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Abstracf- We propose several LDPC code constructions that 
simultaneously achieve good threshold and error floor per- 
formance. Minimum distance is shown to grow linearly with 
block size (similar to regular codes of variable degree at least 
3) by considering ensemble average weight enumerators. Our 
constructions are based on projected graph, or protograph, 
structures that support high-speed decoder implementations. As 
with irregular ensembles, our constructions are sensitive to the 
proportion of degree-2 variable nodes. A code with too few such 
nodes tends to have an iterative decoding threshold that is far 
from the capacity threshold. A code with too many such nodes 
tends to not exhibit a minimum distance that grows linearly in 
block length. In this paper we also show that precoding can 
be used to lower the threshold of regular LDPC codes. The 
decoding thresholds of the proposed codes, which have linearly 
increasing minimum distance in block size, outperform that of 
regular LDPC codes. Furthermore, a family of low to high rate 
codes, with thresholds that adhere closely to their respective 
channel capacity thresholds, is presented. Simulation results for a 
few example codes show that the proposed codes have low error 
floors as well as good threshold SNFt performance. 

I. INTRODUCTION 

Low-density parity-check (LDPC) codes were proposed by 
Gallager [ l ]  in 1962. After introduction of turbo codes by 
Berrou et a1 [2] in 1993, researchers revisited LDPC codes, 
and extended the work of Gallager using the code graphs 
introduced by Tanner [3] in 1981. After 1993 there have been 
many contributions to the design and analysis of LDPC codes; 
see for example [12], [14], [151, [51, [161, [171, [201 and 
references there. Recently a flurry of work has been conducted 
on the design of LDPC codes with imposed sub-structures, 
starting with the introduction of multi-edge type codes in [ 1 11 
and [13]. 

Repeat-Accumulate (RA) [6], Irregular Repeat-Accumulate 
(IRA) [7] and recently Accumulate-Repeat- Accumulate 
(ARA) [19] codes were proposed as simple subclasses of 
LDPC codes with fast encoder structures. For high-speed de- 
coding, it is advantageous for an LDPC code to be constructed 
from a protograph [SI or a projected graph [ 101. A protograph 
is a Tanner graph with a relatively small number of nodes. A 
"copy-and-permute" operation [SI can be applied to the pro- 
tograph to obtain larger derived graphs of various sizes. This 
operation consists of first making N copies of the protograph, 

and then permuting the endpoints of each edge among the N 
variable and N check nodes connected to the set of N edges 
copied from the same edge in the protograph. The derived 
graph is the graph of a code N times as large as the code 
corresponding to the protograph, with the same rate and the 
same distribution of variable and check node degrees. LDPC 
codes with protograph structure are subclass of multi edge 
type LDPC codes. As an example for protograph based LDPC 
codes we consider the rate- 1/3 Repeat-Accumulate (RA) code 
depicted in Fig. l(a). For this code the minimum Eb/No 
threshold with iterative decoding is 0.502 dB. This code has 
a protograph representation shown in Fig. l(b), as long as the 
interleaver n is chosen to be decomposable into permutations 
along each edge of the protograph. The iterative decoding 
threshold is unchanged despite this constraint imposed by the 
protograph. The protograph consists of 4 variable nodes and 
3 check nodes, connected by 9 edges. Three variable nodes are 
connected to the channel and are shown as dark filled circles. 
One variable node is not connected to the channel (i.e., it is 
punctured) and is depicted by a blank circle. The three check 
nodes are depicted by circles with a plus sign inside. 

(a) RA cod. 

Fig. 1. 
protograph. 

(a) A rate-113 RA code with repetition 3, and (b) its corresponding 

RA, IRA, and ARA codes, with suitable definitions of 
their interleavers, all have simple protograph representations 
and thus are amenable to both high-speed encoding and 
decoding. In [21] further extensions of RA, IRA, and ARA 
codes, all constructed from simple loop-free encoding modules 
were provided. These extensions provide greater flexibility to 
construct codes with lower decoding thresholds. However for 
certain applications low error floor performance is required. 



11. PRECODED REGULAR LDPC CODES 

Classic regular LDPC codes, in addition to simplicity, have 
low error floor performance. However, their iterative decoding 
thresholds are high. For example the (3,6) regular LDPC codes 
have an iterative decoding threshold of 1.11 dB while their 
ensemble asymptotic minimum distances grows like 0.023 n 
as n goes to infinity. For comparison the asymptotic minimum 
distance of random codes grows as 0.11 n. We express the 
normalized logarithmic asymptotic weight distribution of a 
code as r(6)  = where d is Hamming distance, S = :, 
and Ad is the ensemble weight distribution. The first zero 
crossing of this function (i.e. r(bmin) = 0 for Smin > 0) 
if exists then it indicates the non-zero normalized minimum 
distance of the code and therefore dmin = 6,in x n. Different 
methods to compute the asymptotic weight enumerators for 
LDPC codes with protograph structure presented in [23], [24], 
and [25]. The asymptotic weight distribution of (3,6) LDPC 
and rate 1/2 random codes are shown in Fig. 2. 

Fig. 2. 
and rate 1/2 LDPC family 

Asymptotic weight distributions and zero crossings for (3,6) regular 

Precoding places a degree 1 variable node between a 
constraint node and a higher degree variable (forming an 
accumulator) which is then optionally erased. Precoding often 
lowers the iterative decoding threshold of a given protograph 
without altering its rate [19]. An example of a family of 
precoded regular LDPC codes is shown in Fig. 3. As shown 
in the table, precoding gain decreases as code rate increases. 
However, we note that in general iterative decoding thresholds 
for very high code rate regular LDPC codes are already 
satisfactory. 

111. ACCUMULATE REPEAT JAGGED ACCUMULATE 
(ARJA) CODES 

As shown in [19], Accumulate Repeat Accumulate (ARA) 
Codes have reasonable thresholds. However their asymptotic 
ensemble minimum distance does not grow with n. Consider 
the rate-112 systematic punctured RA code with repetition 
3, and puncturing period 3, shown in Fig. 4. In [19] it 

Protograph 01 precoded 
(3.6) LDPC Family 

code rate =(n+l)/(n+2) 

n=o. 1. ...... 

1 
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Fig. 3.  Precoded LDPC family with associated iterative decoding thresholds 
and zero crossings. 
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Fig. 4. A systematic rate 112 RA code and the corresponding protograph. 

was shown that the threshold can be further improved by 
precoding the repetition code with an accumulator. The design 
of the precoder in [19] was guided by an analysis of the 
extrinsic S N R  behavior of repetition codes and punctured 
accumulator codes using density evolution. The use of a rate- 1 
accumulator as a precoder dramatically improves the extrinsic 
SNR behavior of a repetition 3 outer code in the high extrinsic 
S N R  region, and hence improves the threshold. An RA code 
with an accumulator precoder is called an Accumulate-Repeat- 
Accumulate (ARA) code [19]. 

An example of a simple rate-ll2 ARA code and its cor- 
responding threshold is shown in Fig. 5. The ARA encoder 
in Fig. 5 uses a punctured accumulator as the precoder. A 
parallel decoder architecture based on decoding one copy of 
the protograph (one page) per clock cycle per half-iteration is 
shown in Fig. 6.  

In an ARA code protograph the number of degree 2 variable 
nodes is equal to the number of inner checks (checks that are 
connected to these degree 2 variable nodes). If we decrease 
the number of degree 2 variable nodes with respect to inner 
checks, then the ensemble asymptotic minimum distance of 
code may grow with n. For example if we replace 50% of 
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Fig. 5. A rate-112 ARA code and its protograph. 
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Fig. 6. Parallel LDPC decoder architecture for the rate-112 ARA protograph 
code in Fig. 5. 

degree 2 variable nodes with degree 3 variable nodes, then 
the minimum distance grows with n. We call such constructed 
codes ARJA codes. 

An example of a simple rate-l/2 ARJA code, its protograph, 
and the corresponding threshold are shown in Fig. 7. Following 
the computational method of [23] we have found bmin = 
0.015 for this protograph. 

protograph 

input 

m 
W 

input 
Threshold 0.62 dB 

Fig. 7 .  A rate-112 ARJA code and its protograph. The asymptotic minimum 
distance over block size of this code is 6,i, = 0.015 

IV. RATE-COMPATIBLE CODE FAMILIES 
The codes defined thus far in the paper also allow the 

construction of code families derived from rate-compatible 
protographs. For example, an ARJA code family (based on 
the rate 1/2 code of Fig. 7) is shown in Fig. 8 for rates 
112 and higher. This ARJA code family uses an accumulator 
without puncturing as the precoder. The higher code rates 
are constructed by using repetition codes for a portion of the 

2n:  

\ Protograph of ARJA Family 

code rate =(n+l)/(n+2) 
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Fig. 8. Protograph of ARJA family with rates 112 and higher. 

input bits and then adding permuted versions of the repetition 
to the Jagged accumulator. The thresholds achieved by the 
family compared to the corresponding capacity limits are also 
shown in Fig. 8. If we increase the degree 2 variable nodes 
to 2/3 of the inner checks we can further reduce the iterative 
decoding threshold at the expense of lowering the linearity 
coefficient that represent the growth of minimum distance 
with respect to n. An example of such family is shown in 
Fig. 9. Note that this family does not satisfy the relation 
X ’ ( O ) i ( l )  < 1, where X(z),p(s) are the degree distributions 
for variable and constraint nodes. However, we note that for 
a protograph this condition is only a sufficient, but not a 
necessary, condition for minimum distance growing with n. 
Specifically, the ensemble asymptotic minimum distance over 
block size for this protograph is a small, but positive number 

We can also construct higher code rates from a rate 1/2 base 
protograph by puncturing. An example of such an approach is 
shown in Fig. 10. 

&,in = 0.004. 

v. LOW-RATE ARJA-TYPE LDPC CODES 

For a given number of nodes and checks in a protograph one 
can search over all possible connections between variable and 
check nodes to obtain a protograph with the lowest threshold. 
Rather than searching we propose the following constructions 
that extend the ARJA families to low rates. We use the ARJA 
protograph shown in Fig. 7 to construct lower rate codes. The 
constructions in Figures 11 and 12 can be regarded as hybrid 
concatenated codes [22] where the outer code is a repetition 
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Fig. 9. Protograph of ARJA-5-checks (2/3 of inner checks are degree 2) 
family with rates 1/2 and higher. The asymptotic minimum distance over 
block size for rate 112 code is 6,i, = 0.004 

Rate 112 ARJA base 

expanded version 01 
ARJA with Jchecks pmtograph protograph 

Rate 213 ae pundured Rate rY5 aa pumtured 

rate 112 ARJA baee rate 112 ARJA base 

expanded vmion of expanded yemion ol 
ARJAwith 3ehecka ARJA wlh Jckb 

protograph venion 01 vanion 01 

Threrhdd 0562 d0 ThreshoM 1.496d0 ThwhoM 2.506 d0 

Fig. 10. Protograph of ARJA family with rates 1/2 ,213 and 4/5 by puncturing. 

code, the inner code is a jagged accumulator with possible 
puncturing, and the parallel code is a low-density generator 
matrix (LDGM) code. The simplest version of an LDGM 
code is implemented via differentiator or a single-parity-check 
code with 3 inputs and one parity bit. In our construction we 
used the ARJA family due to its low threshold and error floor 
performance. 

This construction produces a rate-1/3 ARJA protograph 
having 7 variables and 5 checks with one variable punctured 
Fig. 11. The two checks on the right are still connected to two 
variables forming a jagged accumulator. The single check and 
single degree-1 variable on the left representing the precoder 
is also untouched. Thus the rate 1/2 ARJA base protograph 
is unchanged to preserve the code family structure. We used 
LDGM codes in parallel concatenation (similar to hybrid 
concatenation) to construct lower rate protographs. Figures 11 
and 12 show our constructed protographs in the ARJA family, 
and the corresponding thresholds and Shannon capacities for 
rates 1/3 and 1/4. Other low rate codes can be obtained simi- 

Threshold 4021 dB 

Capacity Threshold 4.495 dB 

Fig. 1 1 .  Rate-l/3 ARJA protograph. 

+--A 

Threshold -0.332 dB 

Capacity threshold= -0.794 dB 

Fig. 12. Rate-l/4 ARJA protograph. 

larly using the proposed construction method. Furthermore, if 
we remove the constraint that minimum distance should grow 
linearly with block size then codes with still lower thresholds 
can be obtained [22]. 

VI. SIMULATION RESULTS 

The BER/FER vs. S N R  advantage afforded by precoding 
is demonstrated using a regular (3,6) construction with input 
block size k = 4096 in Fig. 13. A measure of the plot at FER 
= lop5 indicates a precoding gain essentially indistinguishable 
from the 0.23 dF3 predicted by density evolution. Performance 
curves for IC = 1024 length codes with rate 1/4,1/3, 1/2,2/3, 
and 4/5 from the ARJA of Fig. 8 family are plotted in Fig. 14. 
Given the relatively short block length, these code exhibit 
exceptional threshold performance and error floors have yet 
to be observed. Fig. 15 shows the performance simulation 
results for IC = 4096, rate 112 and higher of ARJA code family. 
All simulations were performed on a field-programmable gate 
array (FPGA) implementation of an LDPC decoder developed 
at JPL. 

VII. CONCLUSION 
In this paper we have introduced a new ensemble of 

structured codes that exhibit good threshold performance as 
well as a minimum distance, that for an average instance from 
the ensemble, increases with blocklength. This work has in 
addition demonstrated the value of precoding as a technique 
for reducing the iterative decoding threshold while maintaining 
rate. 
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