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Abstract— We propose several LDPC code constructions that
simultaneously achieve good threshold and error floor per-
formance. Minimum distance is shown to grow linearly with
block size (similar to regular codes of variable degree at least
3) by considering ensemble average weight enumerators. Qur
constructions are based on projected graph, or protograph,
structures that support high-speed decoder implementations. As
with irregular ensembles, our constructions are sensitive to the
proportion of degree-2 variable nodes. A code with too few such
nodes tends to have an iterative decoding threshold that is far
from the capacity threshold. A code with too many such nodes
tends to not exhibit a minimum distance that grows linearly in
block length. In this paper we also show that precoding can
be used to lower the threshold of regular LDPC codes. The
decoding thresholds of the proposed codes, which have linearly
increasing minimum distance in block size, outperform that of
regular LDPC codes. Furthermore, a family of low to high rate
codes, with thresholds that adhere closely to their respective
channel capacity thresholds, is presented. Simulation results for a
few example codes show that the proposed codes have low error
floors as well as good threshold SNR performance.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were proposed by
Gallager [1] in 1962. After introduction of turbo codes by
Berrou et al [2] in 1993, researchers revisited LDPC codes,
and extended the work of Gallager using the code graphs
introduced by Tanner [3] in 1981. After 1993 there have been
many contributions to the design and analysis of LDPC codes;
see for example [12], [14], [15], [5], [16], [17], [20] and
references there. Recently a flurry of work has been conducted
on the design of LDPC codes with imposed sub-structures,
starting with the introduction of multi-edge type codes in [11]
and [13].

Repeat-Accumulate (RA) [6], Irregular Repeat-Accumulate
(IRA) [7] and recently Accumulate-Repeat-Accumulate
(ARA) [19] codes were proposed as simple subclasses of
LDPC codes with fast encoder structures. For high-speed de-
coding, it is advantageous for an LDPC code to be constructed
from a protograph [8] or a projected graph [10]. A protograph
is a Tanner graph with a relatively small number of nodes. A
*“copy-and-permute” operation [8] can be applied to the pro-
tograph to obtain larger derived graphs of various sizes. This
operation consists of first making N copies of the protograph,

and then permuting the endpoints of each edge among the N
variable and N check nodes connected to the set of N edges
copied from the same edge in the protograph. The derived
graph is the graph of a code N times as large as the code
corresponding to the protograph, with the same rate and the
same distribution of variable and check node degrees. LDPC
codes with protograph structure are subclass of multi edge
type LDPC codes. As an example for protograph based LDPC
codes we consider the rate-1/3 Repeat-Accumulate (RA) code
depicted in Fig. 1(a). For this code the minimum FE}/Ng
threshold with iterative decoding is 0.502 dB. This code has
a protograph representation shown in Fig. 1(b), as long as the
interleaver 7 is chosen to be decomposable into permutations
along each edge of the protograph. The iterative decoding
threshold is unchanged despite this constraint imposed by the
protograph. The protograph consists of 4 variable nodes and
3 check nodes, connected by 9 edges. Three variable nodes are
connected to the channel and are shown as dark filled circles.
One variable node is not connected to the channel (i.e., it is
punctured) and is depicted by a blank circle. The three check
nodes are depicted by circles with a plus sign inside.

(a} RA Code (b) Protograph of rate 1/3 RA

Threshokd 0.502 dB

Fig. 1. (a) A rate-1/3 RA code with repetition 3, and (b) its corresponding
protograph.

RA, IRA, and ARA codes, with suitable definitions of
their interleavers, all have simple protograph representations
and thus are amenable to both high-speed encoding and
decoding. In [21] further extensions of RA, IRA, and ARA
codes, all constructed from simple loop-free encoding modules
were provided. These extensions provide greater flexibility to
construct codes with lower decoding thresholds. However for
certain applications low error floor performance is required.



II. PRECODED REGULAR LDPC CODES

Classic regular LDPC codes, in addition to simplicity, have
low error floor performance. However, their iterative decoding
thresholds are high. For example the (3,6) regular LDPC codes
have an iterative decoding threshold of 1.11 dB while their
ensemble asymptotic minimum distances grows like 0.023 n
as n goes to infinity. For comparison the asymptotic minimum
distance of random codes grows as 0.11 n. We express the
normalized logarithmic asymptotic weight distribution of a
code as r(d) = w where d is Hamming distance, § = %,
and A, is the ensemble weight distribution. The first zero
crossing of this function (i.e. 7(6min) = 0 for i > 0)
if exists then it indicates the non-zero normalized minimum
distance of the code and therefore d,,;n = d,,in X n. Different
methods to compute the asymptotic weight enumerators for
LDPC codes with protograph structure presented in [23], [24],
and [25]. The asymptotic weight distribution of (3,6) LDPC
and rate 1/2 random codes are shown in Fig. 2.
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Fig. 2. Asymptotic weight distributions and zero crossings for (3,6) regular
and rate 1/2 LDPC family

Precoding places a degree 1 variable node between a
constraint node and a higher degree variable (forming an
accumulator) which is then optionally erased. Precoding often
lowers the iterative decoding threshold of a given protograph
without altering its rate [19]. An example of a family of
precoded regular LDPC codes is shown in Fig. 3. As shown
in the table, precoding gain decreases as code rate increases.
However, we note that in general iterative decoding thresholds
for very high code rate regular LDPC codes are already
satisfactory.

III. ACCUMULATE REPEAT JAGGED ACCUMULATE
(ARJA) CODES

As shown in [19], Accumulate Repeat Accumulate (ARA)
Codes have reasonable thresholds. However their asymptotic
ensemble minimum distance does not grow with n. Consider
the rate-1/2 systematic punctured RA code with repetition
3, and puncturing period 3, shown in Fig. 4. In [19] it

Protograph of precoded
(3.6) LDPC Family
code rate =(n+1)/(n+2)

Code|Regular LDPQ  Random 1LDPC Regular | Precoded | Frecoding ] Shennon erence
rate G.k) codes code LDPC LDPC gain capacity | between precoded
with block sizen | with block sizen | lterative | Iterative threshold [ LDPC threshold
dmin= By | dmin=Byinn | Decoding | Decoding indB | and capacity limit
0 N threshold in | threshold in) i
Serin Brmin 4B &5 indB
12 3, 6) 0.11003 0.02273 1.102 0.870 0232 0.187 0.683
23 (3.9 006149 0.00541 1752 1.496 0256 1.059 0.437
314 (3,12) 0.04169 0.00206 2.229 2.020 0.209 1.626 0.394
415 (3,15) 0.03112 0.00100 2.594 2.421 0.173 2.040 0.381
5] (3,18) 0.02462 0.00056 2.882 2,740 0.142 2.362 0.378
[ (3,21 0.02025 0.00034 3.117 3.001 0.116 2.625 0.376
7/8 3.24) 0.01713 0.00022 3317 3.217 0.100 2.845 0.372
/| 37N 0.01479 0.00013 7490 3.402 .088 3033 0.389
9/10]  (3,30) 0.01299 0.00011 3.642 3.562 0.080 3.198 0.364

Fig. 3. Precoded LDPC family with associated iterative decoding thresholds
and zero crossings.
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Fig. 4. A systematic rate 1/2 RA code and the corresponding protograph.

was shown that the threshold can be further improved by
precoding the repetition code with an accumulator. The design
of the precoder in [19] was guided by an analysis of the
extrinsic SNR behavior of repetition codes and punctured
accumulator codes using density evolution. The use of a rate-1
accumulator as a precoder dramatically improves the extrinsic
SNR behavior of a repetition 3 outer code in the high extrinsic
SNR region, and hence improves the threshold. An RA code
with an accumulator precoder is called an Accumulate-Repeat-
Accumulate (ARA) code [19].

An example of a simple rate-1/2 ARA code and its cor-
responding threshold is shown in Fig. 5. The ARA encoder
in Fig. 5 uses a punctured accumulator as the precoder. A
parallel decoder architecture based on decoding one copy of
the protograph (one page) per clock cycle per half-iteration is
shown in Fig. 6.

In an ARA code protograph the number of degree 2 variable
nodes is equal to the number of inner checks (checks that are
connected to these degree 2 variable nodes). If we decrease
the number of degree 2 variable nodes with respect to inner
checks, then the ensemble asymptotic minimum distance of
code may grow with n. For example if we replace 50% of
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Fig. 5. A rate-1/2 ARA code and its protograph.
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Fig. 6. Parallel LDPC decoder architecture for the rate-1/2 ARA protograph
code in Fig. §.

degree 2 variable nodes with degree 3 variable nodes, then
the minimum distance grows with n. We call such constructed
codes ARJA codes.

An example of a simple rate-1/2 ARJA code, its protograph,
and the corresponding threshold are shown in Fig. 7. Following
the computational method of [23] we have found Oy, =
0.015 for this protograph.

protograph

input

X7
Threshold 0.62 dB

Fig. 7. A rate-1/2 ARJA code and its protograph. The asymptotic minimum
distance over block size of this code i §m4in = 0.015

IV. RATE-COMPATIBLE CODE FAMILIES

The codes defined thus far in the paper also allow the
construction of code families derived from rate-compatible
protographs. For example, an ARJA code family (based on
the rate 1/2 code of Fig. 7) is shown in Fig. 8 for rates
1/2 and higher. This ARJA code family uses an accumulator
without puncturing as the precoder. The higher code rates
are constructed by using repetition codes for a portion of the

Protograph of ARJA Family
code rate =(n+1)/(n+2)

Code | Protograph Capacity| Difference
Rate | Threshold
1/2 0.628 | 0.187 | 0.441
2/3 1450 | 1.059 | 0.39
3/4 2005 | 1.626 | 037
4/5 2413 | 2.040 | 087
5/6 2733 | 2362 | 037
6/7 2993 | 2625 | 036
7/8 3209 | 2845 | 086
.\

Fig. 8. Protograph of ARJA family with rates 1/2 and higher.

input bits and then adding permuted versions of the repetition
to the Jagged accumulator. The thresholds achieved by the
family compared to the corresponding capacity limits are also
shown in Fig. 8. If we increase the degree 2 variable nodes
to 2/3 of the inner checks we can further reduce the iterative
decoding threshold at the expense of lowering the linearity
coefficient that represent the growth of minimum distance
with respect to n. An example of such family is shown in
Fig. 9. Note that this family does not satisfy the relation
X(0)p'(1) < 1, where A(z), p(z) are the degree distributions
for variable and constraint nodes. However, we note that for
a protograph this condition is only a sufficient, but not a
necessary, condition for minimum distance growing with n.
Specifically, the ensemble asymptotic minimum distance over
block size for this protograph is a small, but positive number
Omin = 0.004.

We can also construct higher code rates from a rate 1/2 base
protograph by puncturing. An example of such an approach is
shown in Fig. 10.

V. LOW-RATE ARJA-TYPE LDPC CODES

For a given number of nodes and checks in a protograph one
can search over all possible connections between variable and
check nodes to obtain a protograph with the lowest threshold.
Rather than searching we propose the following constructions
that extend the ARJA families to low rates. We use the ARJA
protograph shown in Fig. 7 to construct lower rate codes. The
constructions in Figures 11 and 12 can be regarded as hybrid
concatenated codes [22] where the outer code is a repetition



Code | Protc | Capacity | Differ
Rate | graph | Threshold| _gnce
Threshold
" 12 | 0.490 0.187 | 0.303
47 | 0800 0.530 | 0.270
58 | 1.078 0.815 | 0.263
protograph 23 | 1.328 1,059 | 0.269
oARIARamly 710 | 1.548 | 1272 | 0.276
841 | 1.744 1459 | 0.285
34| 1920 1626 | 0.204
1013 2.077 1.777 | 0.300
7114 | 2221 1914 | 0.307
45 | 2353 2,040 | 0.313
1316 | 2474 2156 | 0.316
1417 | 2.585 2263 | 0.322
5/6 | 2.689 | 2.362 | 0.327
16/19 | 2.785 2.455 | 0.330
1720 | 2.874 2543 [ 0.331
87 | 2957 2625 | 0332
19722 | 3036 2702 | 0.334
2023 | 3.109 2775 | 0.334
7/8 | 3.181 2845 | 0.336
22125 | 3.249 2.910 | 0.339
Code rate = M2 nt2... 23726 | 3.313 2,973 | 0.340
N5 89 | 3ar2 3.033 | 0.339

Fig. 9.
family with rates 1/2 and higher. The asymptotic minimum distance over
block size for rate 1/2 code is &, = 0.004

Protograph of ARJA-5-checks (2/3 of inner checks are degree 2)

Rate 1/2 ARJA base Rate 2/3 as punctured Rate 4/5 as punctured

protograph version of veraion of
expanded version of rate 1/2 ARJA base rate 1/2 ARJA base
ARJA with 3checks protograph protograph
expanded version of expanded version of
ARJA with 3checks ARJA with 3checks

Threshold 0562 dB

Threshoid 1,496 dB

Threshold 2.506 dB

Fig. 10. Protograph of ARJA family with rates 1/2 ,2/3 and 4/5 by puncturing.

code, the inner code is a jagged accumulator with possible
puncturing, and the parallel code is a low-density generator
matrix (LDGM) code. The simplest version of an LDGM
code is implemented via differentiator or a single-parity-check
code with 3 inputs and one parity bit. In our construction we
used the ARJA family due to its low threshold and error floor
performance.

This construction produces a rate-1/3 ARJA protograph
having 7 variables and 5 checks with one variable punctured
Fig. 11. The two checks on the right are still connected to two
variables forming a jagged accumulator. The single check and
single degree-1 variable on the left representing the precoder
is also untouched. Thus the rate 1/2 ARJA base protograph
is unchanged to preserve the code family structure. We used
LDGM codes in parallel concatenation (similar to hybrid
concatenation) to construct lower rate protographs. Figures 11
and 12 show our constructed protographs in the ARJA family,
and the corresponding thresholds and Shannon capacities for
rates 1/3 and 1/4. Other low rate codes can be obtained simi-

ARJA
rate=1/3

N

Ttweshold -0.021 dB

Capacity Threshold -0.495 dB

Fig. 11.

Rate-1/3 ARJA protograph.

ARJA
rate=1/4

Threshold -0.332 dB

Capacity threshold= -0.794 dB

Fig. 12. Rate-1/4 ARJA protograph.

larly using the proposed construction method. Furthermore, if
we remove the constraint that minimum distance should grow
linearly with block size then codes with still lower thresholds
can be obtained [22].

VI. SIMULATION RESULTS

The BER/FER vs. SNR advantage afforded by precoding
is demonstrated using a regular (3,6) construction with input
block size k = 4096 in Fig. 13. A measure of the plot at FER
= 1075 indicates a precoding gain essentially indistinguishable
from the 0.23 dB predicted by density evolution. Performance
curves for k = 1024 length codes with rate 1/4,1/3, 1/2,2/3,
and 4/5 from the ARJA of Fig. 8 family are plotted in Fig. 14.
Given the relatively short block length, these code exhibit
exceptional threshold performance and error floors have yet
to be observed. Fig. 15 shows the performance simulation
results for k = 4096, rate 1/2 and higher of ARJA code family.
All simulations were performed on a field-programmable gate
array (FPGA) implementation of an LDPC decoder developed
at JPL.

VII. CONCLUSION

In this paper we have introduced a new ensemble of
structured codes that exhibit good threshold performance as
well as a minimum distance, that for an average instance from
the ensemble, increases with blocklength. This work has in
addition demonstrated the value of precoding as a technique
for reducing the iterative decoding threshold while maintaining
rate.
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