I

The Europa and Beyond

(Kinsetics by a Small RPS)

Presented by

1. Tibor S. Ballif

2. Space Systems/Concepts Group

3. Jet Propulsion Laboratory

4. California, USA

5. Presented at the

6. IEEE Aerospace Conference

7. Big Sky, Montana, USA

8. March 5-12, 2005

Outline

- Study assumptions and ESSP concept mission scenario
- ESSL science requirements and instrument options
- Study drivers (e.g., mass limit, radiation, landing method, small-RPS concept)
- Parametric results and point concepts
- Conclusions
- Beyond Europa with Small-RPSs (e.g., RPSs, ARPSs & fusion)

Study Assumptions

- Technology cutoff by 2012 (assumptions will support feasible trades and not far-out technologies)
- The ESSP is deployed from an assumed JIMO orbit
- As assumed in this study, JIMO would provide 1" of aluminum shielding until ESSP deployment (a simplification for this study)
- the high radiation environment may necessitate this type of help from JIMO
- Radiation hardened components on ESSP up to 1 MRad tolerance
- Dual string design
- Advanced technology for all components
- 30% contingency on mass and power (required by design principles for concept studies)
- Some instrument operation cycled to reduce power requirements
- Cost, Planetary Protection & Surface Contamination issues were not addressed for this trade space exploration

Conceptual ESSP Mission Scenario

- ESSP would cruise to Europa inside or attached to JIMO
- JIMO would orbit Europa on a 100 km orbit with an inclination of 110°
- During its 30-day science floor first JIMO would map Europa, from which a landing location would be determined
- The Europa Surface Science Package would deploy for a 3 / 7 / 14 (Earth-day Europa surface mission)
- Data would be communicated from ESSP to JIMO during overpasses utilizing JIMO's telecom system
- JIMO would downlink the ESSP data to DSN

ESSP Science Requirements and Instrument Options

- Study Assumptions

- Technology cutoff by 2012 (assumptions will support feasible trades and not far-out technologies)
- The ESSP is deployed from an assumed JIMO orbit
- As assumed in this study, JIMO would provide 1" of aluminum shielding until ESSP deployment (a simplification for this study)
- the high radiation environment may necessitate this type of help from JIMO
- Radiation hardened components on ESSP up to 1 MRad tolerance
- Dual string design
- Advanced technology for all components
- 30% contingency on mass and power (required by design principles for concept studies)
- Some instrument operation cycled to reduce power requirements
- Cost, Planetary Protection & Surface Contamination issues were not addressed for this trade space exploration
Science Goals Expressed by the JIMO SDT

- **Astrobiology**
 (Search for organic materials, determine composition; chemical patterns, orgaics indicative of biological origin)

- **Geophysics**
 (Acoustic/seismic; icy crust thickness; ocean depth; geophysical and mechanical ice properties; magnetic field at surface, surface package tracking for geodynamics)

- **Geological-compositional**
 (provide "ground truth"; elemental composition; mineralogical characterization; physical properties & high-resolution morphology & density & thermal & electromagnetic properties & surface processes & radioisotopes of surface materials)

Reference:
Geordie R. Johnson, J., Report of the JIMO Science Definition Team for the SDR Project, MSCO-Oberth (JIMO) - SSA Report, February 12, 2004

Two Representative ESSP Instrument Set Examples

Team-X Study
Instrument mass: ~5 kg; ~30% contingency

- **Instrument package**:
 - **Detector**: 10 kW
 - **Telescope**: 50 cm
 - **Antenna**: 10 m

NPFS Study
Instrument mass: ~12 kg w/30% contingency

- **Meets missions goals of JIMO SDT**

Use of Reflective Optics in High-Radiation Environments
Three-Mirror Assembly (Fig. 1)

- All reflective optical systems represent an optimal solution in high-radiation environments.
- They have been preferred in spacecraft environments in which the instrument will be exposed to high radiation doses, such as in Europa and Ganymede.
- All reflective systems are inherently radiation-hard, but they may require mirror changes as areas degrade due to changes in the glass's crystal structure after exposure to radiation.
- All reflective optics are inherently achromatic, but this has the same optical performance over a wide spectral bandwidth.

Mission Scenario Example for 3 Days of Surface Operation

- **Day 1**
 - 10:00 a.m.: Touchdown
 - 10:30 a.m.: Deployment of instruments and antennas
 - 11:00 a.m.: Surface exploration

- **Day 2**
 - 8:00 a.m.: Surface analysis
 - 9:00 a.m.: Sample collection
 - 10:00 a.m.: Surface imaging

- **Day 3**
 - 7:00 a.m.: Surface exploration
 - 8:00 a.m.: Sample analysis
 - 9:00 a.m.: Surface imaging

Study Drivers

Trajectory/Telecom Example Based on the Assumed JIMO Orbit

- **34 Days of Onboard Science by IOM**

 - **Telecom availability**:
 - 2 days: 10 minutes
 - 7 days: 0.5 minutes
 - 16 days: 1.5 minutes

 - 2 day increments / chart

 Time-step: 1 minute

Rabahon sources through the proposed JIMO mission:
- Van Allen Radiation Belts
- Galactic Radiation
- Jupiter's Radiation Environment
- JIMO's Fusion Reactor
- Small-RPSs on the ESSP

Study Details - Radiation Environment

<table>
<thead>
<tr>
<th>Total Ionizing Dose (TID) Radiation during JIMO tour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon Flux</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>(10^-6 cm^-2</td>
</tr>
<tr>
<td>0.72</td>
</tr>
<tr>
<td>0.51</td>
</tr>
<tr>
<td>0.80</td>
</tr>
</tbody>
</table>

- The TID is the radiation dose that ESSP is expected to experience on Europa's surface.
- All electronic components are assumed to tolerate up to 1 MeV.
- RFP - Radiation Design Factor is similar to the radiation exposure value in 2.
- The TID values do not include radiation from Radiant Power Systems.

Study Details - Shielding Mass Estimates for an ESSP Concept

- Dose designed for the ESSP should provide tolerance for shielding, including optimization.

Study Details - Comparison of Landing Methods

- Small-RPS Concept - based on 1 GPHS module
 - Small-RPSs are under consideration by the US DoD and by NASA
 - Notice of Intent (NOI) to develop was issued in September 2004
 - Request for Proposals (RFP) from the DoD is expected in early 2005
 - Could be made available as early as the 2011 Mars mission launch opportunity
Key drivers for Europa Surface Science Package:

- Limited initial mass (up to 375 kg, that is 25% of the proposed JIMO mission’s mass per unit)
- High radiation environment adds significant shielding mass (the shielding alone accounts for about 125 kg; without shielding help on JIMO)
- Rocket equation: Propulsion alone is 50% of the total mass
- Constraint: a) set initial mass; b) technology size the needed mass; c) advanced advanced technologies; d) radiation time shielding mass

With realistic assumptions for a 2012 technology cutoff date

- ESSP mass allocation must be possible within the 375 kg limit.
- 390 kg and 150 kg initial masses are likely not feasible.
- Soft landing delivered the highest payload compared to hard and rough landing configurations.
- Airbag and Crushable rough landings are less efficient on planetary bodies without atmospheres, thus such designs will exceed landed mass limit. It is more efficient to remove all delta V with one type of propulsion system/landing method.

Conclusions on the ESSP Study

- ESSP mass allocation must be possible within the 375 kg limit.
- For a 7 to 14-day mission small-RPSs could be considered.
Beyond Europa: Mission Concepts – Enabled by Small-RPSs and above

- **Milliwatt range (10s to 100s of mW)**
 - Micro landers, rovers and inspectors
 - Deployable release micro instruments, land on science stations, basins
 - Targeting smallsats, moons (Moon, Euros, Titan, Mars, planetary rings)

- **Multiwatt power range (10s of kW)**
 - Lander and rovers to Europa, Titan, Ganymede, Callisto, the Moon, Mars
 - Venus masts
 - Communication relay satellites (Orbiter satellites)
 - Sub-satellites and inflex payloads on flagship-class missions

- **Multi-hundred watt range (100s of kW to ~1 kW)** with WSs and ARPs
 - Tens of kW to hundreds of kW and above with fission reactors

Note: a more complete list of small-RPS and standard RPS enabled mission concepts is given in...

Beyond Europa: Small-RPS Enabled Mission Concept Examples

Earth Not solar Concepts

- [Diagram of a non-solar concept for Earth missions]

Moon Rover Concepts

- [Diagram of a rover concept for Moon missions]

Special thanks to the JIMO SDT, to Curt Niebur, and to all contributing members of JPL’s Team X, NPD and MBS missions.

Thanks for your attention. Any questions?

Further information on this topic can be found in the ESSP report.