in autonomous ground vehicles sense only in a single plane, they typically have a horizontal 
field of view that is 2-3 times that of our camera optics. Secondly, in our approach the a priori map comes 
fiom a fundamentally different sensing modality than that used for the ranging. Establishing the relation 
between the linear segments as detected from ground imagery and a map constructed from aerial imagery is 
considerably more challenging than relating measurements taken fiom the ground with a map constructed 
using the same sensor and from approximately the same perspective. The key advantage of our approach is 
that it allows a ground robot to navigate to a particular goal point in an environment in which neither it nor 
any other ground based sensor system has previously traversed and it does so without relying on GPS. 

It is important to note that the a priori map used was created with minimal effort and is unlikely to be very 
accurate. The map is derived directly from the aerial image by manually outlining the buildings; a process 
which no doubt introduced significant errors. In addition, the aerial image was not corrected for lens 
distortion nor for perspective effects. It is also the case that building outlines as evident from an aerial 
image can be a poor indication of the true location of external walls because of roof overhangs. Figure 6 
shows one such building. Furthermore, often the only available aerial imagery will be from a time far 
enough in the past that new construction (or deconstruction) will have occurred in the intervening time 
period. While there were no apparent cases of new construction observed in our experiment, there was a 
small tent housing a coffee vendor that was erected in the time since the overhead image was taken. 



Figure 6. This image shows one building for which the roof outline visible from an aerial image does 
not accurately reflect the location of exterior walls. 

The theory of particle-filter based robot localization is well described elsewhere /* TODO CITE NEWEST 
SUCH PAPERS */ and will not be covered in detail here. The key notion is that a particle filter produces 
an approximate probability density function (describing the robot’s position as well as heading) using 
Monte Carlo techniques. While particle filters and Kalman filters both share rigorous mathematical 
underpinnings, one key advantage of particle filter based approaches is their ability to represent arbitrary 
(rather than just Gaussian) distribution functions. For the experiment described here, we used publicly 
available software provided as part of the CARMEN software package developed by a team lead by Prof. 
Sebastian Thrun of Stanford University. The software is available from http:www.cs.cmu.edu/-carmen. 
The particular algorithm implemented in the localization component of CARMEN is described in [Thrun 
20001. 

The creation of the a priori map from the aerial image was facilitated by a utility included in the CARMEN 
software distribution that converts gray scale images directly into an occupancy map. Each pixel intensity 
is translated to a floating point value representing the probability that the corresponding map cell is 
occupied. In our case, we simply loaded our aerial image into a paint program, outlined the buildings and 
color between the lines, filling those areas within the building outlines as white and those in exterior areas 
as black. The resulting image was then converted to a CARMEN map using the provided utility. Figure 
??? shows the manually created map. TODO ADD THIS FIGURE 

In addition to the map, the localization software requires two basic types of input: position estimates (i.e. 
odometry) and range measurements. The format of each was clearly defined so substituting the system’s 
vision derived data was simply a matter of converting CARMEN’S data formats. CARMEN was designed 
for planar robots so our conversion of Visual Odometry derived position estimates simply discarded the 



height, roll and pitch portions. One of the key attributes of particle filter based localization is the ability to 
incorporate knowledge of measurement uncertainty in a rigorous manner. Thus in addition to providing 
odometry data and range measurements we also needed to provide a description of the uncertainty 
associated with each. For odometry this requires only specifying the standard deviations associated with 
the incremental translational and rotation results obtained from visual odometry. 

The translation of range measurements was more involved because the planar model implicit in the 
localization software does not precisely fit our 3D vision-based measurements. A single axis LIDAR will, 
in general, return only a single range measurement for each particular bearing, while our vision-based 
system frequently finds multiple features at different heights along a particular bearing. The admittedly 
simple strategy we adopted was to generate simulated single axis LIDAR data by projecting all the 3D 
features onto the horizontal plane and sampling the field of view at a regular interval (1 degree). The 
distance to the first feature found is returned as the range measurement. This is a reasonable strategy since 
our conversion of the overhead image produces a building outline that has maximum extent (i.e. if the 
bottom floor extends over a wider area than higher floors, the map will describe the outline of the bottom 
floor). This strategy also matches well with the probabilistic sensor model on which the localization 
algorithm is based and illustrated in Figure 6 .  The sensor model can be divided into four areas. In the case 
of LIDAR data, the wide area of low probability starting at d=O reflects the possibility of unmapped 
obstacles interrupting the path to the building wall. In our case, this initial area represents the potential for 
false positive feature detections (or new construction not represented in the map). The Gaussian shaped 
hump at the center represents measurement noise around the true distance to the obstacle. The following 
area of very low probability represents the possibility of ranging to something which is far beyondwithin 
the building boundary. The peak at the far right occurs at a special value used to signal that no range 
measurement was returned. In our case this corresponds to no building feature being detected along that 
bearing. 
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Figure 7. The sensor model used by the localization software. From Thrun et a1 [2], used with 
permission. 

Note that there were a significant number of false positives in the urban feature detection and the computed 
range values were certainly noisier than those obtained from a time-of-flight LIDAR. In addition, there 
were long sections of the traverse in which no features were detected because trees and automobiles lining 
the street obscured the buildings. Yet despite these challenges Figure 9? TODO INSERT THIS FIGURE 
shows the system was able to localize the sensor system across the entire traverse. The fact that our 
experiment proved successful despite these difficulties is a testament to the robustness of the particle filter- 
based localization algorithm and its implementation in CARMEN as well as the excellent incremental 
position estimates obtained from our visual odometry implementation. 



FUTURE WORK 

The experiment described here represents a proof of concept. Integrating all the software components into 
a complete system capable of online localization has not yet been accomplished. We hope to complete this 
integration and test the system more thoroughly in a range of urban environments on a Packbot robot 
chassis manufactured by I-Robot Inc. 

Besides the system integration necessary to field these components in an online implementation, there are 
many significant improvements that can be implemented. One very easy enhancement that would offer 
considerable performance improvement is the addition of a compass. By providing an absolute 
measurement and thereby bounding the overall heading uncertainty the task of the particle filter portion of 
the system will become considerably easier. Adding side-looking stereo pairs would provide additional 
features particularly when the robot is moving down urban streets. 

Reliable detection of urban features is immensely challenging and many algorithmic improvements are 
possible. TODO GET SENTENCE FROM YANG RE HOMOGRAPHY - WITH SHORT 
EXPLANATORY PHRASE. In addition, dense range maps such as those often produced by binocular 
stereo could be used to better identify building features in the ground imagery even when no significant 
linear features are observable. 

It is also desirable to enhance the breadth of features used beyond the current limited set. There is 
considerably more information in the overhead image that could be automatically incorporated to a map 
and recognized in the video stream. For example, road boundaries, surface characteristics (e.g. asphalt 
versus concrete) and even road markings such as cross walks are often visible in overhead imagery and 
should be readily observable from a ground vehicle. In some environments, individual trees and other 
vegetation might also be useful to include in the map and feature detection. 

Currently there is no feedback between the localization component and the urban feature detection. Such 
feedback would enable a degree of active sensing/perception. For example, at those locations where the 
positional certainty is very high, the urban feature detection could focus its computation on those areas of 
the imagery most likely to contain key features such as roof edges or the corners of buildings. And since 
we are presuming the availability of the a priori map, the robot could incorporate its knowledge of where 
the most informative features are likely to be observed in its path planning. 

The probabilistic sensor model incorporated in the localization software was developed for use with single 
axis LADARs not for vision-based feature detection. Hand tuning of the sensor model parameters were 
sufficient for the very limited experiment described here, but empirical characterization of detection and 
ranging errors should enable more robust and accurate localization. 

We would also like to simplify the process of map generation. Obviously the process of converting an 
aerial image into map form could be automated or at least semi-automated. Ultimately, we would like to 
explore the system’s ability to localization using an even less accurate map, for an example a map which a 
person might hand draw based on recollection or a single ground based view. 
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