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ABSTRACT 
As more and more nonlinear estimation techniques become available, our interest is in finding out what performance 
improvement, if any, they can provide for practical nonlinear problems that have been traditionally solved using linear 
methods. In this paper we examine the problem of estimating spacecraft position using conical scan (conscan) for NASA’s 
Deep Space Network antennas. We show that for additive disturbances on antenna power measurement, the problem can be 
transformed into a linear one, and we present a general solution to this problem, with the least square solution reported in 
literature as a special case. We also show that for additive disturbances on antenna position, the problem is a truly nonlinear 
one, and we present two approximate solutions based on linearization and Unscented Transformation respectively, and one 
“exact” solution based on Markov Chain Monte Carlo (MCMC) method. Simulations show that, with the amount of data 
collected in practice, linear methods perform almost the same as MCMC methods. It is only when we artificially reduce 
the amount of collected data and increase the level of noise that nonlinear methods show significantly better accuracy than 
that achieved by linear methods, at the expense of more computation. 
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1. INTRODUCTION 
Recent years have witnessed a tremendous growth of research and development in nonlinear estimation theory and tech- 
niques. In dealing with a general probability distribution, for example, a class of sampling algorithms known as Markov 
Chain Morte Carlo (MCMC) has been extensively used. The availability of efficient algorithms and ever-increasing compu- 
tational power often indicates that such treatments are not prohibitively expensive. For some problems, MCMC provides 
the only viable solution. However, even for problems that have had successful solutions obtained with linear/Gaussian 
approximations, a natural question to ask is how much improvement in performance, if any, sophisticated nonlinear tech- 
niques can offer. 

This paper is an exercise in examining one such problem, namely, the estimation of spacecraft position using scanning 
techniques for Deep Space Network antennas. As described in the re feren~es l -~  , the NASA Deep Space Network an- 
tennas have spacecraft trajectory programmed into them to form the antenna command. To compensate for disturbances 
and determine the true position of the spacecraft, circular movements are added to the antenna command trajectory in a 
technique known as conical scanning (conscan). From the sinusoidal variations in the power of the signal received from 
the spacecraft by the antenna, the true spacecraft position can then be estimated. Since conscan is much faster than such 
disturbances as thermal deformations that cause the antenna not pointing precisely towards the spacecraft, the estimation 
problem can be mathematically described as follows. In Figure 1, the origin of the coordinate represents where the antenna 
would point to normally (when not performing conscan), and a; is its position at sampling instant i during a conscan period. 
The spacecraft position s is unknown and assumed constant in the chosen coordinate system. Power measurement p i  is 
taken at each a;, i = 1 , 2 , .  . . , N ,  and it is a nonlinear function of the norm of the pointing error e; = a; - s: a 

Pi = f(lleill) 
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Figure 1. Illustration of the conscan problem set up 

The nonlinear function f(.) can be approximated at several levels. In this paper, as in the reference' , we consider only the 
following model: 

(2) Pi = P o  (1 - ~ i l e i l l z )  P 

where PO, ,LL and h are known constants. 

Both the power measurement p ;  itself and the antenna position a; can be disturbed, and the problem is to determine 
the spacecraft position s with such measurements. In this paper only the batch mode processing is considered, ie., data 
collected from a full conscan period is used all at once to compute the true spacecraft position. 

In the reference' , least square solutions were obtained for the case of power disturbances, and the same solutions 
seemed to have been applied to the case of antenna position disturbances as well. In this paper we show that the effect of 
the two types of disturbances are different: The former leads to an intrinsically linear problem for the model (2), while the 
latter leads to an intrinsically nonlinear problem. We provide linear solutions to the problem, as well as nonlinear solutions 
based on MCMC. Simulations were performed using the parameters reported in the reference' . The results show that 
for the given sampling rate and noise level, linear methods are essentially as accurate as the nonlinear methods. It is only 
when we artificially decrease the sampling rate and increase the noise level that nonlinear methods yield significantly more 
accurate results (with increased computational cost). Although the results are not surprising, we hope that this exercise still 
can provide some reassurance and possibly insights to practitioners and theorists in the ficld. 

2. POWER DISTURBANCES ONLY - LINEAR PROBLEM 
In this section we assume that the antenna position a; is not perturbed, and only the receiver power measurement pi is 
corrupted by noise: 

(3 1 
where 

A ei = a; - s (4) 
and vi is i.i.d. normal with mean 0 and variance 02. Since we consider batch processing, we define 

for an entire conscan period with n samples. We would also like to pose the problem in a more general Bayesian framework 
as follows. Assume that 

( 5 )  s has a prior distribution that is normal with mean 0 and covariance P.  
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We want to characterize the posterior distribution of s given noisy measurement p ,  and define suitable estimate of s based 
on the posterior distribution. 

Now we introduce the following assumption: The samples ai are symmetric on the circle in Figure 1, i.e., 
n 

X u , = O  
i=l  

The above holds true in the simulations in the reference’ , but was not a requirement there. 

From (3) and (4) it follows that 

P Z  
Pi = Po (1 - p(r + A)) + W U T S  h2 +vi 

where T is the radius of the circle in Figure 1, and consequently aTai = T’ ,  i = 1 , 2 ,  . . . , n. 
Define 

(7) 

where the assumption (6) is used. 

Comment; The first term in the sum on the right hand side of (8) was called “mean power” in the reference1 , and the 
above p was considered an approximation to the mean power. Here we introduce p simply as an algebraic mean of all p i  
given by (7), i = 1, 2,  . , ., n, and this will lead to an exact solution to a linear problem, as shown in the following. 

Dcfinc 

where 

Then we have 
z = A s + E  

where 
A T = [ ~ I ~ z z ,  * .  . ,zn] 

A 2POP T 

E = [ E l , E 2 , .  . . , En1 

A = ---[ai, a2,. . . , an]  
h2 

and 
A T 

Thus the problem has been reduced to a linear one, i.e., estimating s from (10). This is an exact formulation for the 
measurement model (3), with a symmetry assumption (6) that can easily be satisficd in practice. 

Before we present the solution to this problem, we first review some general results for easy reference4 . 

Review 1: If 5 and y are jointly Gaussian with mean 

and covariance 
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then the conditional distribution of x conditioned on y is Gaussian with mean 

and covariance 

Review 2: If x is Gaussian with mean m, and covariance P, and v is independent Gaussian noise with mean 
0 and covariance R, then given a measurement z = H x  + v, the posterior distribution of x is Gaussian with 
mean 

mxlz = m, + PHT(HPHT + R)-'(z - Hm,) 

and covariance 

Solution: Let the prior distribution of s be given by ( 5 )  and the measurement vector z be given by (10). Then the posterior 
distribution of s is Gaussian with mean 

m,lz = PAT(APAT + R)-'z = (P-' + ATR-'A)-'ATR-'z (13) 

and covariance 
pS l z  = ( P - ~  + A ~ R - ~ A ) - '  

where R is the covariance matrix of E .  
Special case: A special case of the above is the following: If n is large enough, R M a21 where a is the variance of power 
measurement noise vi and I is the identity matrix. If we assume no prior knowledge of s, we can set P = 00. Thus we 
have 

mslr = ( A ~ A ) - ~ A ~ ~  (14) 
This is the least square solution given in the reference' . 

3. POSITION DISTURBANCES - NONLINEAR PROBLEM 
In the previous section the antenna position ai is calculated from the radius of the circle in Figure 1, the velocity and the 
sampling time. In this section we consider the case when the true antenna position is perturbed from its nominal position, 
so that the pointing error is given by 

ei = ai + vi - s (15) 
where the random vector vi is i.i.d. Gaussian with mean 0 and covariance P,,. For simplicity of presentation we omit the 
disturbance term in the power measurement. From (2) and (1 5 )  we have 

pi = Po (1 - - ( T  P 2  + STS,) + POP - ( 2 a 5  + 2215 - 2ai T vi - vi T V i )  
h2 h2 

Define 

Let 

Define 

This is a nonlinear non-Gaussian problem, since the noise v; becomes multiplicative, and the noise term E; is no longer 
Gaussian. 

We propose in the following three solutions to this problem. 
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3.1. Approximate solution by linearization 
Since the mean of s and vi are both zero, the linearized equation for (17) is given by 

Let 

\ ‘ ”  ;=I / 

Then (18) will be in the same form as (9), and the solution can be obtained as in Section 2. 

3.2. Approximate solution by Unscented Transformation 
Dcfinc 

a T z = [z1,z2, .  . . ,z,] 

and 

and we can state the problem as follows. Given a jointly Gaussian distribution of s (the prior) and u, we want to find the 
joint distribution of s and z and in turn the conditional distribution of s on z ,  in order to obtain an estimate of s. 

In the previous section the joint distribution of s and z is obtained by linearizing the equation (17). Another way of 
achieving this is through the so called “Unscented Transformation:” 

Review 3: Unscented Transformation: If x has a Gaussian distribution, after a nonlinear transformation 
y = f(x), y may no longer have a Gaussian distribution. If we want to approximate the distribution of y 
with a Gaussian one, we can proceed by linearizing the transformation f ( . ) .  Another way is to use some 
deterministically chosen points xi (called Sigma Points) to represent the random variable x, and calculate their 
transformed values y; = f(x;), i = 1 , 2 , .  . . ,2N + 1 where N is the dimension of x. Then these y; can be fit 
with a Gaussian distribution. 

We will not go into the details in this paper, but refer interested readers to5 . 

3.3. “Exact” solution by Markov Chain Monte Carlo (MCMC) 
Any numeric solution is an approximate solution to some extent, but here we use the word “exact” to indicate that we are 
trying to obtain a general probability distribution rather than its Gaussian approximation. A general distribution can be 
represented by independent samples, which we will review first. 

Review 4: Monte Carlo integration: If we can draw samples xi, i = 1 , 2 , .  . . , N ,  of a random variable x that 
has a probability density function (pdf) f(x), then some statistics of x (for example, its mean) can be estimated 
using these samples: 

It can be readily shown that such an estimate is unbiased and converges to the true answer as N goes to infinity. 

For some distributions such as uniform or Gaussian, it is easy to draw samples from them, even when the random 
variable is in high dimensions. For a general pdf f ( . ) ,  however, sampling it may be very difficult. Moreover, we often can 
calculate f(.) only up to a normalizing constant. Therefore we often resort to aproposal distribution g(.)  which is easy 
to sample from. In the following reviews6> we first describe a simple technique called rejection sampling in order to get 
familiar with the concept of a proposal. Following this we will introduce the more sophisticated Metropolis-Hustings (MH) 
Algorithm, which is one of the most popular MCMC methods. 
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Review 5: Rejection Sampling: Let M > 0 be a known constant such that f(x) 5 M g ( x )  for all x. Take a 
sample x* from the proposal distribution g(.) ,  and independently take a sample u from a uniform distribution 
between 0 and 1. If u < a, then accept z* as a sample o f f ( . ) ;  otherwise, reject it. Repeat the process 
until the desired number of samples have been obtained. 

Intuitively, if we cover the x-f(x) plane with uniformly distributed points, then those under the curve M g ( z )  will have 
their x-coordinates distributed according to g( .), and those that are picked by using u < in the above Review will 
fall under the curve of f(x), which means that their z-coordinates wil be distributed according to (a normalized pdf) f(.). 

For high dimensions the above method does not perform well, due to the low acceptance rate and other reasons. The 
MH Algorithm is more efficient. 

Review 6: MH Algorithm: Choose a set of initial samples {xy), xp), . . . , .E'}. Each sample will then go 
through a Markov Chain, i.e., from step i to step i + 1, xy) will become x:") according to some transitional 

will be taken as samples of the desired distribution. 

The MH Algorithm dcfincs the transition from ~ ( ~ 1  to di+') (where we have omitted the subscript j for 
simplicity) as follows: Let f(.) be the desired distribution (possibly unnormalized). Take a sample x* from 

probability, j = 1 , 2 , .  . . , N .  When L number of steps have been completed, the set {xy), xr), . . . ,xN ( L ) }  

In the conscan problem, we are interested in obtaining the posterior pdf f(slz) of the spacecraft position s, given the 
measurement vector z = [ z l ,  . . . , z,IT from (17), and the prior distribution of s from (5). By Bayes rule, this pdf can be 
calculated as follows: 

f (s 'z)  = normalizing constant 

A 

f (zls1.f (SI 

The prior term f (s)  can be calculated from a Gaussian pdf. Upon examining the measurement equation 

we find that the likelihood term 
f(zls) = l? f(zils) 

i=l 

can be calculated from a non-central X-square ditribution, assuming a noise covariance matrix P, = oi1. Note that for 
this likelihood calculation, s is given, so we can also work with the original power measurement 

P j  = P o  (1 - 2ujTs + 2wjTs - 2 9  T wj - wj T Wj) , j  = 1 , 2 , .  .. , n  

Thus we can calculate the desired distribution up to a normalizing constant. To use the MH Algorithm, we need to 
specifiy a proposal distribution g(.Ix). We adopt the following: 

g(.lx) is Gaussian with mean x and covariance P.  (20) 

where P is the initial covariance of s defined in (5). 
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4. SIMULATIONS 
We have conducted several groups of simulations for the nonlinear problem discussed in the previous section. Each 
simulation consists of the following steps: 

1. Choose the noise parameter g,, for the covariance matrix P, = a:1 of the position disturbance. 

2 .  Choose the number of measurements n taken in a conscan period. 

3. Repeat the following 15 times: 

(a) Randomly choose an ‘‘unknown” spacecraft position s according to the prior distribution. (The covariance P 
in (5) is chosen such that 99% of the time s lies within the conscan circle in Figure 1.) 

(b) Calculate the Least Square estimate (similar to (14) but for Section 3. l),  the general Linear estimate (similar 
to (13) but for Section 3.1 ), and the MCMC estimate (mean of the samples in Section 3.3). Calculate the 
Eucleadian distance from an estimate to the true position, and record it for each solution in each simulation. 

4. Calculate the mean and standard deviation of the Eucleadian distances for each solution. 

In the MCMC simulation, N = 100 particles were chosen to run L = 500 steps. The rest of the parameters that have 
not been specified are chosen as in the reference1 . The simulation results have been tabulated for the cases ou = 1.5 and 
nu = 0.3 respectively, in Table 1. 

Table 1 .  Estimation errors for the three algorithms on different numbers of nicasurement points, for high level of noise (top) and low 
level of noise (bottom) 

We observe the following from the table: 

0 When the noise level is low, all methods perform more or less the same. 

0 When the noise level is high, but there is plenty of data (n  = 3000 as in the reference’ ), all methods perform more 
or less the same. It is only when the conscan sampling rate is artificially dropped to have less data points (n = 300, 
n = 30 and n = 10 ) that nonlinear methods offer better accuracy. 

5. CONCLUSIONS AND FUTURE WORK 
As more and more nonlinear estimation techniques become available, our interest is in finding out what performance 
improvement, if any, they can provide for practical nonlinear problems that have been traditionally solved using linear 
methods. In this paper we have examined the problem of estimating spacecraft position using conical scan (conscan) 
for NASA’s Deep Space Network antennas. We showed that for additive disturbances on antenna power measurement, 
the problem can be transformed into a linear one, and we presented a general solution to this problem, with the least 
square method reported in reference1 as a special case. We also showed that for additive disturbances on antenna position, 
the problem is a truly nonlinear one, and we presented two approximate solutions based on linearization and Unscented 
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Transformation respectively, and one “exact” solution based on Markov Chain Monte Carlo (MCMC) method. Simulations 
showed that, with the amount of data collected in practice’ , linear methods perform almost the same as MCMC methods. 
It is only when we artificially reduced the amount of collected data and increased the level of noise when nonlinear methods 
show significantly better accuracy than that achieved by linear methods, at the expense of more computation. 

We hope that this exercise will add confidcncc to the practioners who are using linear methods to solve their problems, 
and also provide an example of what additional computation can achieve for problems with sparse data and high noise 
level. 
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