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Abstract 

A collaborative framework/environment was proto-
typed to prove the feasibility of scheduling space flight 
missions on NASA’s Deep Space Network (DSN) in a 
distributed fashion.  In this environment, effective col-
laboration relies on efficient communications among 
all flight mission and DSN scheduling users.  There-
fore, messaging becomes critical to timely event notifi-
cation and data synchronization.  In the prototype, a 
rapid messaging system using Java Message Service 
(JMS) in a mixed Java and .NET environment is estab-
lished.  This scheme allows both Java and .NET appli-
cations to communicate with each other for data syn-
chronization and schedule negotiation.  The JMS ap-
proach we used is based on a centralized messaging 
scheme.  With proper use of a high speed messaging 
system, all users in this collaborative framework can 
communicate with each other to generate a schedule 
collaboratively to meet DSN and projects tracking 
needs. 

1. Introduction 

NASA’s Deep Space Network (DSN) provides ser-
vices for spacecraft tracking and communication and 
for ground-based space science activities.  Each project 
and activity has unique support requirements.  There-
fore, scheduling services for these activities involves 
multiple users with different styles of communication 
and types of requests.  These can be simple requests 
for a single antenna for a specific length of time or 
more complex requests such as tracking Multiple 
Spacecraft Per Antenna (MSPA) or multiple antennas 
tracking one spacecraft (e.g. antenna arraying).  Since 
the requests have a wide variety of types and there are 
new types frequently introduced into the system, it is 
somewhat difficult to recognize and adequately handle 
all types of requests in a centralized scheduling envi-
ronment.  Projects have the greatest knowledge of their 
tracking requirements and flexibility.  Further compli-

cating the problem, the DSN is highly over-subscribed.  
Therefore, a more distributed paradigm, where all pro-
jects and DSN schedulers can schedule their own 
tracks with their own methods in a collaborative fash-
ion, is proposed.  In a collaborative environment, all 
users consider their own objectives and negotiate with 
other schedulers to produce an overall conflict-free 
schedule for DSN operation.  In an effort to maximize 
science return for the missions and to maximize an-
tenna utilization, our proposed approach is to maintain 
a conflict-aware schedule that can be iterated and im-
proved by the projects over time.  Through a workflow 
management scheme with both synchronous and asyn-
chronous collaborations and negotiations among af-
fected projects, the conflicts can then be resolved. 

A collaborative framework/environment was pro-
totyped to prove the feasibility of the distributed 
scheduling concept for DSN resource allocation.  In 
the prototype, Java Message Service (JMS) was used 
for two major modern programming frameworks, Java 
and .NET.  In the DSN environment, there are many 
users on various OS platforms.  Supporting both Java 
and Windows environments is an important step in a 
distributed environment.  This scheme allows both 
Java and .NET applications to communicate with each 
other for data synchronization and schedule negotia-
tion.  The JMS approach we used is based on a central-
ized messaging scheme which is different from peer-
to-peer messaging approaches such as Microsoft In-
digo. Data security is one of the concerns that need to 
be addressed in this approach.  With proper use of a 
high speed messaging system, all users in this collabo-
rative framework can collaborate with each other to 
generate a schedule that meets both the requirements 
of the DSN and the tracking needs of the missions. 

2. Scheduling for NASA’s deep space net-
work  

The Deep Space Network (DSN) is a collection of 
radio antennas and their support hardware, software, 



and personnel.  Its primary function is to connect 
spacecraft with their controllers at JPL and JPL’s part-
ners.  Everything from calculating where to point the 
antennas to the work schedules of the spacecraft opera-
tors and DSN personnel starts with an official DSN 
schedule.  Thus collaboration on the official schedule’s 
creation is key to achieving the best results for the 
DSN and its users. 

Figure 1: A 70-meter antenna in the NASA’s Deep 
Space Network 

The purpose of DSN scheduling is to allocate an-
tenna times for JPL’s deep space missions [1].  In ad-
dition to those missions, the DSN also supports many 
missions from other NASA centers as well as activities 
from many government agencies such as the European 
Space Agency, and the Japan Aerospace Exploration 
Agency.  The DSN has ground resources distributed 
around the globe to handle this task.  For example, The 
DSN has three deep-space communications facilities 
placed approximately 120 degrees apart around the 
world: at Goldstone, in California's Mojave Desert; 
near Madrid, Spain; and near Canberra, Australia.  
This strategic placement permits constant observation 
of spacecraft as the Earth rotates providing continuous 
mission coverage around the clock. 

In the current process, each of the mission schedul-
ers negotiates their mission’s tracks to meet their re-
quirements and maximize their mission’s tracking time 
(and hence science return) for each week of the sched-
ule.  They have a number of constraints to meet.  
Foremost of these is the geometric constraints imposed 
by the positions of the spacecraft and the antennas.  
These constrains are called view periods. They con-
strain the schedule allocations to specific times.  These 

times typically vary from day to day depending on the 
nature of the spacecraft’s trajectory.  In addition to 
these constraints, the schedulers must contend with 
limited equipment and personnel at the antenna com-
plexes.  And naturally, the mission schedulers have to 
contend with other schedulers who are also trying to 
meet their mission’s requirements.  Finally, there exists 
another class of problems that each scheduler has to 
deal with. If a mission is attempting to array or MSPA 
(or any other type of coordination involving more than 
one schedule item) they must meet all the above con-
straints as well as a new set of identification con-
straints so that all of the data is sent and returned in a 
cohesive fashion.   

Not surprisingly, the complexity of schedule nego-
tiation has been increasing steadily since the DSN’s 
inception.  The number of supported missions is con-
stantly increasing as more missions are launched and 
existing missions continue to extend their tours.  The 
requirements of the supported missions have also in-
creased as new technology has enabled and demanded 
higher data rates.  Advances in the equipment used to 
send, receive, and process data to and from spacecraft 
have also led to new types of conflicts between pieces 
of equipment on the ground.  Finally, new types of 
communication like relaying and arraying require bet-
ter coordination between missions and more accurate 
schedule conflict information.  Due to the large cost 
involved, creating new resources to handle this ever-
increasing complexity is not a viable option.  As a re-
sult, scheduling software complexity has been increas-
ing steadily to meet these demands. 

Early schedule negotiation was done using paper 
and pencil.  Schedules were published at fixed inter-
vals and all of the schedulers would sit in the same 
room and mark up their printed copies.  In this system, 
there was no traceability between changes and con-
flicts between missions were minor and easily solved 
by manipulating start and end times. 

As complexity increased, there was a need for better 
visualization and statistics.  This resulted in the devel-
opment of a handful of scheduling applications that 
allowed the schedulers to view more complex relation-
ships and try what-if analyses.  Coupled with advances 
in electronic communication, schedulers began com-
municating proposals for changes to other mission 
schedulers.  This led to further proposals for changes 
to other missions and helped to optimize the schedule 
in a very iterative manor. 

As the scheduling processes evolved, the tools fol-
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lowed.  However, as the tools matured, their limita-
tions became apparent.  The current tools allowed for a 
wealth of information and analysis but were not de-
signed to be peer-to-peer communication and informa-
tion sharing tools.  It was still possible to share some 
information using shared file systems, new software 
technologies like SOAP, and dynamic web pages; 
however the schedulers still demanded a richer user 
experience. 

The two primary groups of schedulers involved in 
the creation of schedules are the DSN schedulers and 
the mission schedulers.  The former focuses on sched-
uling DSN-specific activities and maintaining a fair 
process [to all missions] that delivers schedules to the 
antennas in time to process all the necessary data re-
quired to track the spacecraft and send and receive 
information to it.  The latter group, meanwhile, is fo-
cused on satisfying the requirements of a single mis-
sion (or small group of missions) and maximizing the 
time their missions are allotted.  Thus both groups 
have a different idea of the “perfect scheduling sys-
tem.”  The DSN schedulers currently use a system that 
emphasizes stability and keeps a record of changes.  It 
is focused around strong processes that guarantee 
schedules are conflict-free with enough time for the 
DSN to use them to point its antennas.  Naturally, this 
tends to a system where change is minimized and re-
stricted as much as possible the closer the schedule 
gets to being used.  Conversely, the mission schedulers 
are constantly fine-tuning the schedule to maximize 
their mission’s coverage.  As such, the environment 
they currently work in is very fluid and largely uncon-
strained.  They use every form of communication 
available to communicate amongst themselves and the 
DSN to constantly improve the final schedule that is 
used on the antennas. The proposed environment de-
scribed herein is a compromise between these two ide-
als.  It allows for complete visibility and flexibility and 
facilitates communication and information sharing.  It 
does all this while allowing fine granularity of control 
and complete traceability.   

3. Collaborative scheduling 

Each space mission has its own defined objectives 
and unique constraints.  This domain knowledge is 
very specific in nature and resides within each mission.  
For example, each mission/project makes its own deci-
sions on the minimum threshold in order to maintain 
the health of the spacecraft or mission.  Also, many 
projects can be affected when special conditions arise 
such as spacecraft launch postponement and emer-

gency operating procedures.  Only mission experts can 
respond to such situation in a timely manner.  Subse-
quently, there is no centralized authority that can have 
all the expert knowledge to dictate a global schedule to 
satisfy all the need.  In addition, when new missions 
are launched, their requirements often deviate from 
existing requests.  These new constraints are mission 
dependent and can best be handled at the project level. 

In this environment, there are managers, project 
schedulers, DSN schedulers, and DSN operators.  Each 
of them is a decision maker, information provider, and 
information consumer.  The DSN environment is a 
distributed environment requiring decision making and 
information sharing.  Each user shares the responsibil-
ity of the success of the entire network scheduling.  
This requires all users to work together to resolve con-
flicts and to come up with a schedule that achieves the 
overall network objectives as efficiently as possible.  
We call this collaborative scheduling. 

Collaborative scheduling requires common data 
storage to store the master schedule for everyone to 
share as the official released schedule.  This master 
schedule is conflict-aware. Namely, the schedule al-
lows items in conflict to exist for negotiation. In the 
master schedule, all users can see the current state of 
the schedule and use this to help them to perform 
scheduling decisions.  Users need to be able to play 
what-if games directly on top of the official schedule 
without being seen by other schedulers or affecting the 
current schedule (dynamic workspace).  This is for real 
time what-if gaming.  Sometimes, the user may want to 
share his/her what-if (draft) with a specific set of 
schedulers (sharing).  For certain what-if cases, users 
may want to “freeze” the current schedule for an off-
line case study with some other schedulers (static 
workspace).  Once the study is done, the user may 
want to compare and consolidate the off-line schedule 
with the current schedule.  This kind of what-if space 
is called private workspace.  It contains both dynamic 
and static workspaces. In a more complicated case, 
users may want to perform various studies and make 
comparisons of those studies.  This then becomes a 
scenario management issue. 

There are two kinds of collaboration modes.  One 
mode is synchronous collaboration where everyone 
works together at the same time to share information 
and perform scheduling.  The other mode is asynchro-
nous collaboration where users perform their opera-
tions at different time points.  Synchronous collabora-
tion can be viewed as a telephone conversation while 
asynchronous collaboration can be viewed as an email 



exchange.  Collaborative scheduling must consider 
both of these modes separately as well as in combina-
tion with each other.  For example, three missions may 
work together to resolve a conflict.  Mission A and B 
may work together to come up with a proposal in real-
time and then send it to mission C for consideration 
off-line. 

Data exchange in this kind of mixed real-time op-
eration and off-line process is a challenge.  How we 
keep every user’s local information up-to-date is the 
basis for true collaboration.  DSN sites and schedulers 
are located around the world in many different time 
zones.  Therefore, clock synchronization is the first 
issue to resolve.  Once they all reference to the same 
time point, the data can then be synchronized globally.  
This data synchronization process also involves the 
timing issue of the data update latency. 

Conflict resolution is a complicated process.  It re-
quires not only data synchronization but also process 
integration.  When a set of schedulers come to an 
agreement, it may have to be sent to other groups of 
schedulers or to a manager for approval.  The data 
flow within the proposal process or the approval path 
requires workflow management.  The workflow man-
agement has to be a dynamic process to accommodate 
position changes and unexpected events. 

Notification or alerting is important in a collabora-
tive environment.  Users need to be notified when data 
is changed or when the workflow requires their atten-
tion.  Email could be used for simple human interac-
tion with some delay.  However, generally speaking, 
this is not an efficient medium and it could be difficult 
for a collaborative environment to consume.  There-
fore, instant or rapid messaging is more appropriate for 
software interfaces.  Once the software receives a noti-
fication, it has to decide what to do with that notifica-
tion.  In data synchronization, a notification may mean 
the data has been changed.  In workflow management, 
it may mean certain user attention is needed. 

Collaborative scheduling requires consideration of 
many issues.  They are generally the same issues that 
any collaborative environment faces.  In addition, there 
are several issues not addressed here such as discus-
sion forums, undo processes, traceability, change his-
tory, etc.  Some of them are addressed in our prototype 
and some of them remain to be addressed in the future. 

4. Distributed computing environment 

Collaborative scheduling requires users to work to-
gether in a distributed fashion.  Therefore, a distributed 
computing environment is needed.  The objective of 
this distributed computing design is to connect users 
and resources in a transparent, open, and scalable man-
ner. 

Since resource allocation requires a collaborative 
effort from many users in different locations to negoti-
ate a workable solution, the goal is to make this sched-
uling processing as transparent as possible, so that it 
operates like all mission experts are working together 
in the same location concentrating directly on resolv-
ing each resource issue.  In addition, the methods and 
tools used to reach their goal should not distract them 
in any way.  For example, the experts should not care 
about how requests and responses between clients and 
servers are required to retrieve information, as well as 
what network protocol is used to carry the information. 

DSN Scheduling is an iterative process.  Affected 
project schedulers will continue to negotiate on a con-
flict-aware schedule to resolve contentions.  Openness 
provides them with conflict and modification aware-
ness when it occurs.  This enable projects to respond to 
modifications quickly.  This property provides each 
project with a continually open environment that en-
ables interaction with other projects until a satisfactory 
condition exists.  If necessary, senior officials with 
arbitrating authority can also monitor the process and 
make key decisions based on task priority and urgency.  
As a result, openness encourages interaction to speed 
up the decision process. 

As new missions launch and old projects retire, a 
scalable solution is important to address the changes in 
the system.  The solution should be able to accommo-
date changes in the number of projects and resources 
in the DSN domain.  The system should make it easy 
to expand and contract its resource pool to accommo-
date heavier or lighter loads.  It should maintain its 
usefulness and usability, regardless of projects or re-
sources locations. 

 



 

Figure 2: A simplified architecture for the distrib-
uted computing environment 

To address the challenges of this distributed archi-
tecture, a multi-tier system has been designed to permit 
remote computing by exposing key software compo-
nents as network-addressable services (see Figure 2).  
The system consists of the following layers: 

• Client Interface layer – a front-end user interface 
for users to interact with the system. This interface 
is isolated from the business logic and database. It 
is also possible to quickly create new user inter-
faces tailored for specific uses. 

• Web Service layer – an abstraction layer to access 
backend business logic via the SOAP messaging 
protocol.  The service’s intention is described in 
the XML data structures which are transported us-
ing the HTTP transport protocol to exchange in-
formation between clients and servers. 

• Business logic layer – major computational intel-
ligence and information provider. The computa-
tional intelligence is partitioned into several agents 
in an object-oriented fashion. This layer encom-
passes all scheduling related calculations, work-
flows, and data manipulation functions. 

• Legacy Information Layer – communication ele-
ment to legacy systems. This layer is used to com-
municate with legacy systems and provide needed 
information to the agents in the business logic 
layer. 

• Data Access Layer – Data access routines to ac-
cess the database. This layer transforms database 
information into objects that are consumed by the 
agents in the business logic layer. 

• Data Layer – A relational database to store sched-
ules, constraints, ownerships, workflow, etc. 
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• Messaging layer – a messaging server to provide 
messages and alert functionality for the system. 

In modern network computing environment, Java 
and .Net frameworks are the major players.  Their mar-
ket shares are expected to be 50-50 in year 2006.  Java 
dominates the large-scale enterprise market due to its 
multi-platform nature and adaptation to major data-
base/solution venders such as Oracle, Sun, and IBM.  
.NET dominates the small and mid-size business mar-
ket due to its initial cost and performance benefits.  We 
don’t expect either platform to dominate this domain in 
the next few years.  Therefore, we should expect them 
to co-exist and we should design our system to allow 
both of them to contribute their strengths.  Market 
share is one of the metrics used to justify decisions 
over which platform to adopt in a project.  There are 
major strengths for both Java and .NET development.  
Java focuses on multi-platform solutions while .NET 
distinguishes itself by embracing multiple language 
development.  As both .NET and Java embrace Web 
services, cross-platform communication is becoming 
less of an issue.  This is strengthening the trend toward 
mixed .NET and Java environments.  Therefore, our 
strategy is to take advantage of both frameworks and 
utilize them wherever technologies can best fit to our 
needs.   

Our current prototype is designed with the above 
philosophy in mind.  We take advantage of the existing 
investment and PC user base by developing on the 
.NET platform to provide rapid deployment of this 
proof-of-concept prototype.  For the multi-platform 
client and overall messaging, we adopt Java-based 
JMS to enable rapid messaging and data synchroniza-
tion. With the popularity of SOAP and XML, the sys-
tem also adopts these technologies for exchange of 
information in our distributed environment. 

5. Messaging and data security 

One of the main goals of our effort is to introduce 
real-time collaboration into the scheduling process.  
This task is complicated by the fact that the partici-
pants in the scheduling process are both distributed 
across different locations and using different plat-
forms.  Developing multiple sets of code for multiple 
platforms to coordinate in real-time is very impractical.   



In this prototype, the middle-tier agents were writ-
ten in C# using the .NET framework to take advantage 
of existing systems.  However, we chose to use the 
Java Message Service (JMS) [2] for messaging due to 
its maturity and ease of use.  The issue of how the C# 
end of the service would employ JMS was solved by 
using IKVM1.  IKVM.NET is an implementation of 
Java for Mono [3] and the Microsoft .NET Framework.  
It includes the following the components: a Java Vir-
tual Machine implemented in .NET, and a .NET im-
plementation of the Java class libraries and tools that 
enable Java and .NET interoperability. 

IKVM was used to convert the core JMS .jar files 
containing the needed Java classes to the equivalent C# 
‘binary’ files that run with .NET and the IKVM pro-
vided library files.  It was necessary to point the Mi-
crosoft development tools at these libraries and write 
code that, for all intents and purposes, looked like java 
code but in C#.  This fact was a benefit as sample code 
to implement the messaging functions written in java 
was easily adapted to C# as the names of the methods, 
constants and classes were identical. 

While collaboration was designed to be real time, 
the fact is that when someone is active in say, Spain, 
someone is sleeping in Australia.  When a person starts 
their work session they need to be informed of any 
changes that may have occurred since they were last 
active.  JMS provides an excellent solution to the prob-
lem with the use of persistent messages. 

JMS messaging has two basic paradigms.  One is a 
point-to-point message.  The creator of the message 
sends the message to a particular receiver and if they 
are not there, the message is lost.  This type of messag-
ing is handled by something called a queue. 

Persistent messaging is a broadcast paradigm 
where one creator sends a message and multiple people 
receive it.  This is termed a topic.  Persistent messages 
have guaranteed delivery while messages in a queue do 
not.  If message delivery fails, the message persists 
until it is safely read or the lifetime of the message 
expires.  The creator can specify how long the message 
lives before it is deleted from the system.  In our work 
we used persistent messaging throughout. 

Messages in JMS are ‘fire and forget’.  This 
means that if the creator of a message successfully 
delivers the message to the JMS server, the creator 
need take not any more action to guarantee delivery.  
                                                           
1 See http://www.ikvm.net/#Introduction 

The server takes care of the delivery process and coor-
dination with all the intended receivers. 

Messages may be read asynchronously or syn-
chronously (polled).  Since it was simpler to be noti-
fied when a message had arrived, and have the mes-
sage in hand simultaneously, that approach was used.  
However, since messages are persistent and dispersed 
in time, a client that wishes to control when messages 
arrive, due to some critical activity for example, has 
the choice to so. 

It is important to note that what travels between 
the server and the clients listening for changes are not 
the changes but a notice of a change.  It is up to the 
client to request whatever changes are needed through 
the data channels.  Namely, JMS remains as a message 
services rather than a data service. This has benefits of 
performance and security. Performance-wise, this cuts 
down on traffic between the server and the client.  It is 
also worth noting that the volume of messages travel-
ing around is small.  A single JMS server can handle 
all the traffic as there are no more than dozens of mes-
sages per minute normally. Security-wise, this only 
delivers notification without the data itself. Once a 
JMS message is received clients determine the activity 
needed and go through regular data channels to ex-
change data in a secured way. 

Security in the messaging service itself was ad-
dressed in two simple ways for the messaging system.  
The first was simply the use of a firewall.  Only those 
users behind the company firewall could see the JMS 
server and initiate activities with it.  Users also need 
user ids and passwords to access the server even be-
hind the firewall.  Only certain users are privileged to 
see scheduling activity information.  What was not 
addressed directly by the project was dealing with at-
tacks over the net.  It is possible for someone to take 
over a privileged user’s machine and send a flood of 
messages perhaps crippling the JMS server.  They may 
also simply watch the traffic going by.  We deemed the 
network security provided by the administrators of the 
company networking environment should be sufficient. 

6. The prototype 

A collaborative environment for DSN scheduling 
was prototyped to prove the concept of collaborative 
scheduling.  In this environment, all users refer to a 
single master schedule while they can do collaborative 
what-if gaming with a subset of the users in real-time 
on top of the master schedule.  This is the concept of 



dynamic workspaces where any change to the master 
schedule can be seen immediately by all users while 
each individual user may have their own draft on top 
of the master schedule.  This draft can only be seen by 
selected users assigned by the draft owner.  Users can 
also copy the master schedule to a static workspace.  
Then collaborative scheduling can take place off-line 
in the static private workspace within a subset of the 
users.  Once the negotiation or preparation is done, 
users can compare the off-line schedule with the on-
line schedule.  Any change to the master schedule has 
to go though the workflow management system to 
guarantee proper ownership is observed.  All changes 
that go through the workflow process become items in 
the master schedule.  The concept of ownership is also 
prototyped in this system to identify the owner of a 
facility or mission in certain timeframes.  This is an 
integral part of the workflow management.  The sys-
tem also features a real-time conflict checker.  The 
real-time conflict checker tells users where the con-
flicts are and a rescheduling engine can be called re-
motely to calculate possible resolutions.  A reporting 
system is also built to report scheduling related metrics 
such as tracking time and supportability information. 

With the need for real-time data update for each 
user and event notification for both users and software, 
a messaging system was built.  This messaging system 
includes automated email notification for certain 
events and a rapid messaging system of instant alerts to 
software (and then to users).  Java Messaging Services 
(JMS) was used to implement the rapid messaging 
system.  JMS was used to deliver messages to the mes-
sage bus while all actual data was handled through the 
data bus.  This makes the system architecture clear and 
data secure.  In consideration of the multi-platform 
distributed environment, the prototype system allows 
JMS to work on both Java and .NET frameworks.  
This enhances the true distributed computing concept.  
With clients implemented in various frameworks, our 
JMS approach allows them to work together in a 
mixed environment using one messaging service and 
then exchanging data using SOAP/XML standards. 

In this prototype effort, we extended the current 
DSN scheduling middle-tier layer to host the computa-
tion engine.  This includes schedule conflict checking, 
data synchronization, dynamic workflow determina-
tion, etc.  A database is established to host the master 
schedule, dynamic workspace, static workspace, work-
flow management, and traceability/change history.  
Three client applications were built to demonstrate the 
flexibility of the system. 

A Windows client (see Figure 3) was built to show 
the concept of an Integrated Analysis Environment 
(IAE) where every user can perform all analysis work 
within the same environment.  The analysis environ-
ment is flexible and has a lot of analysis tools (in sub-
windows) so users can arrange their own working en-
vironment.  Property grid is also integrated into the 
environment so the property of any selected object can 
be easily displayed and modified (if that specific prop-
erty can be modified by the current log-on user).  The 
tree view allows users to see data in a more hierarchi-
cal way.  The calendar view allows users to see data in 
a more familiar appointment book type of view.  The 
graphics shows a schedule Gantt chart and a support-
ability bar chart.  The list view allows users to see and 
modify data in a more linear fashion.  The application 
console displays events and messages in a multi-color 
scroll view to inform users of the current system status.  
All analysis results are kept up-to-date among all 
views.  Namely, all analysis data such as supportability 
and conflict information are synchronized with the 
current schedule and recomputed if the schedule 
changes.  This is based on the event model we used in 
the prototype.  The master schedule is synchronized 
constantly among all users who use this environment 
without requiring any interaction from the user.  This 
is based on the messaging model in the prototype. All 
private workspace items are marked clearly on top of 
the master schedule.  The environment also screens the 
applicable JMS messages to report in the application 
console. 

 
Figure 3: An Integrated Analysis Environment in 
Windows 

A Java client (See Figure 4) was built to show 
multi-platform access to the same back-end and to 
demonstrate a way to handle delayed updates.  All 
changes to the master schedule are marked in different 



color in the Gantt chart.  Users can decide when to 
update the local schedule.  This allows users to work 
on their draft without perturbation to the schedule they 
are currently working on. 

Figure 4: Java application 

A Web application (see Figure 5) was also built to 
demonstrate the feasibility of web page access.  The 
current web page prototype only allows data viewing.  
However, this can be easily extended to allow for data 
input.  This application can be run in any browser on 
any platform.  The example figure was captured using 
Safari on a Macintosh. 

Figure 5: Web application 

The prototype has been shown to some DSN sched-
ulers, project schedulers, and managers and positive 
feedback was received. Several JPL software projects 
are currently looking into the use of JMS.  This proto-
type provides an example of how JMS can be used in a 
mixed-framework environment. 

7. Conclusion 

Collaborative scheduling is needed in a scheduling 
environment where all the needed information and 
decision making is not controlled by a single source. 
When efficiency is needed, it is better to allow all re-
source consumers to schedule their tasks collabora-
tively. A DSN collaborative scheduling system was 
prototyped to prove this concept. 

 In this prototype, a rapid messaging system using 
Java Message Service (JMS) in a mixed Java and .NET 
environment was established.  This scheme allowed 
both Java and .NET applications to communicate with 
each other for data synchronization and schedule nego-
tiation. Combined with the schedule data structure, 
ownership, and workflow management, this system 
allowed both synchronous and asynchronous collabo-
ration in both dynamic and static workspaces with full 
conflict and traceability information. 
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