
Encoders for Block-Circulant LDPC Codes
Kenneth Andrews, Sam Dolinar, and Jeremy Thorpe

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, USA
Email: {andrews, Sam, jeremy)@shannon.jpl.nasa.gov

Abstract-In this paper, we present two encoding methods for
block-circulant LDPC codes. The first is an iterative encoding
method based on the erasure decoding algorithm, and the
computations required are weiI organized due to the block-
circulant structure of the parity check matrix. The second method
uses block-circulant generator matrices, and the encoders are
very similar to those for recursive convolutional codes. Some
encoders of the second type have been implemented in a small
Field Programmable Gate Array (FPGA) and operate at 100
Msymbols/second.

Recently, block-circulant LDPC codes have been found
that provide both excellent error correction performance and
well structured decoder architectures. Constructions have been
presented by Lin et a1 [I], [2], Tanner et a1 [3], [4], Milenkovic
et a1 [5] , the authors [6], and others. In this paper, we explore
some encoder designs for these codes, and discuss a hardware
encoder implementation.

We define a circulant as a square binary matrix where each
row is constructed from the previous row by a single right
cyclic shift; we do not require that each row has Hamming
weight 1. An rT x nT parity check matrix H can be
constructed by concatenating r x n sparse circulants of size
T x T. The density of each circulant matrix is indicated by the
corresponding value in an r x n base matrix Hbase. The Tanner
graph corresponding to this matrix is called a protograph [TI.
Entries greater than 1 in the base matrix correspond to multiple
edges in the protograph. Base matrices can be expanded into
block-circulant LDPC codes by replacing each entry in Hbase
with a circulant containing rows of the specified Hamming
weight; the resulting codes are quasicyclic. Alternatively, they
can be expanded into less structured codes by replacing each

check matrix, and the number of parallel edges shows t ie
degree of the corresponding circulant.

In practice, these protographs cannot be directly expanded
icto block-cirsulant c d e s without introducing low weight
codewords, regardless of the choice of circulants. A practical
solution is to expand the protographs twice, first with small
permutation matrices, such as of size 4 x 4 or 8 x 8, and then
with circulants to build the full code. The result is a parity
check matrix such as the one shown in Figure 3 for a very
small AR4A code, where each nonzero entry in the matrix
is represented by a dot. This code was constructed by putting
the AR4A protograph variable nodes in the order (4 ,2 ,1 ,5 ,3)
and check nodes in order (A, B, C) as demarcated by the solid
lines, expanding with 4 x 4 permutations, and then expanding
with 16 x 16 circulants. The resulting 12 x 20 block-circulant
structure is emphasized by dotted lines.

In Section 11, we examine iterative encoders, similar to those
of Richardson and Urbanke in [9], that also take advantage
of the block-circulant structure of the parity check matrix.
In Section 111, we examine the existence and construction
of systematic block-circulant generator matrices. In Section
IV, we develop simple hardware circuits for encoders using
block-circulant generator matrices, and describe an FPGA
implementation. Concluding remarks are in Section V.

11. ITERATIVE ENCODERS

An encoder for any (N, K) LDPC code can be built from an
erasure correcting decoder. A set of K linearly independent
variable nodes are selected as the systematic symbols, and
these are initialized with the K information bits to be encoded.
If there are no stopping sets, then the remaining N - K parity
symbols are computed iteratively with the standard erasure

entry with a sum of arbitrary permutation matrices.
-

Protographs for our AR3A and AR4A codes of rate 112 1 2 3 4 5
are shown in Figures 1 and 2, and we use these as examples
throughout the paper. Squares are parity check nodes and
circles are variable nodes, where the solid circles represent
transmitted symbols and the open ones are punctured. These
designs were derived from a three step encoding procedure:
accumulate, repeat-by-3 (or 4), and accumulate [8]; hence their
names. Each protograph describes a 3 x 5 block-circulant parity

'This work was funded by the IND Technology Program and performed
at the Jet Propulsion Laboratory, Callfomia Institute of Technology, under
contrnet v:ith tho PJntiond horonnutioo and Spnoo hdminictration. Fip, 1, The AR3A protoera~h

Fig. 3. A Block-Circulant Parity Check Matrix Built From the AR4A Protograph

circulants in S. It is not hard to show that S is invertible if
and only if det,(s) is not a zero divisor. Moreover, when S is
invertible, there exists an r x r polynomial matrix w such that
ws = I,, the r x r identity (polynomial) matrix.

Our particular interest is in LDPC codes defined by a
block matrix H composed of circulants. Let H have size
rT x nT, where r < n. A quasicyclic code is one for
which a '~uasicyclic shift" of a codeword is also a codeword.
That is, if we partition any codeword c into binary strings of
length T , and circularly shift each string by the same amount,
the resulting vector is also a codeword. It is immediate that
any LDPC code defined by a block-circulant H matrix is
quasicyclic.

In some cases, such a code has a systematic generator matrix
G of size (n-r)T xnT that is entirely composed of circulants.

\ ,

To show this, we partition H so that H = [Q S 1, where
S is square. If S is invertible, the traditional method for
constructing G is to find a matrix W such that WS = ITT, the
rT x rT identity matrix. Then a systematic generator matrix
is G = [I(n-r)T (WQ)T 1 . Algebraically, we can perform
the same construction in the isomorphic polynomial ring. After
finding the r x r matrix w such that ws = I,, it is a simple
matter to compute g = [In-, q (x - l)w(z - l) 1. Replacing
the elements of this array with the corresponding circulants,
we have a block-circulant generator matrix G for the original
code.

Not all block-circulant LDPC codes have block-circulant
generator matrices. As a particularly small example, suppose
H is described by the single circulant 1 + x + x3 with
T = 7. As noted above, this only has rank 4. One codeword
is [l 1 1 0 1 0 01, and because the code is quasi-cyclic
(in fact cyclic, because H consists of a single circulant), all
cyclic shifts of this codeword are also codewords. However,
the circulant corresponding to 1 + x + x2 + x4 only has rank
3, and oo Gannot be used in i t c ~ n t j r ~ t y as a generator matrix.

In general, if S is not full rank (or equivalently, det(s) is a
zero divisor), then G cannot be quasicyclic.

In the remainder of this section, we return to the AR3A and
AR4A codes introduced earlier as practical examples.

The 3T x 5T parity check matrix for AR3A is full rank, and
so a generator matrix for this code will have dimension 2T.
We partition H into [Q S 1, where Q contains the columns
we wish to make systematic, and S is the square matrix that
must be invertible. If we choose Q to include the circulants
corresponding to variable nodes 4 and 2 in the protograph,
as we did for the iterative encoder, we find that S has rank
rT - 1, deficient by 1. This misfortune occurs because of the
closed loop of degree-2 variable nodes created by protograph
nodes 5 and C.

Alternatively, we can choose to make protograph variable
nodes 4 and 5 systematic. In this case, S has full rank, and
a systematic block-circulant G can be calculated exactly as
described. An encoder that performs matrix multiplication
by G is particularly suitable for hardware implementation as
described in the next section.

As a second example, we look at the AR4A code. For
this code, there is no set of R columns that can be selected
from H to form an invertible square matrix S, because
H itself is rank deficient by 1. Perhaps remarkably, these
two defects cancel and the method for constructing G can
proceed with minor modifications. We select variable nodes
4 and 2 to be systematic, and when H is arranged to put
these on the left, it appears as shown in Figure 3. The left
two fifths of H is the matrix Q, and the remaining square
portion on the right is S. We solve to find codewords of
the form c4 = [1 0 p1 (x) p5(x) p3(x) 1, and of the
form cz = [0 1 pl (x) p5(x) p3(x) 1. By expanding
these solutions into circulants, we can form a block-circulant

n-k shift registers, reloaded with circulant patterns once per row - L.crgm-' " ' -
Length kT input message, (n-k)T
shifted in one bit at a time

One conditional addition
per message bit

Systematic output codeword

Fig. 5. The Direct implementation of a Quasicyclic Encoder

Circulant patterns, updated for each row of circulants

Fig. 6. A Quasicyclic Encoder Using Feedback Shift Registers

these LDPC codes often possess. Such an encoder requires
remarkably little hardware, and provides a fast, simple, bit-
serial architecture. We have implemented these encoders in a
small FPGA operating at 100 Msymbols/second.

[I] Y. Kou, H. Tang, S. Lin, and K. Abdel-Ghaffar, "On Circulant Low
Density Parity Check Codes," in IEEE International Symposium on
lnformation Theory, p. 200, June 2002.

121 S. Lin, "Quasi-Cyclic LDPC Codes." CCSDS working group white paper,
Oct. 2003.

[3] R. M. Tanner, "On Graph Conskuctions for LDPC Codes by Quasi-
Cyclic Extension," in Itgomlation, Coding and Matlzematics (M. Elaum,
P. Farrell, and H. van Tilborg, eds.), pp. 209-220, Kluwer, June 2002.

[4] A. Sridharan, D. Costello, and R. M. Tanner, "A Construction for Low

Density Parity Check Convolutional Codes Based on Quasi-Cyclic Block
Codes," in IEEE International Symposium on lnformation Theory, p. 481,
June 2002.

[5] 0. Milenkovic, I. Djordjevic, and B. Vasic, "Block-Circulant Low-Density
Parity-Check Codes for Optical Communication Systems," IEEE Journal
of Selected Topics in Quantum Electronics, pp. 294-299, Mar. 2004.

[6] J. Thorpe, K. Andrews, and S. Dolinar, "Methodologies for Designing
LDPC Codes Using Protographs and Circulants," in IEEE International
Symposium on Information Theory, p. 238, June 2004.

[7] J. Thorpe, "Low-Density Parity-Check (LDPC) Codes Constructed from
Protographs," IPN Progress Report 42-154, JPL, Aug. 2003.

[8] A. Abbasfar, D. Divsalar, and K. Yao, "Accumulate Repeat Accumu-
late Codes," in ZEEE International Symposium on Information Theory,
(Chicago, Illinois), June 2004.

[9] T. Richardson and R. Urbanke, "Efficient Encoding of Low-Density
Parity-Check Codes," IEEE Transactions on Information Theory, pp. 638-
656, Feb. 2001.

