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Abstract-In this paper, we present two encoding methods for 
block-circulant LDPC codes. The first is an iterative encoding 
method based on the erasure decoding algorithm, and the 
computations required are weiI organized due to the block- 
circulant structure of the parity check matrix. The second method 
uses block-circulant generator matrices, and the encoders are 
very similar to those for recursive convolutional codes. Some 
encoders of the second type have been implemented in a small 
Field Programmable Gate Array (FPGA) and operate at 100 
Msymbols/second. 

Recently, block-circulant LDPC codes have been found 
that provide both excellent error correction performance and 
well structured decoder architectures. Constructions have been 
presented by Lin et a1 [I], [2], Tanner et a1 [3], [4], Milenkovic 
et a1 [ 5 ] ,  the authors [6], and others. In this paper, we explore 
some encoder designs for these codes, and discuss a hardware 
encoder implementation. 

We define a circulant as a square binary matrix where each 
row is constructed from the previous row by a single right 
cyclic shift; we do not require that each row has Hamming 
weight 1. An rT x nT parity check matrix H can be 
constructed by concatenating r x n sparse circulants of size 
T x T. The density of each circulant matrix is indicated by the 
corresponding value in an r x n base matrix Hbase. The Tanner 
graph corresponding to this matrix is called a protograph [TI. 
Entries greater than 1 in the base matrix correspond to multiple 
edges in the protograph. Base matrices can be expanded into 
block-circulant LDPC codes by replacing each entry in Hbase 
with a circulant containing rows of the specified Hamming 
weight; the resulting codes are quasicyclic. Alternatively, they 
can be expanded into less structured codes by replacing each 

check matrix, and the number of parallel edges shows t ie  
degree of the corresponding circulant. 

In practice, these protographs cannot be directly expanded 
icto block-cirsulant c d e s  without introducing low weight 
codewords, regardless of the choice of circulants. A practical 
solution is to expand the protographs twice, first with small 
permutation matrices, such as of size 4 x 4 or 8 x 8, and then 
with circulants to build the full code. The result is a parity 
check matrix such as the one shown in Figure 3 for a very 
small AR4A code, where each nonzero entry in the matrix 
is represented by a dot. This code was constructed by putting 
the AR4A protograph variable nodes in the order (4 ,2 ,1 ,5 ,3)  
and check nodes in order (A, B, C) as demarcated by the solid 
lines, expanding with 4 x 4 permutations, and then expanding 
with 16 x 16 circulants. The resulting 12 x 20 block-circulant 
structure is emphasized by dotted lines. 

In Section 11, we examine iterative encoders, similar to those 
of Richardson and Urbanke in [9], that also take advantage 
of the block-circulant structure of the parity check matrix. 
In Section 111, we examine the existence and construction 
of systematic block-circulant generator matrices. In Section 
IV, we develop simple hardware circuits for encoders using 
block-circulant generator matrices, and describe an FPGA 
implementation. Concluding remarks are in Section V. 

11. ITERATIVE ENCODERS 

An encoder for any (N, K )  LDPC code can be built from an 
erasure correcting decoder. A set of K linearly independent 
variable nodes are selected as the systematic symbols, and 
these are initialized with the K information bits to be encoded. 
If there are no stopping sets, then the remaining N - K parity 
symbols are computed iteratively with the standard erasure 

entry with a sum of arbitrary permutation matrices. 
- 

Protographs for our AR3A and AR4A codes of rate 112 1 2 3 4 5 
are shown in Figures 1 and 2, and we use these as examples 
throughout the paper. Squares are parity check nodes and 
circles are variable nodes, where the solid circles represent 
transmitted symbols and the open ones are punctured. These 
designs were derived from a three step encoding procedure: 
accumulate, repeat-by-3 (or 4), and accumulate [8]; hence their 
names. Each protograph describes a 3 x 5 block-circulant parity 
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Fig. 3. A Block-Circulant Parity Check Matrix Built From the AR4A Protograph 

circulants in S. It is not hard to show that S is invertible if 
and only if det,(s) is not a zero divisor. Moreover, when S is 
invertible, there exists an r x r polynomial matrix w such that 
ws = I,, the r x r identity (polynomial) matrix. 

Our particular interest is in LDPC codes defined by a 
block matrix H composed of circulants. Let H have size 
rT x nT, where r < n. A quasicyclic code is one for 
which a '~uasicyclic shift" of a codeword is also a codeword. 
That is, if we partition any codeword c into binary strings of 
length T ,  and circularly shift each string by the same amount, 
the resulting vector is also a codeword. It is immediate that 
any LDPC code defined by a block-circulant H matrix is 
quasicyclic. 

In some cases, such a code has a systematic generator matrix 
G of size (n-r)T xnT that is entirely composed of circulants. 

\ ,  

To show this, we partition H so that H = [ Q S 1, where 
S is square. If S is invertible, the traditional method for 
constructing G is to find a matrix W such that WS = ITT, the 
rT x rT identity matrix. Then a systematic generator matrix 
is G = [ I(n-r)T (WQ)T  1 .  Algebraically, we can perform 
the same construction in the isomorphic polynomial ring. After 
finding the r x r matrix w such that ws = I,, it is a simple 
matter to compute g = [ In-, q (x - l )w(z - l )  1. Replacing 
the elements of this array with the corresponding circulants, 
we have a block-circulant generator matrix G for the original 
code. 

Not all block-circulant LDPC codes have block-circulant 
generator matrices. As a particularly small example, suppose 
H is described by the single circulant 1 + x + x3 with 
T = 7. As noted above, this only has rank 4. One codeword 
is [l 1 1 0 1 0 01, and because the code is quasi-cyclic 
(in fact cyclic, because H consists of a single circulant), all 
cyclic shifts of this codeword are also codewords. However, 
the circulant corresponding to 1 + x + x2 + x4 only has rank 
3, and oo Gannot be used in i t c  ~ n t j r ~ t y  as a generator matrix. 

In general, if S is not full rank (or equivalently, det(s) is a 
zero divisor), then G cannot be quasicyclic. 

In the remainder of this section, we return to the AR3A and 
AR4A codes introduced earlier as practical examples. 

The 3T x 5T parity check matrix for AR3A is full rank, and 
so a generator matrix for this code will have dimension 2T. 
We partition H into [ Q S 1, where Q contains the columns 
we wish to make systematic, and S is the square matrix that 
must be invertible. If we choose Q to include the circulants 
corresponding to variable nodes 4 and 2 in the protograph, 
as we did for the iterative encoder, we find that S has rank 
rT - 1, deficient by 1. This misfortune occurs because of the 
closed loop of degree-2 variable nodes created by protograph 
nodes 5 and C. 

Alternatively, we can choose to make protograph variable 
nodes 4 and 5 systematic. In this case, S has full rank, and 
a systematic block-circulant G can be calculated exactly as 
described. An encoder that performs matrix multiplication 
by G is particularly suitable for hardware implementation as 
described in the next section. 

As a second example, we look at the AR4A code. For 
this code, there is no set of R columns that can be selected 
from H to form an invertible square matrix S, because 
H itself is rank deficient by 1. Perhaps remarkably, these 
two defects cancel and the method for constructing G can 
proceed with minor modifications. We select variable nodes 
4 and 2 to be systematic, and when H is arranged to put 
these on the left, it appears as shown in Figure 3. The left 
two fifths of H is the matrix Q, and the remaining square 
portion on the right is S. We solve to find codewords of 
the form c4 = [ 1 0 p1 ( x )  p5(x) p3(x) 1, and of the 
form cz = [ 0 1 pl ( x )  p5(x) p3(x) 1. By expanding 
these solutions into circulants, we can form a block-circulant 



n-k shift registers, reloaded with circulant patterns once per row - L.crgm-' " '  - 
Length kT input message, (n-k)T 
shifted in one bit at a time 

One conditional addition 
per message bit 

Systematic output codeword 

Fig. 5. The Direct implementation of a Quasicyclic Encoder 

Circulant patterns, updated for each row of circulants 

Fig. 6. A Quasicyclic Encoder Using Feedback Shift Registers 

these LDPC codes often possess. Such an encoder requires 
remarkably little hardware, and provides a fast, simple, bit- 
serial architecture. We have implemented these encoders in a 
small FPGA operating at 100 Msymbols/second. 
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