
New High Performance Algorithmic Solution for Diagnosis Problem

Amir Fijany and Farrokh Vatan
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

ABSTRACT

We propose a novel algorithmic approach and present a new algorithm for
solving the diagnosis problem. We report the results of the performance tests of the new
algorithm and compare them with the traditional and standard algorithms. These results
show the strong performance of our new algorithm with more than ten times
improvement over the traditional approach.

The most widely used approach to model-based diagnosis consists of a two-step
process: (I) generating conflict sets from symptoms; (2) calculating minimal diagnosis
set from the conflicts. Here a conflict set is a set of assumptions on the modes of some
components that is not consistent with the model of the system and observations, and a
minimal diagnosis is a set of the consistent assumptions of the modes of all components
with minimal number of abnormal components. However, there are major drawbacks in
the current model-based diagnosis techniques in efficiently performing the above two
steps that severely limit their practical application to many systems of interest. For
conflict generating problem, these techniques are usually based on different versions of
Truth Maintenance method, which lead to an exhaustive search in the space of possible
modes of the components. For finding minimal diagnosis from the conflicts, the most
common is based on Reiter's algorithm, which requires both exponential time and
exponential space (memory) for implementation.

In this paper we address the problem of generating the minimal diagnosis from
the conflicts. This problem can be formulated as the well-known Hitting Set Problem. Our
approach starts by mapping the Hitting Set problem onto the Integer Programming
Problem that enables us, for the first time, a priori determination of the lower and upper
bounds on the size of the solution. Based on these bounds, we introduce a new concept
of solution window for the problem. We also propose a new branch-and-bound technique
that not only is faster than the current techniques in terms of number of operations (by
exploiting the structure of the problem) but also, using the concept of window, allows a
massive reduction (pruning) in the number of branches. Furthermore, as the branch-and-
bound proceeds, the solution window is dynamically updated and narrowed to enable
further pruning.

We present the results of the performance of the new algorithm on a set of test
cases. These results clearly show the advantage of our new algorithm over the
traditional branch-and-bound algorithm; more specifically the new algorithm has
achieved several orders of magnitude speedup over the standard algorithm. For
example, for the systems with 40 components, the new algorithm, in average, solves the
problem more than 300 times faster than the traditional algorithm.

I. Introduction

The Hitting Set Problem, also known as the Transversal Problem, is one of key
problems in the combinatorics of finite sets and the theory of diagnosis [4]. The problem

is simply described as follows. A collection S = {S , , ..., S,) of nonempty subsets of a set
M i s given. A hitting set of S is a subset H of M that intersects every set in the collection
S. Of course, there are always trivial hitting sets, for example the background set M is
always a hitting set. Actually we are interested in minimal hitting sets with minimal
cardinality: a hitting set H i s minimal if no proper subset of H is a hitting set.

Our primary interest to Hitting Set Problem is its connection with the problem of
diagnosis. The diagnosis problem arises when some symptoms (anomalies) are
observed, that is, when system's actual behavior contradicts the expected behavior.
System diagnosis is then the task of identifying faulty components that are responsible
for anomalous behavior. To solve the diagnosis problem, one must find the minimal set
of faulty components that explain the observed symptoms. The most disciplined
technique to diagnosis is termed "model-based" because it employs knowledge of
devices' operation and their connectivity in the form of models. This approach [4]
reasons from first principles and affords far better diagnostic coverage of a system than
traditional rule-based diagnosis methods, which are based on a collection of specific
symptom-to-suspect rules.

The diagnosis process starts with identifying symptoms that represent
inconsistencies (discrepancies) between the system's model (description) and the
system's actual behavior. Each symptom identifies a set of conflicting components as
initial candidates. A minimal diagnosis is the smallest set of components that intersects
all conflict sets. The underlying general approach in different model-based diagnosis
approaches can be described as a two-step "divide-and-conquer" technique wherein
finding the minimal diagnosis set is accomplished in two steps: a) Generating conflict
sets from symptoms, and b) Calculating minimal diagnosis set from the conflict sets. In
summary, the conflict generation corresponds to forming a collection of sets, and
calculating minimal diagnosis corresponds to the solution of the hitting set problem for
this collection (see Figure 1).

Figure 1. Diagnosis as the hitting set of conflict sets

However, there are major drawbacks in the current model-based diagnosis
techniques in efficiently performing the above two steps that severely limit their practical
application to many systems of interest. First, the existing conflict generating algorithms
are all based on various versions of constraint propagation method and truth
maintenance systems. The problem with these methods is that not only they need
exponential time but usually they also require exponential memory to be implemented.
Therefore, these methods cannot handle realistic systems with large number of
components. Second, in order to find the minimal diagnosis set, current model-based
diagnosis techniques rely on algorithms with exponential computational cost and hence
are highly impractical for application to many systems of interest.

In this paper, we present a powerful yet simple representation of the calculation
of minimal diagnosis set. This representation enables the mapping onto a well-known
problem, that is, the 011 lnteger Programming problem. The mapping onto 011 lnteger
Programming problem enables the use of variety of algorithms that can efficiently solve
the problem for up to several thousand components. Therefore, these new algorithms
significantly improve over the existing ones, enabling efficient diagnosis of large complex
systems. In addition, this mapping enables a priori and fast determination of the lower
and upper bounds on the solution, i.e., the minimum number of faulty components,
before solving the problem. We exploit this powerful insight to develop yet more powerful
algorithm for the problem. This new algorithm is a new version of the well-known
branch-and-bound method. We present the results of the performance of the new
algorithm on a set of test cases. These results clearly show the advantage of our new
algorithm over the traditional branch-and-bound algorithm; more specifically the new
algorithm has achieved several orders of magnitude speedup over the standard
algorithm. For example, for the systems with 40 components, the new algorithm, in
average, solves the problem more than 300 times faster than the traditional algorithm.

2. A New Algorithmic Approach to Diagnosis Problem

To overcome the complexity of calculating minimal diagnosis set, we will utilize
and expand our new discovery relating this calculation and the solution of the Hitting Set
Problem to the solution of lnteger Programming and Boolean Satisfiability Problems [I,
21. Our primary interest in the Hitting Set Problem is due to its connection with the
problem of diagnosis.

In order to describe the mapping of Hitting Set Problem onto lnteger
Programming, let us define a 011 (binary) matrix A (see Figure 2) as the incidence matrix
of the collection of the conflict sets; i.e., the entry a,=l if and only if the jth element m,
belongs to the ith set C,. Let x = (x,, x2, ..., b) be a, binary vector, wherein xj = 1 if the
member mj belongs to the minimal hitting set and hence the minimal diagnosis set,
otherwise xj = 0. It can be then shown [I , 21 that we have the following formulation of the
Hitting Set Problem as a 011 lnteger Programming Problem:

minimize xl+x2+ ... +x,,
subject to Ax L b, xi= 0, 1,

where bT= (1, 1) is a vector whose components are all equal to one. This new mapping
allows us to utilize existing efficient integer programming algorithms, permitting solution
of problems with a much larger size. In fact, we have shown [I] that, even using
commercially available lnteger Programming tools, we can achieve a more efficient
calculation of minimal diagnosis compared with the existing algorithms.

Figure 2. Mapping hitting set problem onto integer programming

3. Bounds on Diagnosis

This new mapping offers two additional advantages that can be exploited to
develop yet more efficient algorithms. First, note that this mapping represents a special
case of Integer Programming Problem due to the structure of matrix A (binary matrix)
and vector b. Second, by using this mapping, we can determine the minimum number of
faulty components without solving the problem explicitly [1,2]. For this purpose, we
consider the I -norm and 2-norm of vectors defined as

For the vector b in (I) , we then have bll, = m and IWI, = &. Since the elements of both

vectors Ax and b are positive, we can then drive the following two inequalities:

Since x is a binary vector, then both norms in (2) give the bound on the size of the
solution, that is, the number of nonzero elements of vector x which, indeed, corresponds
to the minimal diagnosis set. Note that, depending on the structure of the problem, i.e.,
the 1- and 2-norm of the matrix A and m, a sharper bound can be derived from either of
(2). To our knowledge, this is the first time that such bounds on the solution of the
problem have been derived without any need to explicitly solve the problem. Such a
priori knowledge on the size of solution will be used for developing much more efficient
algorithms for the problem.

Furthermore, using monotonicify of the integer programming (I), we are able to
efficiently find an upper bound for the solution size. Here by monotonicity we mean that if
x is a solution of Ax 1 b and y I x then y is also a solution of the same system. Note that
finding a 011 solution x for the system Ax 2 b is equivalent to finding a subset of the
columns of the matrix A such that their sum is a vector with components all equal to or
greater than 1. Of course, any such solution provides an upper bound for the
optimization problem (I), since for that problem we are looking for a minimal set of such
columns.

Therefore, to find an upper bound,'we first choose a column C, of A with largest
weight. Then we construct a submatrix of A by deleting the column C1 and all rows of A
that correspond to non-zero components of C1. We apply the same process to the new
matrix, until we end up with the empty matrix. The columns C,, CI, ..., C, that we obtain
determine a solution for Ax I b and the number t is an upper bound for the solution of the
integer programming problem (1). Our initial test shows that the upper bound is actually
sharp, particularly for small size solution (see Table I). Note that it is easy to modify this
algorithm in a way that the it also provides a vector a such that the vector Aa realizes the
corresponding upper bound.

Upper-Bound [A]
I* returns an upper bound for the solution of Ax r b *I

u1 + 1
a1 +- a maximum-weight column of A
Al t submatrix of A obtained by deleting the column al and all rows

of A that correspond to non-zero components of al
if A l is the empty matrix return UI

else return Ul + Upper-Bound [Al]
end if

Figure 3. A recursive procedure for computing the upper bound

There are two simple rules that will help this algorithm in extreme cases. These
rules also can be useful in other cases, as by the recursive nature of the algorithm, most
likely the algorithm will ends up with submatrices that these rules can be applied. Here is
the formulation of these rules:

(I) If the matrix A has an all-one column, then the upper bound is equal to 1;
(11) If some row of the matrix A has weight 1, then remove that row and the

corresponding column to obtain the matrix A, and Upper-Bound [A] = 1 +
Upper-Bound [A l] .

We could also improve the u per bound by a step-by-step method and in an
t I? iterative fashion wherein the cost of k step in the iteration is O(nk) so the first few steps

are practically efficient. More specifically, for fix k, instead of choosing the maximum
weight column for the vector a,, we could choose the sum of k columns of A, and try all
possible such vectors.

Table I. Upper and Lower Bounds

As another application of the a priori lower bound, before starting to solve the hard
problem of finding the minimal hitting sets, we could separate the cases where the high
number of faulty components requires another course of action instead of usual

identification of faulty components. Also a good lower and upper bound could determine
whether the enhanced brute-force algorithm [I, 21 can provide a solution efficiently.
Since, as it was stated before, this algorithm has a complexity of 0(nt), where t is the
number of faulty components.

4. The Traditional Branch-and-Bound Method

The branch-and-bound method is one of the most common methods for solving
NP-complete problems. For the case of lnteger Programming (IP) problem, this method
traditionally begins by solving the Linear Programming (LP) relaxation of the IP; i.e., by
removing the condition that the variables x, are integers. Figure 4 shows typical solution
sets of the LP relaxation and IP problems, where the polygon represents the solution set
of the LP relaxation and the grid points inside this polygon represent the solution set of
the IP problem. If the optimal solution of the LP relaxation consists only of integer
values, then the optimal solution of the LP relaxation will be the optimal solution for the
IP problem. Otherwise, if the IP problem is defined by a system like (I), the optimal
solution of the LP relaxation provides a lower bound for the IP problem. In this case, we
choose one of the non-integer values of the optimal solution of the LP relaxation, say x, =

a, and define two new subproblems by adding the conditions x, I [a] and x, r [a]+l to the
system, where [a] denotes the integer part of a. Then we have to solve the two new
subproblems. By continuing this procedure, we define subproblems of the original IP
problem. Once we find an integer optimal solution for the LP relaxation of a subproblem,
that solution gives us an upper bound for the IP problem. After finding such integer
solution, we eliminate any subproblem whose (LP relaxation) lower bound is larger than
upper bound provided by some other subproblem. We continue this procedure until all
subproblems are eliminated or we find an integer optimal solution for the corresponding
LP relaxation problem. At the end, the optimal solution for the IP problem is the best of
the optimal integer solutions of the subproblems.

Figure 4. Solution sets of an Integer Programming problem and a corresponding Linear
Programming relaxation problem

We can simply generalize the above procedure as follows. To begin the branch-
and-bound procedure, we need to have the capability to perform the following tasks:

(a) Partitioning a problem P into a collection PI, P2, ..., Pk of mutually disjoint
subproblems;

(b) Finding a lower bound for each subproblem P,;
(c) Finding an integer solution for a subclass of subproblems (in this case we obtain

an upper bound), we could also determine whether the integer solution is optimal
for the corresponding subproblem.

Note that in the case of LP relaxation, whenever we find an integer solution for a
subproblem, it is guaranteed that it is an optimal solution for that subproblem. We now
start with the original problem PI defined by a system like (I), and in the mth step of the
procedure we have a partition P ,,,, P,,,,2, ..., P,, of mutually disjoint subproblems. For
each subproblem Pmj we find a lower bound Lmj and, if possible, an integer solution and
corresponding upper bound Umj. Then we decide which subproblems PmJ should be
eliminated at this step. There are two criteria for this decision:

(i) The lower bound L,, is larger than some upper bound of some other
subproblem Pm,k;

(ii) An optimal solution for the subproblem Pmjis found.

In the case (ii) we keep the record of the best optimal solution of the subproblems. Then
we apply the partitioning method (a) on the remaining subproblems and find lower and (if
possible) upper bounds for the new subproblems. We continue this procedure until no
subproblem remains. Then the best of the optimal solutions of subproblems is the
optimal solution for the original problem.

5. The New Branch-and-Bound Method

Our new branch-and-bound algorithm is based on our methods for computing lower
and upper bounds for diagnosis. We also exploit the monotonicity property of this special
case of integer programming problem. We list the rational behind this new approach,
and its possible advantages over the standard branch-and-bound, as follows:

Since the optimal solution is one of the points on the discrete grid of Figure 4, our
relaxation phase directly applies to the discrete grid, while the standard method
starts with the much larger set consists of not only the discrete gird but also all
real points inside the polygon.
For each subproblem we find a lower bound in linear time, while the time of LP
relaxation of standard method is 0 (n 3) .
For each subproblem we are able to find an upper bound, while in the standard
method the upper bound is found only in the case that the LP relaxation of the
subproblem at hand ends up with an integer solution. This way our method
provides more chance to eliminate subproblems with large lower bounds.

Before describing our method, we introduce a set of useful functions and notation.
We start with the mxn binary matrix A. We label the columns of A by the numbers 1,2, . . .,
n, and we denote any subset of these columns by simply as a subset of jl, 2, ..., n) .
Similar to the traditional branch-and-bound method, the new algorithm is also based on
search on the nodes of a tree. Each node of the search tree has a label of the form

(M Tin, To,)

where M is a submatrix of the original matrix A, and T:, and To, are disjoint subsets of the
columns of the original matrix A. The meaning of this partition is that Ti, is the set of the
columns (of the original matrix A) considered as part of the solution, Tout is the set of the
columns (of the original matrix A) considered not as part of the solution. Note that a
solution of the optimization problem (1) can be considered as a subset of the columns of
the matrix A whose addition is a vector with all non-zero components.

Here is the list of the auxiliary functions and subroutines.

Function Place-Finding

Consider a node with the label (M, T,, To,). Since M is a submatrix of the original
matrix A, every column of M corresponds with a unique column of A, for example the
column 1 of M corresponds with the column 3 of A and the column 2 of M corresponds
with the column 7 of A, and so on. Therefore, we can refer to the label of a column of M
in A without any ambiguity. In fact, given the sets T,, and T,,,, for every column j of M, it is
possible to find the corresponding column in the original matrix A. We denote this
relation by the function Place-Finding, also to keep the notation simple, instead of writing
Place-Finding[T,,, To,,,, j] we simply write 7 if the sets I;,, and Tout are understood form the
context.

Functions Remove-0 and Remove-1

Remove-1 [M, j]: the result is the submatrix of M obtained by deleting the jth
column of M and deleting all rows of M that correspond with non-zero
components of that column;
Remove0 [M, j]: the result is the submatrix of M obtained by deleting the jfh
column of M.

For example, consider the matrix

Then to compute Remove-1 [M, 21, we first delete the 2nd column of M, and since the znd
and 4th components of this column are 1, then we delete the 2nd and 41h rows. The result
is

Remove-1 [M, 21 = [; ; A) -

While for Remove-0 [M, 21, we just delete the 2nd column of M. The result is

Remove-0 [M, 21 = : Y : I -

This function is based on some rules that simplify the process of finding the optimal
solution for the system (1):

Rule I If the matrix A has an all-one column C,, then the set consisting of the jth
element xj alone is the hitting set; or the vector x with 1 at its jth component
and zero at other components, is an optimal solution for the system (I).

Rule 2 If the matrix A has a row of weight one, with 1 as its jth component, then the jth
element xj is contained in the minimal hitting set. In this case we can simplify
the system (1) by removing this row and the jth column, and we add the jth
element X, to the solution of the new system.

Rule 3 If the matrix A has an all-one row, delete that row.
Rule 4 If the matrix A has an all-zero column, delete that column.
Rule 5 If the matrix A has two equal rows, delete one of them.

Let see how these Rules affect the labels of the nodes in the search tree. Suppose that
(M, (T,,, Tout)) is the label of a node. First we describe the action of Rule I. If the matrix
M does not have an all-one column, then there no action is performed and the label is
unchanged. Otherwise, assume that jth column is all-one. Then Rule I changes the label
t 0

(0, T,UE 7 1, Tout).

In a more formal language, we define a function Rule-1 on the set of labels as follows:

(M , , T o if M has no all- one column,
Rule-1 [(M, T,, , T~~~ I1 = (a, T,. u fik T ~ ,) if jth column is an all - one column.

To define the action of Rule 2, first we introduce a useful notation. Let e, be the unit
binary vector (of weight one) with its only 1 component at jth position. Now the action of
Rule 2 can be described by the following function:

(~emove - 1 [M , j] , T, LJ {?)Tout) if M has a row equal to e j ,
Rule-2 [(M, Tin r Tout)I =

(M , Tin 9 Tout) otherwise.

The action of Rule 3 is described by the following function

(M' , T,, , To,) if M has all - one rows,
Rule-3 [(M, T,, , To,,)I =

(M , qn , Tout) otherwise,

where M' is obtained from M by deleting all all-one rows. The action of Rule 4 is
described by the following function

(~ e n o v e - 0 [M , j] , q,,Tout u t) if jth columnof M is all- zeroy
Rule-4 [(M, T,, , T,,,)] =

otherwise.

Finally, the following function describes Rule 5

(M' , T,, , Tout) if M has two equal rows,
Rule-5 [(M, T,, , To, 11 =

(M , T i T o) otherwise,

where the matrix M' is obtained from M by deleting one of the equal rows.

Note that once one of these rules is applied on a label hl = (M, T,, To,), and the
result is the label h2 then it may be possible to apply one of these rules on hZ, and so on.
For these reason we define the function Rule* on the set of the labels as repeated
applications of Rule-1-5 until none of them can be applied anymore. It is easy to show
that RuleQ is well-defined. i.e., the result of Rule*@) does not depend on the order of the
functions Rule-1 and Rules-2 are applied. As an example, consider the label

where

The 2" row of M is equal to e2 and its 3rd row is equal to e,. Therefore, for applying
Rule-2 we have two possible choices. First we choose to remove 2" row, the result is
the label ha = (M2, {2), a), where

The 2" row of M2 is equal to e3, thus we can apply Rule-2. The result is the label h3 =

(Mi (2,413 @), where

Note that 3rd column of M, is the 4th column of the original matrix MI. Finally, we apply
Rule-1, and the result is the label h4 = (0, (2 , 3, 41, (1, 5)) (again note that the 2nd
column of the matrix M3 corresponds with the 3rd column of the original matrix MI).
Therefore,

We define the (partial) function Split on the set of the labels, where the value
Split [A] is a pair (Ao, XI) of labels. Suppose that h = (M, TI, T~). If TlUT2 = (1 , ... n), i:e., if
TlUT2 is the set of all columns of the matrix A, then the function Split is not defined.
Otherwise, let j $ T,UT2 be a column of the original matrix A which is corresponded with
a maximum-weight column of the submatrix M (if there are several such columns then
we choose the first one). Then we define two new labels based on the assumption that
the jth column is part of the solution set or not; more specifically, we define two new
labels as follows:

Then the Split function is defined as

Split [A] - (Rule* [Ao], Rule* [A1]).

Function Upper-Bound I
The Upper-Bound function is defined is Section 4 to find the number

Upper-Bound [A] as an upper bound on the solution of the optimization problem defined
by the system (I). We extend this function to the set of labels as follows. For the label h
= (M, TI, T,), where M is a submatrix of the original matrix A, Upper-Bound [A] provides
an upper bound for the system defined by (1) augmented by the following conditions:

xj = 1, xJ~T1,

Then it is easy to see that

Upper-Bound [A] = ITl\ + Upper-Bound [MI.

In the special case that M= 0, we have Upper-Bound [I] =]TIJ. Note that we apply the
function Upper-Bound both on matrices and labels.

Function Upper-Bound-Set

For the label "h (M, T I , T2), the function Upper-Bound-Setrh] returns the set
which realizes the bound Upper-Bound [A], i.e., the union of Tl and the set of columns of
Mwhich provide the bound Upper-Bound [w.

Function Lower-Bound r
Like the previous function, we extend the lower bound defined by (2) to the set of

labels. More specifically, for the label h = (M, TI, T ~) , where M is a kxj submatrix of the
original matrix A, we have

Lower-Bound [A] = (TI(+ k / (\~ ((, .

Function Test-Soiution

This function is defined on the set of the labels and its value is either True or
False. The value of Test-Solution [(M, TI, T ~)] is True if the columns in the set TI form a
solution for the system (1). Otherwise, the value of the function is False.

This function is defined on the set of the labels and its value is either True or
False. As it is suggested by the name of the function, here we determine whether a node
in the search tree is a leaf or not; i.e., whether that node has any children or not. The
arguments of this function are a label 3, = (M, T I , T*) and a value U for the upper bound
on the solution of the problem. Then

Now we are ready to present Our new branch-and-bound algorithm. This
algorithm is described in Figure 5.

Test - Leaf [X , U] = i

 rue if TI u T2 = (1,2, . . ., n), or

True if Lower -Bound [I] 2 U , or

True if Test-Solution [A] = True, or

True if M contains an all - zero row,

False otherwise.

branch-and-bound (A)
I* solves the hitting set problem defined by the system (1) */

1. Labels t {Rule* [(A, @, @) I f
2. U t w I* upper bound *I
3. Solution + 0
4, while Labels * 0
5. chose h = (M, T I , Tz) E Labels
6. Labels +Labels - {A)
7. If Test-Solution [A] = True & UpperBound [h] < U then
8. Solution t TI
9. U +- UpperBound [h]
10. end if
11. If Test-Solution [h] = True & Upper-Bound [h] = U & Solution=@ then Solution c TI
72. If Upper-Bound [I] < U then
13. U +- Upper-Bound [A]
14. Solution t UpperBound-Set[h]
15. end if
16. If Test-Leaf [A, U] = False then
17. (b, - Split [A]
18. Labels t Labels u (AD, A,)
19, end if
20. If Test-Leaf [It , U] = True & Upper-Bound {h] = U & Solution=0
21. then Solution t-- Upper-Bound-Setfh]
22. end while
23. return Solution

Figure 5. The new Branch-and-bound algorithm

Table II shows the results of performance of the new algorithm and its
comparison with the traditional Branch-and-Bound method. These results show the
average time and the number of iterations (i.e., the number of nodes in the search tree)
used by these algorithms on I00 random binary matrices.

Table 11. Comparing the average performance of algorithms on 100 random matrices

Exam pie

matrix
20x25
23x26

In this example we consider the following 10x12 matrix:

The nodes of the search tree and their labels are as follows.

(seconds)
0.98
3.68

Node 0. The label of the root is A, = (A ~ , iZI, 0). In this case, we have Rule*[ho] = AD.
The initial lower and upper bounds are Lower-Bound = 2 and U = Upper-Bound = 5, the
upper bound is realized with the set (3, 4, 5, 6, 8). Moreover, Test-Leaf [Ao, U] = False,
thus this node has two children: Node 1 and Node 2. To find them, notice that column 8
has maximum weight, then

iterations
12-13
13.13

iterations I (seconds)
26.08 0.18
55.52 0.19

and

Remove - 0 [$, 81 =

Now note that none of the Rules 1-5 can be applied on the matrix Remove-0 [Ao, 81, and
only Rule 4 can be applied to Remove-1 [Ao, 81, because lst column of this matrix is an
ail-zero vector. After applying this rule, we get the following matrix

Therefore, the labels of the children of Node 0 are

0 0 1 1 1 0 0 1 1 1 0

0 1 0 0 1 0 0 1 0 1 0

Node I. Its label is hr. The updated lower and upper bounds are Lower-Bound = 2 and U
= Upper-Bound = 4, the upper bound is realized with the set {3,5,6,9), and Test-Leaf [kl,
UJ = False, thus this node has two children: Node 3 and Node 4. The column 8 of the
matrix A,, which is the 9" column of the original matrix A*, has the maximum weight.
Then

= A,,

Rcmove - 0 [A , , 81 =

and

None of the Rules 1-5 can be applied on the matrix A3 = Remove-0 [AI, 81, and only Rule
4 can be applied to Remove-1 [A1, 81, because 4fh column of this matrix, which is also the
4th column of the original matrix A,, is an all-zero vector. After applying this rule, we get
the following matrix

Therefore, the labels of the children of Node 1 are

Node 2. Its label is A2, The updated lower and upper bounds are Lower-Bound = 4 and U
= Upper-Bound = 4. Since Lower-Bound = U, Test-Leaf [A2, U] = True, thus this node is a
leaf of the search tree.

Node 3. Its label is h3. The updated lower and upper bounds are Lower-Bound = 2 and U
= Upper-Bound = 3, the upper bound is realized with the set f6, 11,121, and Test-Leaf [h3,

Uj = False, thus this node has two children: Node 5 and Node 6. The column 9 of the
matrix A,, which is the I lth column of the original matrix Ao, has the maximum weight.
Then

Remove - 0 [A , , 91

and

None of the Rules 1-5 can be applied on the matrix Remove-0 [A3, 91 and Remove-1 [A3,
91. Therefore, the labels of the children of Node 3 are

As = (As, 0, 18,9, ll)),

A6 = (A6, (11), {a, 91).

Node 4. Its label is h4. The updated lower and upper bounds are Lower-Bound = 3 and U
= Upper-Bound = 3. Since Lower-Bound = U, Test-Leaf [A4, U] = True, thus this node is a
leaf of the search tree.

Node 5. Its label is As. The updated lower and upper bounds are Lower-Bound = 3 and U
= Upper-Bound = 3. Since Lower-Bound = U, Test-Leaf [A5, U] = True, thus this node is a
leaf of the search tree.

Node 6. Its label is A,. The updated lower and upper bounds are Lower-Bound = 3 and U
= Upper-Bound = 3. Since Lower-Bound = U, Test-Leaf [k, = True, thus this node is a
leaf of the search tree.

Therefore, the minimal hitting set is (6 , 11, 12) which produced by Node3. Figure 6
shows the search tree of this example.

Figure 6. The search tree

7. Summary and Conclusions

We proposed a new approach to overcome one of the major limitations of the
current model-based diagnosis techniques, that is, the exponential complexity of
calculation of minimal diagnosis set. To overcome this challenging limitation, we have
proposed a novel algorithmic approach for calculation of minimal diagnosis set. Starting
with the relationship between the calculation of minimal diagnosis set and the celebrated
Hitting Set problem, we have proposed a new method for solving the Hitting Set
Problem, and consequently the diagnosis problem. This method is based on a powerful
and yet simple representation of the problem that enables its mapping onto another well-
known problem, that is, the 011 lnteger Programming problem.

The mapping onto 011 Integer Programming problem enables the use of variety
of algorithms that can efficiently solve the problem for up to several thousand
components. Therefore, these new algorithms significantly improve over the existing
ones, enabling efficient diagnosis of large complex systems. In addition, this mapping
enables a priori and fast determination of the lower and upper bounds on the solution,
i.e., the minimum number of faulty components, before solving the problem. We exploit
this powerful insight to develop yet more powerful algorithm for the problem. This new
algorithm is a new version of the well-known branch-and-bound method. We present the
results of the performance of the new algorithm on a set of test cases. These results
clearly show the advantage of our new algorithm over the traditional branch-and-bound
algorithm; more specifically the new algorithm has achieved more than 10 times
speedup over the standard algorithms.

Acknowledgement

The research described in this paper was performed at the Jet Propulsion Laboratory
(JPL), California Institute of Technology, under contract with National Aeronautics and
Space Administration (NASA).

References

[I] A. Fijany, F. Vatan, A. Barrett, M. James, C. Williams, and R. Mackey, A novel
model-based diagnosis engine: Theory and Applications, Proc. 2003 IEEE
Aerospace Conference, March 2003.

[2] A. Fijany, f. Vatan, A. Barrett, M. James, and R. Mackey, An advanced model-based
diagnosis engine, Proc. 7th Int. Symp. On Artificial Intelligence, Robotics and
Automation in Space, May 2003.

[3] F. Vatan, The complexity of diagnosis problem, NASA Tech Briefs, vol. 26, p. 20,
2002.

[4] J. de Kleer, A. K. Mackworth, and R. Reiter, Characterizing diagnoses and systems,
Artificial Intelligence, 56, 197-222, 1992.

[5] G. Rote, Path problems in graphs, Computing, vol. 7, pp. 155-189, 1990.
161 T. Hogg and C. Williams, Solving the really hard problems with cooperative search,

Proc. of AAAl-93, pp. 231-236, 1993.
[7] B.C. Williams and P. Nayak, A model-based approach to reactive self-configuring

systems, Proc. 13'~ Nat. Conf. Artif Intell. (AAAI-96), pp. 971-978, 1996.
[8] S. Chung, J.V. Eepoel, and B.C. Williams, Improving model-based mode estimation

through offline compilation, Inf. Symp. Artif Intell., Robotics, Automation Space
(ISAIRAS-01), 2001.

[9] F. Wotawa, A variant of Reiterls hitting-set algorithm, Information Processing Letters
79,45-5 1,2007.

1101 J. de Kleer and B. Williams, Diagnosing Multiple Faults, Readings in Model-
Based Diagnosis, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

