
Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

Y.-F. Wang, A. Wax, R. Lam, J. Baldwin, and C. Borden

Jet Propulsion Laboratory
California Institute of Technology / NASA

Yeou-Fang.Wang@jpl.nasa.gov

Abstract

A collaborative framework/environment was proto-
typed to prove the feasibility of scheduling space flight
missions on NASA’s Deep Space Network (DSN) in a
distributed fashion. In this environment, effective col-
laboration relies on efficient communications among
all flight mission and DSN scheduling users. There-
fore, messaging becomes critical to timely event notifi-
cation and data synchronization. In the prototype, a
rapid messaging system using Java Message Service
(JMS) in a mixed Java and .NET environment is estab-
lished. This scheme allows both Java and .NET appli-
cations to communicate with each other for data syn-
chronization and schedule negotiation. The JMS ap-
proach we used is based on a centralized messaging
scheme. With proper use of a high speed messaging
system, all users in this collaborative framework can
communicate with each other to generate a schedule
collaboratively to meet DSN and projects tracking
needs.

1. Introduction

NASA’s Deep Space Network (DSN) provides ser-
vices for spacecraft tracking and communication and
for ground-based space science activities. Each project
and activity has unique support requirements. There-
fore, scheduling services for these activities involves
multiple users with different styles of communication
and types of requests. These can be simple requests
for a single antenna for a specific length of time or
more complex requests such as tracking Multiple
Spacecraft Per Antenna (MSPA) or multiple antennas
tracking one spacecraft (e.g. antenna arraying). Since
the requests have a wide variety of types and there are
new types frequently introduced into the system, it is
somewhat difficult to recognize and adequately handle
all types of requests in a centralized scheduling envi-
ronment. Projects have the greatest knowledge of their
tracking requirements and flexibility. Further compli-

cating the problem, the DSN is highly over-subscribed.
Therefore, a more distributed paradigm, where all pro-
jects and DSN schedulers can schedule their own
tracks with their own methods in a collaborative fash-
ion, is proposed. In a collaborative environment, all
users consider their own objectives and negotiate with
other schedulers to produce an overall conflict-free
schedule for DSN operation. In an effort to maximize
science return for the missions and to maximize an-
tenna utilization, our proposed approach is to maintain
a conflict-aware schedule that can be iterated and im-
proved by the projects over time. Through a workflow
management scheme with both synchronous and asyn-
chronous collaborations and negotiations among af-
fected projects, the conflicts can then be resolved.

A collaborative framework/environment was pro-
totyped to prove the feasibility of the distributed
scheduling concept for DSN resource allocation. In
the prototype, Java Message Service (JMS) was used
for two major modern programming frameworks, Java
and .NET. In the DSN environment, there are many
users on various OS platforms. Supporting both Java
and Windows environments is an important step in a
distributed environment. This scheme allows both
Java and .NET applications to communicate with each
other for data synchronization and schedule negotia-
tion. The JMS approach we used is based on a central-
ized messaging scheme which is different from peer-
to-peer messaging approaches such as Microsoft In-
digo. Data security is one of the concerns that need to
be addressed in this approach. With proper use of a
high speed messaging system, all users in this collabo-
rative framework can collaborate with each other to
generate a schedule that meets both the requirements
of the DSN and the tracking needs of the missions.

2. Scheduling for NASA’s deep space net-
work

The Deep Space Network (DSN) is a collection of
radio antennas and their support hardware, software,

and personnel. Its primary function is to connect
spacecraft with their controllers at JPL and JPL’s part-
ners. Everything from calculating where to point the
antennas to the work schedules of the spacecraft opera-
tors and DSN personnel starts with an official DSN
schedule. Thus collaboration on the official schedule’s
creation is key to achieving the best results for the
DSN and its users.

Figure 1: A 70-meter antenna in the NASA’s Deep
Space Network

The purpose of DSN scheduling is to allocate an-
tenna times for JPL’s deep space missions [1]. In ad-
dition to those missions, the DSN also supports many
missions from other NASA centers as well as activities
from many government agencies such as the European
Space Agency, and the Japan Aerospace Exploration
Agency. The DSN has ground resources distributed
around the globe to handle this task. For example, The
DSN has three deep-space communications facilities
placed approximately 120 degrees apart around the
world: at Goldstone, in California's Mojave Desert;
near Madrid, Spain; and near Canberra, Australia.
This strategic placement permits constant observation
of spacecraft as the Earth rotates providing continuous
mission coverage around the clock.

In the current process, each of the mission schedul-
ers negotiates their mission’s tracks to meet their re-
quirements and maximize their mission’s tracking time
(and hence science return) for each week of the sched-
ule. They have a number of constraints to meet.
Foremost of these is the geometric constraints imposed
by the positions of the spacecraft and the antennas.
These constrains are called view periods. They con-
strain the schedule allocations to specific times. These

times typically vary from day to day depending on the
nature of the spacecraft’s trajectory. In addition to
these constraints, the schedulers must contend with
limited equipment and personnel at the antenna com-
plexes. And naturally, the mission schedulers have to
contend with other schedulers who are also trying to
meet their mission’s requirements. Finally, there exists
another class of problems that each scheduler has to
deal with. If a mission is attempting to array or MSPA
(or any other type of coordination involving more than
one schedule item) they must meet all the above con-
straints as well as a new set of identification con-
straints so that all of the data is sent and returned in a
cohesive fashion.

Not surprisingly, the complexity of schedule nego-
tiation has been increasing steadily since the DSN’s
inception. The number of supported missions is con-
stantly increasing as more missions are launched and
existing missions continue to extend their tours. The
requirements of the supported missions have also in-
creased as new technology has enabled and demanded
higher data rates. Advances in the equipment used to
send, receive, and process data to and from spacecraft
have also led to new types of conflicts between pieces
of equipment on the ground. Finally, new types of
communication like relaying and arraying require bet-
ter coordination between missions and more accurate
schedule conflict information. Due to the large cost
involved, creating new resources to handle this ever-
increasing complexity is not a viable option. As a re-
sult, scheduling software complexity has been increas-
ing steadily to meet these demands.

Early schedule negotiation was done using paper
and pencil. Schedules were published at fixed inter-
vals and all of the schedulers would sit in the same
room and mark up their printed copies. In this system,
there was no traceability between changes and con-
flicts between missions were minor and easily solved
by manipulating start and end times.

As complexity increased, there was a need for better
visualization and statistics. This resulted in the devel-
opment of a handful of scheduling applications that
allowed the schedulers to view more complex relation-
ships and try what-if analyses. Coupled with advances
in electronic communication, schedulers began com-
municating proposals for changes to other mission
schedulers. This led to further proposals for changes
to other missions and helped to optimize the schedule
in a very iterative manor.

As the scheduling processes evolved, the tools fol-

http://deepspace.jpl.nasa.gov/dsn/images/picture_70_bw_lg.jpg

lowed. However, as the tools matured, their limita-
tions became apparent. The current tools allowed for a
wealth of information and analysis but were not de-
signed to be peer-to-peer communication and informa-
tion sharing tools. It was still possible to share some
information using shared file systems, new software
technologies like SOAP, and dynamic web pages;
however the schedulers still demanded a richer user
experience.

The two primary groups of schedulers involved in
the creation of schedules are the DSN schedulers and
the mission schedulers. The former focuses on sched-
uling DSN-specific activities and maintaining a fair
process [to all missions] that delivers schedules to the
antennas in time to process all the necessary data re-
quired to track the spacecraft and send and receive
information to it. The latter group, meanwhile, is fo-
cused on satisfying the requirements of a single mis-
sion (or small group of missions) and maximizing the
time their missions are allotted. Thus both groups
have a different idea of the “perfect scheduling sys-
tem.” The DSN schedulers currently use a system that
emphasizes stability and keeps a record of changes. It
is focused around strong processes that guarantee
schedules are conflict-free with enough time for the
DSN to use them to point its antennas. Naturally, this
tends to a system where change is minimized and re-
stricted as much as possible the closer the schedule
gets to being used. Conversely, the mission schedulers
are constantly fine-tuning the schedule to maximize
their mission’s coverage. As such, the environment
they currently work in is very fluid and largely uncon-
strained. They use every form of communication
available to communicate amongst themselves and the
DSN to constantly improve the final schedule that is
used on the antennas. The proposed environment de-
scribed herein is a compromise between these two ide-
als. It allows for complete visibility and flexibility and
facilitates communication and information sharing. It
does all this while allowing fine granularity of control
and complete traceability.

3. Collaborative scheduling

Each space mission has its own defined objectives
and unique constraints. This domain knowledge is
very specific in nature and resides within each mission.
For example, each mission/project makes its own deci-
sions on the minimum threshold in order to maintain
the health of the spacecraft or mission. Also, many
projects can be affected when special conditions arise
such as spacecraft launch postponement and emer-

gency operating procedures. Only mission experts can
respond to such situation in a timely manner. Subse-
quently, there is no centralized authority that can have
all the expert knowledge to dictate a global schedule to
satisfy all the need. In addition, when new missions
are launched, their requirements often deviate from
existing requests. These new constraints are mission
dependent and can best be handled at the project level.

In this environment, there are managers, project
schedulers, DSN schedulers, and DSN operators. Each
of them is a decision maker, information provider, and
information consumer. The DSN environment is a
distributed environment requiring decision making and
information sharing. Each user shares the responsibil-
ity of the success of the entire network scheduling.
This requires all users to work together to resolve con-
flicts and to come up with a schedule that achieves the
overall network objectives as efficiently as possible.
We call this collaborative scheduling.

Collaborative scheduling requires common data
storage to store the master schedule for everyone to
share as the official released schedule. This master
schedule is conflict-aware. Namely, the schedule al-
lows items in conflict to exist for negotiation. In the
master schedule, all users can see the current state of
the schedule and use this to help them to perform
scheduling decisions. Users need to be able to play
what-if games directly on top of the official schedule
without being seen by other schedulers or affecting the
current schedule (dynamic workspace). This is for real
time what-if gaming. Sometimes, the user may want to
share his/her what-if (draft) with a specific set of
schedulers (sharing). For certain what-if cases, users
may want to “freeze” the current schedule for an off-
line case study with some other schedulers (static
workspace). Once the study is done, the user may
want to compare and consolidate the off-line schedule
with the current schedule. This kind of what-if space
is called private workspace. It contains both dynamic
and static workspaces. In a more complicated case,
users may want to perform various studies and make
comparisons of those studies. This then becomes a
scenario management issue.

There are two kinds of collaboration modes. One
mode is synchronous collaboration where everyone
works together at the same time to share information
and perform scheduling. The other mode is asynchro-
nous collaboration where users perform their opera-
tions at different time points. Synchronous collabora-
tion can be viewed as a telephone conversation while
asynchronous collaboration can be viewed as an email

exchange. Collaborative scheduling must consider
both of these modes separately as well as in combina-
tion with each other. For example, three missions may
work together to resolve a conflict. Mission A and B
may work together to come up with a proposal in real-
time and then send it to mission C for consideration
off-line.

Data exchange in this kind of mixed real-time op-
eration and off-line process is a challenge. How we
keep every user’s local information up-to-date is the
basis for true collaboration. DSN sites and schedulers
are located around the world in many different time
zones. Therefore, clock synchronization is the first
issue to resolve. Once they all reference to the same
time point, the data can then be synchronized globally.
This data synchronization process also involves the
timing issue of the data update latency.

Conflict resolution is a complicated process. It re-
quires not only data synchronization but also process
integration. When a set of schedulers come to an
agreement, it may have to be sent to other groups of
schedulers or to a manager for approval. The data
flow within the proposal process or the approval path
requires workflow management. The workflow man-
agement has to be a dynamic process to accommodate
position changes and unexpected events.

Notification or alerting is important in a collabora-
tive environment. Users need to be notified when data
is changed or when the workflow requires their atten-
tion. Email could be used for simple human interac-
tion with some delay. However, generally speaking,
this is not an efficient medium and it could be difficult
for a collaborative environment to consume. There-
fore, instant or rapid messaging is more appropriate for
software interfaces. Once the software receives a noti-
fication, it has to decide what to do with that notifica-
tion. In data synchronization, a notification may mean
the data has been changed. In workflow management,
it may mean certain user attention is needed.

Collaborative scheduling requires consideration of
many issues. They are generally the same issues that
any collaborative environment faces. In addition, there
are several issues not addressed here such as discus-
sion forums, undo processes, traceability, change his-
tory, etc. Some of them are addressed in our prototype
and some of them remain to be addressed in the future.

4. Distributed computing environment

Collaborative scheduling requires users to work to-
gether in a distributed fashion. Therefore, a distributed
computing environment is needed. The objective of
this distributed computing design is to connect users
and resources in a transparent, open, and scalable man-
ner.

Since resource allocation requires a collaborative
effort from many users in different locations to negoti-
ate a workable solution, the goal is to make this sched-
uling processing as transparent as possible, so that it
operates like all mission experts are working together
in the same location concentrating directly on resolv-
ing each resource issue. In addition, the methods and
tools used to reach their goal should not distract them
in any way. For example, the experts should not care
about how requests and responses between clients and
servers are required to retrieve information, as well as
what network protocol is used to carry the information.

DSN Scheduling is an iterative process. Affected
project schedulers will continue to negotiate on a con-
flict-aware schedule to resolve contentions. Openness
provides them with conflict and modification aware-
ness when it occurs. This enable projects to respond to
modifications quickly. This property provides each
project with a continually open environment that en-
ables interaction with other projects until a satisfactory
condition exists. If necessary, senior officials with
arbitrating authority can also monitor the process and
make key decisions based on task priority and urgency.
As a result, openness encourages interaction to speed
up the decision process.

As new missions launch and old projects retire, a
scalable solution is important to address the changes in
the system. The solution should be able to accommo-
date changes in the number of projects and resources
in the DSN domain. The system should make it easy
to expand and contract its resource pool to accommo-
date heavier or lighter loads. It should maintain its
usefulness and usability, regardless of projects or re-
sources locations.

Figure 2: A simplified architecture for the distrib-
uted computing environment

To address the challenges of this distributed archi-
tecture, a multi-tier system has been designed to permit
remote computing by exposing key software compo-
nents as network-addressable services (see Figure 2).
The system consists of the following layers:

• Client Interface layer – a front-end user interface
for users to interact with the system. This interface
is isolated from the business logic and database. It
is also possible to quickly create new user inter-
faces tailored for specific uses.

• Web Service layer – an abstraction layer to access
backend business logic via the SOAP messaging
protocol. The service’s intention is described in
the XML data structures which are transported us-
ing the HTTP transport protocol to exchange in-
formation between clients and servers.

• Business logic layer – major computational intel-
ligence and information provider. The computa-
tional intelligence is partitioned into several agents
in an object-oriented fashion. This layer encom-
passes all scheduling related calculations, work-
flows, and data manipulation functions.

• Legacy Information Layer – communication ele-
ment to legacy systems. This layer is used to com-
municate with legacy systems and provide needed
information to the agents in the business logic
layer.

• Data Access Layer – Data access routines to ac-
cess the database. This layer transforms database
information into objects that are consumed by the
agents in the business logic layer.

• Data Layer – A relational database to store sched-
ules, constraints, ownerships, workflow, etc.

Web
services

Database
Data
Objects

Brokers

Agents

Legacy
Systems

JMS
Java
Apps

Windows
Apps

Web
Server/
Pages

• Messaging layer – a messaging server to provide
messages and alert functionality for the system.

In modern network computing environment, Java
and .Net frameworks are the major players. Their mar-
ket shares are expected to be 50-50 in year 2006. Java
dominates the large-scale enterprise market due to its
multi-platform nature and adaptation to major data-
base/solution venders such as Oracle, Sun, and IBM.
.NET dominates the small and mid-size business mar-
ket due to its initial cost and performance benefits. We
don’t expect either platform to dominate this domain in
the next few years. Therefore, we should expect them
to co-exist and we should design our system to allow
both of them to contribute their strengths. Market
share is one of the metrics used to justify decisions
over which platform to adopt in a project. There are
major strengths for both Java and .NET development.
Java focuses on multi-platform solutions while .NET
distinguishes itself by embracing multiple language
development. As both .NET and Java embrace Web
services, cross-platform communication is becoming
less of an issue. This is strengthening the trend toward
mixed .NET and Java environments. Therefore, our
strategy is to take advantage of both frameworks and
utilize them wherever technologies can best fit to our
needs.

Our current prototype is designed with the above
philosophy in mind. We take advantage of the existing
investment and PC user base by developing on the
.NET platform to provide rapid deployment of this
proof-of-concept prototype. For the multi-platform
client and overall messaging, we adopt Java-based
JMS to enable rapid messaging and data synchroniza-
tion. With the popularity of SOAP and XML, the sys-
tem also adopts these technologies for exchange of
information in our distributed environment.

5. Messaging and data security

One of the main goals of our effort is to introduce
real-time collaboration into the scheduling process.
This task is complicated by the fact that the partici-
pants in the scheduling process are both distributed
across different locations and using different plat-
forms. Developing multiple sets of code for multiple
platforms to coordinate in real-time is very impractical.

In this prototype, the middle-tier agents were writ-
ten in C# using the .NET framework to take advantage
of existing systems. However, we chose to use the
Java Message Service (JMS) [2] for messaging due to
its maturity and ease of use. The issue of how the C#
end of the service would employ JMS was solved by
using IKVM1. IKVM.NET is an implementation of
Java for Mono [3] and the Microsoft .NET Framework.
It includes the following the components: a Java Vir-
tual Machine implemented in .NET, and a .NET im-
plementation of the Java class libraries and tools that
enable Java and .NET interoperability.

IKVM was used to convert the core JMS .jar files
containing the needed Java classes to the equivalent C#
‘binary’ files that run with .NET and the IKVM pro-
vided library files. It was necessary to point the Mi-
crosoft development tools at these libraries and write
code that, for all intents and purposes, looked like java
code but in C#. This fact was a benefit as sample code
to implement the messaging functions written in java
was easily adapted to C# as the names of the methods,
constants and classes were identical.

While collaboration was designed to be real time,
the fact is that when someone is active in say, Spain,
someone is sleeping in Australia. When a person starts
their work session they need to be informed of any
changes that may have occurred since they were last
active. JMS provides an excellent solution to the prob-
lem with the use of persistent messages.

JMS messaging has two basic paradigms. One is a
point-to-point message. The creator of the message
sends the message to a particular receiver and if they
are not there, the message is lost. This type of messag-
ing is handled by something called a queue.

Persistent messaging is a broadcast paradigm
where one creator sends a message and multiple people
receive it. This is termed a topic. Persistent messages
have guaranteed delivery while messages in a queue do
not. If message delivery fails, the message persists
until it is safely read or the lifetime of the message
expires. The creator can specify how long the message
lives before it is deleted from the system. In our work
we used persistent messaging throughout.

Messages in JMS are ‘fire and forget’. This
means that if the creator of a message successfully
delivers the message to the JMS server, the creator
need take not any more action to guarantee delivery.

1 See http://www.ikvm.net/#Introduction

The server takes care of the delivery process and coor-
dination with all the intended receivers.

Messages may be read asynchronously or syn-
chronously (polled). Since it was simpler to be noti-
fied when a message had arrived, and have the mes-
sage in hand simultaneously, that approach was used.
However, since messages are persistent and dispersed
in time, a client that wishes to control when messages
arrive, due to some critical activity for example, has
the choice to so.

It is important to note that what travels between
the server and the clients listening for changes are not
the changes but a notice of a change. It is up to the
client to request whatever changes are needed through
the data channels. Namely, JMS remains as a message
services rather than a data service. This has benefits of
performance and security. Performance-wise, this cuts
down on traffic between the server and the client. It is
also worth noting that the volume of messages travel-
ing around is small. A single JMS server can handle
all the traffic as there are no more than dozens of mes-
sages per minute normally. Security-wise, this only
delivers notification without the data itself. Once a
JMS message is received clients determine the activity
needed and go through regular data channels to ex-
change data in a secured way.

Security in the messaging service itself was ad-
dressed in two simple ways for the messaging system.
The first was simply the use of a firewall. Only those
users behind the company firewall could see the JMS
server and initiate activities with it. Users also need
user ids and passwords to access the server even be-
hind the firewall. Only certain users are privileged to
see scheduling activity information. What was not
addressed directly by the project was dealing with at-
tacks over the net. It is possible for someone to take
over a privileged user’s machine and send a flood of
messages perhaps crippling the JMS server. They may
also simply watch the traffic going by. We deemed the
network security provided by the administrators of the
company networking environment should be sufficient.

6. The prototype

A collaborative environment for DSN scheduling
was prototyped to prove the concept of collaborative
scheduling. In this environment, all users refer to a
single master schedule while they can do collaborative
what-if gaming with a subset of the users in real-time
on top of the master schedule. This is the concept of

dynamic workspaces where any change to the master
schedule can be seen immediately by all users while
each individual user may have their own draft on top
of the master schedule. This draft can only be seen by
selected users assigned by the draft owner. Users can
also copy the master schedule to a static workspace.
Then collaborative scheduling can take place off-line
in the static private workspace within a subset of the
users. Once the negotiation or preparation is done,
users can compare the off-line schedule with the on-
line schedule. Any change to the master schedule has
to go though the workflow management system to
guarantee proper ownership is observed. All changes
that go through the workflow process become items in
the master schedule. The concept of ownership is also
prototyped in this system to identify the owner of a
facility or mission in certain timeframes. This is an
integral part of the workflow management. The sys-
tem also features a real-time conflict checker. The
real-time conflict checker tells users where the con-
flicts are and a rescheduling engine can be called re-
motely to calculate possible resolutions. A reporting
system is also built to report scheduling related metrics
such as tracking time and supportability information.

With the need for real-time data update for each
user and event notification for both users and software,
a messaging system was built. This messaging system
includes automated email notification for certain
events and a rapid messaging system of instant alerts to
software (and then to users). Java Messaging Services
(JMS) was used to implement the rapid messaging
system. JMS was used to deliver messages to the mes-
sage bus while all actual data was handled through the
data bus. This makes the system architecture clear and
data secure. In consideration of the multi-platform
distributed environment, the prototype system allows
JMS to work on both Java and .NET frameworks.
This enhances the true distributed computing concept.
With clients implemented in various frameworks, our
JMS approach allows them to work together in a
mixed environment using one messaging service and
then exchanging data using SOAP/XML standards.

In this prototype effort, we extended the current
DSN scheduling middle-tier layer to host the computa-
tion engine. This includes schedule conflict checking,
data synchronization, dynamic workflow determina-
tion, etc. A database is established to host the master
schedule, dynamic workspace, static workspace, work-
flow management, and traceability/change history.
Three client applications were built to demonstrate the
flexibility of the system.

A Windows client (see Figure 3) was built to show
the concept of an Integrated Analysis Environment
(IAE) where every user can perform all analysis work
within the same environment. The analysis environ-
ment is flexible and has a lot of analysis tools (in sub-
windows) so users can arrange their own working en-
vironment. Property grid is also integrated into the
environment so the property of any selected object can
be easily displayed and modified (if that specific prop-
erty can be modified by the current log-on user). The
tree view allows users to see data in a more hierarchi-
cal way. The calendar view allows users to see data in
a more familiar appointment book type of view. The
graphics shows a schedule Gantt chart and a support-
ability bar chart. The list view allows users to see and
modify data in a more linear fashion. The application
console displays events and messages in a multi-color
scroll view to inform users of the current system status.
All analysis results are kept up-to-date among all
views. Namely, all analysis data such as supportability
and conflict information are synchronized with the
current schedule and recomputed if the schedule
changes. This is based on the event model we used in
the prototype. The master schedule is synchronized
constantly among all users who use this environment
without requiring any interaction from the user. This
is based on the messaging model in the prototype. All
private workspace items are marked clearly on top of
the master schedule. The environment also screens the
applicable JMS messages to report in the application
console.

Figure 3: An Integrated Analysis Environment in
Windows

A Java client (See Figure 4) was built to show
multi-platform access to the same back-end and to
demonstrate a way to handle delayed updates. All
changes to the master schedule are marked in different

color in the Gantt chart. Users can decide when to
update the local schedule. This allows users to work
on their draft without perturbation to the schedule they
are currently working on.

Figure 4: Java application

A Web application (see Figure 5) was also built to
demonstrate the feasibility of web page access. The
current web page prototype only allows data viewing.
However, this can be easily extended to allow for data
input. This application can be run in any browser on
any platform. The example figure was captured using
Safari on a Macintosh.

Figure 5: Web application

The prototype has been shown to some DSN sched-
ulers, project schedulers, and managers and positive
feedback was received. Several JPL software projects
are currently looking into the use of JMS. This proto-
type provides an example of how JMS can be used in a
mixed-framework environment.

7. Conclusion

Collaborative scheduling is needed in a scheduling
environment where all the needed information and
decision making is not controlled by a single source.
When efficiency is needed, it is better to allow all re-
source consumers to schedule their tasks collabora-
tively. A DSN collaborative scheduling system was
prototyped to prove this concept.

 In this prototype, a rapid messaging system using
Java Message Service (JMS) in a mixed Java and .NET
environment was established. This scheme allowed
both Java and .NET applications to communicate with
each other for data synchronization and schedule nego-
tiation. Combined with the schedule data structure,
ownership, and workflow management, this system
allowed both synchronous and asynchronous collabo-
ration in both dynamic and static workspaces with full
conflict and traceability information.

8. References

[1] C. Borden, Y.-F Wang, G. Fox, “Planning and Schedul-
ing User Services for NASA’s Deep Space Network,” NASA
Planning and Scheduling Workshop, 1997.

[2] Richard Monson-Haefel, David Chappell, Java Message
Service, O'Reilly Media, December 2000.

[3] Edd Dumbill and Niel M. Bornstein, Mono: A Devel-
oper's Notebook, O'Reilly Media, July 2004.

Acknowledgement

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration.

Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufac-
turer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the
Jet Propulsion Laboratory, California Institute of
Technology.

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Richard%20Monson-Haefel&rank=-relevance%2C%2Bavailability%2C-daterank/002-6021666-5374458
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=David%20Chappell&rank=-relevance%2C%2Bavailability%2C-daterank/002-6021666-5374458
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Edd%20Dumbill&rank=-relevance%2C%2Bavailability%2C-daterank/002-6021666-5374458

	1. Introduction
	2. Scheduling for NASA’s deep space network
	3. Collaborative scheduling
	4. Distributed computing environment
	5. Messaging and data security
	6. The prototype
	7. Conclusion
	8. References

