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Abstract 
Increased science requirements for space-based instruments over the past few decades 
have lead to the increased popularity of deployable space structures constructed from 
thin, lightweight films.  Such structures offer both low mass and the ability to be stowed 
inside conventional launch vehicles.  The analysis in this work pertains to large, singly-
curved lightweight deployable reflectors commonly used in radar antennas and space 
telescopes.  These types of systems, which can vary a great deal in size, often have 
frequency requirement that must be met.  This work discusses two missions that utilize 
this type of aperture technology, and then develops a Rayleigh-Ritz model that predicts 
the natural frequencies and mode shapes for a (nearly) flat and singly-curved reflector 
with unidirectional in-plane loading.  The results are compared with NASTRAN 
analyses. 
 

Introduction 
NASA's mission challenges its scientists to understand and protect the Earth and to 
explore the universe.  To fulfill NASA's mission, the country's scientists are increasingly 
demanding more and better information about the earth and the surrounding cosmos. 
As a result, technological solutions for these needs are increasingly requiring larger and 
larger apertures.  The most demanding NASA customers for precision deployable 
structures technologies will be future large space systems for observation and remote 
sensing1.  These systems depend on an aperture which collects energy and concentrates 
it on a detector where the radiation and spectra can be measured.  The size of the 
aperture determines the resolution to which an image can be made, the collecting area 
determines how faint an object can be detected, and the precision to which the aperture 
holds its figure determines how well the energy is directed onto the detectors.  The 
planned missions cover the wavelength range from the visible to radio frequency, with 
increasing precision required for shorter wavelengths and increasing size required for 
longer wavelengths. 
 
One proposed technological solution for constructing such apertures involves the use of 
tensioned cylindrical membranes.  By applying tension in the “straight” direction, a 
singly-curved reflector can be constructed.  Two recent studies of this geometry were 
the Dual Anamorphic Reflector Telescope (DART) and the Advanced Precipitation 
Radar Antenna (APRA).   
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Dual Anamorphic Reflector Telescope 
DART consists of two parabolic cylindrical-trough reflectors oriented perpendicular 
with respect to each other to produce a point focus, as shown in Figure 1.   
 

 
Figure 1: Concept of a 10m DART Architecture with Passive V-groove Cooling 

 
Such a surface can be formed by bending the reflective surface along only one axis, and 
the system can be designed to produce a completely unobscured aperture.  The focal 
lengths of the two individual reflectors are unequal for this system to focus (hence the 
need for anamorphic optics).  The aberrations of the system are identical to those of an 
off-axis paraboloid; hence it is not surprising that coma is the dominant aberration. 
 
The DART concept is being developed for a future Single Aperture Far-Infrared 
(SAFIR) space mission2-7.  With a cryogenically cooled 10-meter class primary mirror 
and detectors providing high sensitivity in the 40-1000µm wavelength range, SAFIR 
would enable scientists to probe the structure and evolution of the first stars and 
galaxies, to understand the interactions between black-holes and their host galaxies, and 
to observe the birth of stars and planetary systems.   The principle challenge to making 
SAFIR is its large cryogenic primary mirror. Keeping its mirror at less than 5 Kelvin is 
essential for making background-limited measurements in the far infrared.  Such a 
telescope should have a large, cooled, unobstructed aperture and be in space, which 
means it must also be low mass and deployable.  A traditional telescope uses a 
reflective coating supported by a high-quality substrate, which is usually glass or metal.  
To reduce mass, DART abandons the glass substrate, leaving only the reflective coating 
as a thin membrane.  The membrane is shaped and constrained, both of which are 
accomplished by clamping at the edge, or boundary, and then stretching. 
 
Advanced Precipitation Radar Antenna 
The second concept, the APRA8, consists of a single parabolic cylindrical-trough 
reflector oriented so its focus is fed by a phased array line feed.  Again the surface can 
be formed by bending the reflective surface along only one axis.  Control of the surface 
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aberrations can be provided by adjusting the tensioning elements or by in-plane 
(surface parallel) actuation.  The APRA concept is being developed for a future space-
borne mission to measure rainfall world-wide. Dual-frequency Ka/Ku-band radar is 
used to measure precipitation and improve our understanding of worldwide weather.  
Figure 2 shows the APRA concept.   
 

 
Figure 2: Advanced Precipitation Radar Antenna Concept and Model 

 
In the bottom left, the unrolling deployment of the reflector is shown.  For launch, the 
membrane is rolled onto a mandrel, and then once on-orbit, the reflector unrolls into the 
desired parabolic shape.  A half-scale model, in the bottom right was built and tested to 
determine if the required surface precision was readily attainable.   
 
Modeling of Reflector 
To perform early mission designs using the DART, APRA or similar concepts, a simple, 
mathematical model is needed to determine the structural stiffness of the concept.  Then 
trades can be made based upon stiffness requirements and other mission parameters. 
This paper represents a first step towards forming a simple mathematical estimation of 
the vibrational modes of a tensioned, singly-curved membrane.  Efforts to predict the 
dynamic behavior of these types of structures typically involves modeling them as thin 
shells.  These shells are taken to be shallow, singly-curved, isotropic, thin films that are 
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tensioned perpendicular to the direction of curvature through a clamped edge with the 
other two edges free from constraint.  These boundary conditions are referred to as 
Clamped-Free-Clamped-Free (C-F-C-F).  For a flat plate with such boundary conditions, 
there is a small amount of literature that summarizes the dynamic response9.  However, 
the author is not aware of any that covers the transverse vibration of C-F-C-F shells in 
rectangular coordinates.  Therefore, the focus of this work is to investigate the 
transverse vibrational behavior of an elastic thin, shallow shell subjected to in-plane 
traction.  While the out of plane behavior is of primary concern, it is coupled to the in-
plane response because of the curvature.  Therefore an important component of this 
project is to understand both the in-plane10 and out-of-plane response11-14.  The 
appropriate energy functionals, strain energy, kinetic energy, and work done by 
external forces, are formulated from the 3D elasticity theory using classical shell theory, 
with Love’s first approximation and ignoring transverse shear deformation.  While the 
model was developed for a laminated composite material, simplifications are made to 
cover only isotropic behavior.  After choosing a representative geometry and material, 
these expressions were calculated in Mathematica, and the eigenvalue problem solved 
numerically using the computer to determine the natural frequencies and mode shapes 
of both a flat and the curved reflector.  These results are found to be in good agreement 
with NASTRAN analyses.   
 

Shell Theory 
In this work, the singly-curved reflector is modeled as a thin shallow shell, as depicted 
in Figure 3.   
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Figure 3: Singly-Curved Thin Shallow Shell 
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The boundary conditions along the curved edges (y=0 and y=b) are clamped, and along 
the flat edges (x=0 and x=a) are free (C-F-C-F).  The Rayleigh-Ritz method is employed 
in this work to solve the free vibration problem of this shallow shell.  This method 
involves determining the expression for the total energy (strain plus kinetic), Π, of the 
vibrating system, and then selecting appropriate admissible functions to represent the 
in-plane and out-of-plane deflections.  These functions represent beam mode shapes in 
the C-C and F-F directions.  Stationary values of the total potential energy are then 
found by minimizing with respect to the constants contained in the admissible 
functions such that 
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By grouping terms common to the constants Amn, Bmn, and Cmn, one is left with the 
standard eigenvalue problem, with a mass and a stiffness matrix, which can be solved 
using standard methods to obtain the free vibration response of the shallow shell.   
 
Energy Expressions 
The derivation of the energy expressions for this problem begins with the strain energy 
for a 3D elastic shell continuum, expressed as 
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A few simplifying assumptions can be made to reduce this 3D problem to a simpler yet 
accurate 2D representation for the specific shell under consideration in this work.  First, 
the shell is singly-curved, thus R2 equals infinity.  Also, the shell is thin, so transverse 
shear is ignored (e13 and e23 equal zero).  Next the shell is shallow, so A1=A2=1 and 
Love’s 1st approximation is applicable, giving 
 

0
21

≈≈
R
z

R
z       (3) 

 
and consequently the 3D strains can be represented by their 2D approximations 
 

121212222222111111 kzekzekze +=+=+= γεε    (4) 
 

Here, εij are midplane strains, and kij are changes in midplane curvatures.  Next, if the 
shell is considered to be made of N total orthotropic layers for the purpose of generality, 
then the constitutive relations the kth  layer of this shell are 
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These stresses and 2D strains are now substituted into the strain energy expression in 
Eq. 2 and integrated over the thickness of each layer and summed over the N total 
layers in order to reduce the problem completely from 3D to 2D.  The resulting strain 
energy expression is 
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Next, if the linear strain-displacement relationships for a 2D shallow shell with the 
simplifications described above are 
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and the following standard stiffness definitions for laminated structures are used,  
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then the strain energy of the shell becomes 
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Equation 9 now represents the strain energy in terms of the orthotropic stiffnesses and 
displacements of a laminated composite thin shallow shell.  However, the reflectors 
typically considered for the purpose of this research effort are thin metallic or polymer 
single layer films.  Thus they have N=1 and behave in an isotropic manner.  In such a 
case, there is no shear-extension coupling or bend-twist coupling, hence  
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Since the single isotropic layer is symmetric with respect to its midplane, there is no 
bending-extension coupling, or,  
 

0=ijB       (11) 
 

The remaining non-zero in-plane extensional stiffnesses reduce to  
 

26621222211 12
1

11 ν
ν

ν
ν

ν −
−

=
−

=
−

==
tEAtEAtEAA    (12) 

 
while the remaining bending stiffnesses become  
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With these isotropic simplifications, the strain energy becomes 
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The strain energy from external in-plane tractions N11, N22, and N12 on the edges of the 
shell is  
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However, for the current problem, only N22 is nonzero.  Neglecting in-plane inertia, the 
vibration energy comes from transverse motion only, such that  
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With Equations 14-16, the total potential energy of the vibrating system is then 
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Rayleigh-Ritz Method 
Equation 17 expresses the total potential energy for the vibrating shell in terms of the 
displacements u, v, and w.  The Rayleigh-Ritz method represents these displacements as 
linear series of admissible functions and adjusts the coefficients in the series in order to 
minimize the total potential energy as given by Equation 1.  The admissible functions 
must meet the artificial boundary conditions but not necessarily the natural boundary 
conditions.  For the singly curved shallow shell under consideration in this paper, the 
in-plane displacements are approximated as 
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where Xu and Xv represent the axial vibration modes of a free-free beam in the x and y 
directions, respectively, and Yu and Yv represent clamped-clamped beam modes in the x 
and y directions, respectively.  The out of plane deflection is approximated as 
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where the functions Xw and Yw are mode shapes for the transverse vibration of a free-
free and a clamped-clamped beam, respectively, given by 
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and  
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The first two expressions in Equation 21 represent rigid body modes for the free-free 
beam.  Careful examination of these approximation equations shows that they satisfy 
the required geometric boundary conditions.   
 
Eigenvalue Problem 
At this point, the approximate functions in Equations 18-20 are substituted into the total 
potential energy from Equation 17, requiring many partial derivatives.  Taking the 
partial derivatives required to minimize the total potential energy per Equation 1 
results in the matrix eigenvalue problem 
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where the stiffness matrix components are 
 

( )

( )

( ) [ ]

( )

( ) [ ]

( ) [ ] ( ) [

( ) ( ) ] [∫ ∫

∫ ∫∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

+−+++

+
−

+
−

=

−
=

⎥⎦
⎤

⎢⎣
⎡ −

+
−

=

−
=

⎥⎦
⎤

⎢⎣
⎡ −

+
−

=

⎥⎦
⎤

⎢⎣
⎡ −

+
−

=

b a
w

q
w
p

w
n

w
m

w
q

w
p

w
n

w
m

w
q

w
p

w
n

w
m

w
q

w
p

w
n

w
m

b a
w

q
w
p

w
n

w
m

w
q

w
p

w
n

w
m

b a
w

q
w
p

w
n

w
m

ww
mnpq

b a
w

q
w
p

v
n

v
m

vw
mnpq

b a
v

q
v
p

v
n

v
m

v
q

v
p

v
n

v
m

vv
mnpq

b a
w

q
w
p

u
n

u
m

uw
mnpq

b a
v

q
v
p

u
n

u
m

v
q

v
p

u
n

u
m

uv
mnpq

b a
u

q
u
p

u
n

u
m

u
q

u
p

u
n

u
m

uu
mnpq

dxdyYXYXNdxdyYXYXYXYXYXYX

YXYXYXYXtEdxdyYXYX
R

tEK

dxdyYXYX
R

tEK

dxdyYXYXYXYXtEK

dxdyYXYX
R

tEK

dxdyYXYXYXYXtEK

dxdyYXYXYXYXtEK

0 0

''
22

''''''''''''

0 0

''''''''
2

3

0 0
22

1

0 0

'
2

1

0 0

''''
2

0 0

'
2

1

0 0

''''
2

0 0

''''
2

12

1121

1

2
1

1

1

2
1

1

2
1

1

νν

νν

ν
ν

ν
ν

ν

νν
ν

ν
ν

]
 

(24) 
 

and the only nonzero mass matrix component (neglecting in-plane inertia) is  
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0 0

b a
ww w w w w
mnpq m n p qM t X Y X Y dxdρ ⎡ ⎤= ⎣ ⎦∫ ∫ y           (25) 

 
The mass and stiffness matrices can now be calculated in Mathematica, and the 
eigenvalue problem solved in the standard way in order to determine the natural 
frequencies and mode shapes of the curved reflector panel.  

 
Numerical Results 

In this section, a representative set of geometric and material properties are chosen for 
use with the model developed above.  Such an approach allows for the solution to the 
eigenvalue problem, thus determining numerical results for the natural frequencies and 
mode shapes of the selected system.  Since many curved reflectors are made from thin 
metallic films, the material properties of aluminum are considered for this numerical 
investigation.  These properties, along with the selected geometry are presented in 
Table 1.   
 

Table 1: Material and Geometric Properties 
Property Value

Modulus, E , GPa 70
Poisson Ratio, ν 0.33
Density, ρ , kg/m3 2700
Length, a , m 0.7
Length, b , m 0.7
Radius of Curvature, R 1 , m 3

Thickness, t , m 6.35x10-5 to 6.35x10-2
 

 
First, a flat plate is considered, showing that the elasticity model is in agreement with 
finite element results, and then the more complicated behavior of a the curved panel is 
predicted.   
 
Finite Element Analysis 
The commercially-available finite element software NASTRAN was used to model the 
systems under consideration for this numerical investigation.  The finite element 
models of the flat plates contained 900 CQUAD 4 plate structural elements, while the 
curved panel models consisted of 2450 structural elements of the same type.  After 
defining the geometry and element meshing, all six degrees of freedom (three 
translational and 3 rotational) were restrained along the clamped edges y=0 and y=b.  
As the other edges are free, no degrees of freedom were restricted on those edges.  Due 
to time constraints on the publication of this work, it was not possible to perform 
NASTRAN analyses with applied in-plane loads for either the flat plate or the curved 
panel.  Such investigation will form the basis for a future work. 
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Flat Plate with Zero In-Plane Loads  
The solution to a flat plate with C-F-C-F boundary conditions is found from the 
elasticity model developed above by setting the curvature, R1 equal to zero.  This 
simplification effectively decouples the in-plane and out-of-plane portions of the 
problem, and allowing for a much simpler solution.  It is for this reason that tabulated 
results for this type of system are available in Blevins9.  The results of these three 
methods are presented in Table 2. 
 

Table 2: Natural Frequencies of C-F-C-F Plates of Various Thicknesses 

6.35E-05 6.35E-04 6.35E-03 6.35E-05 6.35E-04 6.35E-03 6.35E-05 6.35E-04 6.35E-03
1 0.7152 7.152 71.52 0.7185 7.185 71.85 0.7103 7.103 70.973
2 0.852 8.52 85.2 0.8422 8.422 84.22 0.84 8.398 83.856
3 1.402 14.02 140.22 1.3967 13.967 139.67 1.382 13.819 137.883
4 1.974 19.74 197.41 1.9806 19.806 198.06 1.961 19.607 195.764
5 2.169 21.69 216.94 2.1489 21.489 214.89 2.142 21.415 213.684

Natural Frequency, Hz

Mode 
Number Thickness, m

Method
FEA Blevins Rayleigh-Ritz

 
The three methods are in close agreement, and the frequency scales linearly with the 
thickness of the plate, as suggested by Blevin’s formulation.  Furthermore, the mode 
shapes are of the same shape regardless of the thickness, and are depicted in Figure 4 
for the thinnest plate.   
 
Flat Plate with Nonzero In-Plane Loads  
The effect of applied in-plane loading was investigated for the flat plate using the 
approximation in Blevins9.  The natural frequency for a plate with in-plane loads N11 
and N22 is  
 

( ) ( )
2 11 1 22 2

2 24 4in plane No in planeij ijloads loads

N J N Jf f
t a t bρ ρ− −= + +           (26) 

 
For this work, N11=0, and J2 is given by 
 

( )

( )
2

2

1.248 1

1 21 1
12
2

n

J
n n

nπ

⎧ =
⎪

⎛ ⎞⎪⎪ ⎜ ⎟= ⎨⎛ ⎞ ⎜ ⎟+ − >⎜ ⎟⎪ ⎛ ⎞⎜ ⎟⎝ ⎠⎪ +⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

          (27) 
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where n is the mode number corresponding to the j subscript on fij.  For a square plate 
(a=b), n=1, 2, 3, 1, 2, 4.  Using Blevin’s formula for the unloaded natural frequency, 
Figure 5 presents the impact of in-plane tractions on the plate with t=6.35x10-4m. 
 

 
Figure 4: Mode Shapes from NASTRAN for Flat Plate  

 
The range of traction loads ranges from zero up to around the Euler buckling load (if 
the load were to be compressive).  Over this range fairly wide range, the changes in the 
natural frequencies of the flat plate vary widely from about 7% all the way up to nearly 
100%.  Thus, the amount of tensile in-plane load can have a significant impact on the 
dynamic response of the reflector system.  The amount of effect depends on the 
particular mode, but it is clear that the in-plane load effects must be considered in any 
design analysis and need further investigation. 
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Figure 5: Effect of Unidirectional Tractions on Natural Frequency of Flat Plate 

 
Curved Panel with no In-Plane Loads 
With confidence in the accuracy of the portion of the elasticity model that calculates the 
decoupled out-of-plane response for a flat plate, a nonzero value for the radius of 
curvature is now selected, as given in Table 1.  As there are no readily available 
simplified, closed-form solutions for a curved panel with C-F-C-F boundary conditions, 
only the results from the Rayleigh-Ritz solution and finite element analysis are 
presented in Table 3. 
 

Table 3: Natural Frequencies of C-F-C-F Singly-Curved Panels of Various 
Thicknesses 

6.35E-05 6.35E-04 6.35E-03 6.35E-02 6.35E-05 6.35E-04 6.35E-03 6.35E-02
1 6.633 22.718 94.766 675.8732
2 Results not available 6.64 22.89 109.288 784.065
3 at press time. 11.423 43.824 168.953 1291.878
4 11.451 44.195 232.036 1744.428
5 16.5194 55.182 239.686 1889.496

Mode 
Number

Elasticity Model FEA 
Thickness, m

Natural Frequency, Hz
Method
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From the natural frequencies predicted by the finite element analyses, the response of 
the curved panel does not scale linearly with the thickness.  This behavior is seen from 
Figure 6, which presents the first mode shapes for the four thicknesses considered in 
this work. 
 

 
Figure 6: Fundamental Modes for Various Thickness Shallow Shells 

 
For the thinner shells, the lowest mode shapes exhibit similar behavior.  Specifically, the 
first beam mode is evident in the C-C direction, while the second beam mode (rigid 
body rotation) is evident in the F-F direction.  However, the thickest shell has a different 
combination of beam mode shapes, namely the first mode in the C-C direction as well 
as the first mode (rigid body translation) in the F-F direction.  This change in behavior 
could result from the thick (6.35 cm) plate, which is unlikely to follow the assumptions 
for thin shells as its length to thickness ratio is about 11.  Indeed, the coupled in-plane-
out-of-plane behavior is influenced by the thickness of the panel and changes the order 
in which the beam modes in each direction occur.  In particular, the thinner panels seem 
to have a more complex response with higher beam modes occurring sooner, and some 
degenerate modes are evident even for the first five modes considered in this analysis.  
In Figures 6 and 7, the first two modes are combinations of the first beam mode in the 
C-C direction and the rigid body rotation and translation modes in the F-F direction, 
respectively.  The third and fourth modes predicted by NASTRAN in Figure 7 are 
degenerate, in that they occur at essentially the same frequency.  The linear combination 
of these two modes represents a match with the Rayleigh-Ritz solution, with second 
beam mode behavior in the C-C direction and rigid body rotation in the F-F direction.  
The lack of displacement for the fifth mode predicted by NASTRAN along one free 
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edge indicates another degenerate mode, but higher mode information is not available 
at this time.  However, the third beam mode in the C-C direction is still evident.  Clearly 
for this thinnest shell, the behavior is more complex and requires special precautions in 
the modeling, such as requiring more terms to the Rayleigh-Ritz series expansions, to 
ensure the correct behavior is predicted.  However, more terms in the expansions 
creates large matrices that can become too computationally intensive to be handled 
numerically by the computer.  For the thickness considered in Case 2 (Figure 8), the 
third and fourth modes exhibit second beam modes in the C-C direction and rigid body 
rotation and translation in the F-F direction, while the fifth mode has first beam mode 
behavior in the C-C direction and a much higher beam mode in the F-F direction.  
Additionally, the more complex behavior that includes very little displacement in the 
interior of the thinnest shells is likely due to the very low bending stiffness.  While the 
free edges can move without restraint, the low bending stiffness does not allow this 
motion to propagate very far into the shell interior.   
 

 
Figure 7: Five Lowest Mode Shapes for Curved Panel, Case 1, t=6.35x10-5 m 
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Figure 8: Five Lowest Mode Shapes for Curved Panel, Case 2, t=6.35x10-4 m 

 
As noted earlier, the two thickest shells, whose mode shapes are shown in Figures 9 and 
10, exhibit behavior, particularly in the shell interior that is more expected in terms of 
combinations of the lowest beam modes that compose the analytical response.  
Furthermore, each mode is distinct.  For Case 3, the third mode shows first beam mode 
in the C-C direction and third beam mode (first non-rigid body mode) in the F-F 
direction, while the fourth and fifth modes exhibit second beam mode in the C-C 
direction and first rigid body rotation and translation in the F-F direction, respectively.  
Case 4, having the largest thickness, is a bit different than the other three cases.  The 
rigid body rotation and translation are reversed with respect to Case 3 for modes 1 and 
2.  The third mode has the same characteristic shape, while the rigid body rotation and 
translation in the F-F direction for modes 4 and 5 are again reversed with respect to 
Case 3.  The more complex behavior of the thinner shells requires more terms in the 
approximation functions for the Rayleigh Ritz method.  Initial results indicate as many 
as 20x20 terms for u, v and w could be required to sufficiently capture the behavior.   
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Figure 9: Five Lowest Mode Shapes for Curved Panel, Case 3, t=6.35x10-3 m 

 
Conclusions 
This work has presented two important NASA missions that utilize thin singly-curved 
membrane reflectors for telescope or radar applications.  Preliminary sizing design for 
these structures is performed by using results from using the Rayleigh-Ritz method 
with an elasticity shell model presented in this work.  It was found that the use of beam 
mode shapes in the two orthogonal directions is a suitable way to represent the shell 
approximation functions in the Rayleigh-Ritz method.  While the behavior of the flat 
plate was easier to predict, the addition of a curvature in one direction made the 
analysis more difficult.  The finite element analysis required additional elements, while 
the analytical model requires many more terms in the approximation functions.  The 
natural frequencies of the flat plate scaled linearly with the thickness; however, the 
same was not true for the curved panel.  The FEA results also indicate the presence or 
degenerate modes for the thinnest (membrane-like) curved panel, which indicates that 
the model is very sensitive to numerical variations.  In contrast to the flat plate, much 
care must be taken to adequately capture the dynamics of the thin, curved reflector.   
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Figure 10: Five Lowest Mode Shapes for Curved Panel, Case 4, t=6.35x10-2 m 
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