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Abstruct- This paper summarizes a methodology for de- 
signing on-board state estimators in support of spacecraft 
exploration of small bodies such as asteroids and comets. This 
paper will focus on an estimation algorithm that incorporates 
two basic computer-vision measurement types: a Landmark 
Table and a Paired Feature Table. Several innovations are 
developed to incorporate these measurement types into the on- 
board state estimation algorithm. Simulations are provided to 
demonstrate the feasibility of the approach. 

I. INTRODUCTION 

The exploration of small bodies in space (e.g., asteroids 
and comets), is emerging as a challenging new area for 
advanced spacecraft development. Recent missions include 
the Deep Space 1 mission that flew-by the comet Borrelly 
[4], the Near Earth Asteroid Rendezvous (NEAR) mission 
that orbited and eventually landed on the asteroid Eros [13], 
and the 2004 Stardust mission that flew-through the tail of 
comet Wild 2 [ 5 ] .  Challenging on-going missions include 
the Japanese MUSES-C mission launched in 2003 and 
scheduled to bring back samples from asteroid 1998SF36 
[12], and the Deep Impact mission that is scheduled to drive 
an impactor at high velocity into comet Temple 1 [ll]. 

Past and current trends indicate that the on-board guid- 
ance, navigation and control (GN&C) system for a small 
body mission will rely heavily on vision-based processing 
of camera type measurements. In order to help define such 
a GN&C system, the present paper will focus on developing 
an estimation algorithm that incorporates two important 
computer-vision measurement types: the Landmark Table 
(LMT) and the Paired Feature Table (PFT). The new results 
reported in this paper first appeared in the engineering 
document [2]. 

11. BACKGROUND 

The main frames used in the analysis are depicted in 
Figure 1 and are comprised of the Inertial Frame 31 located 
at the Solar System CM (center-of-mass); the Target Body 
Frame FT located at the Target CM; the Spacecraft Body 
Frame Fs, located at the spacecraft CM; and the Sensor 
Frame (Camera) F ,  located at the sensor origin. 

111. ESTIMATION MODEL 

The model used for estimator design is given as, 
p=u+.ZzI (1) 
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Fig. 1. Frames and Definitions in Small Body Problem 

where u is the exogenous (i.e., known) part of the input 
given by, 

(2) 

and W is the random (i.e., process noise) part of the input 
given by, 

(3) 

Here, a, is the accelerometer measurement from the In- 
ertial Measurement Unit (IMU) (m/s2)  with measurement 
error w,; w,, and WT denote unmodeled specific accel- 
erations on the spacecraft and target body, respectively; 
a$ is the nominal (known) specific acceleration of the 
Target Body; po and T$ denote nominal values of the 
relative position p and target position TT,  respectively; 
g( - ,  .) denotes the gravity model used by the estimator; and 
wg denotes the unmodeled gravity effects. 

u = I ( t )  . a, - a& + g(r+, p") 

6 = I ( t )  wa + w+qc - WT + wg 

1 if a thruster is firing I ( t )  = " i  0 Otherwise (4) 

The need for the function r( t )  arises because the ac- 
celerometer is only read during periods where the thrusters 
are known to have fired. This approach desensitizes the 
estimation results to the degrading effect of accelerometer 
bias. 

The process noise W and its component elements 
wa, wsc, W T ,  wg are assumed to be independent zero-mean 



delta-correlated (white) noise processes with covariances 
given as, 

( 5 )  Q = COV(’LZ) = I ( t ) .  Qa + Q b  
A 

Qa = Cov(wa) 

The estimation model can be summarized in state-space 
notation as, 

(7) li: = AX + Bu + FG 

where, 

x = [  ; ] ;  A =  0 0  
. .  

Q COV(G) = I ( t ) .  Qa + Qb (9) 

IV. TIME UPDATE 

A. Time Discretization 
Assuming that u(t)  is piecewise constant over each sam- 

pling period T ,  the state-space model (7) can be discretized 
exactly as, 

(10) x k + l  = F X k  -k B’Llk + W k  

where. 

B. Delay State Augmentation 
Since the PFT data type relates states at different times, 

it will be necessary to “save” certain past states for use 
at future times. For this purpose, two delayed position 
states Pdl E R3 and Pd2 E R3 will be accommodated by 
augmenting the state vector wjth the six additional states, 

The total state is denoted as E and has the form, 

At time tl when delay state 1 is to be loaded, the system 
matrix is put though an additional (artificial) time update 
of the form, 

c k ( + )  = S l E k  (15) 

where, 
T I  o o o 

0 I O O  
I 0 0 0  s1= 1 

1 0  0 0 1 1  

The matrix SI acts to set p d l  = Pk at time t k  = tl, but has 
no effect on any other states. 

At the time at which delay state 2 is to be loaded, the 
system is put through an additional (artificial) time update 
of the form, 

e k ( + )  = S2Ek (17) 

where, 

[ I  0 0 0 )  

The matrix S 2  acts to set Pd2 = Pk at time t k  = t 2 ,  but has 
no effect on any other states. 

For all other times, the delay-states P d l  and Pd2 are 
simply held from the previous time, so that the time update 

= + B’Llk + r W k  (19) 

Here the top 6 equations are copied from (lo), while the 
remaining bottom equations are chosen simply to hold the 
delay states without change. 

REMARK 1 The need to retain correlations with past states 
has been recognized earlier by Roumeliotis and Burdick 
[ 141 in developing the “stochastic cloning” approach. The 
method proposed in the present paper is different from 
stochastic cloning in that the augmented state filter acts 
as a fixed-point smoother with respect to these delay- 
states, whereas in stochastic cloning, the updating of past 
states by subsequent measurements is explicitly prohibited. 
Consequently, stochastic cloning is suboptimal from an 
information point of view. Nevertheless, stochastic cloning 
as practiced in [14] offers some computational savings in 
being able to generate the correlations analytically without 
having to explicitly augment the state. 

C. Kalman Filter Time Update 
The Kalman Ti%e Update is of the form, 

Ek+llk = @‘$k/k + B u k  

M k + l  = @ P k G T  + r Q k r T  

(20) 

(21) 

If time t k  corresponds to a time when delay state 1 is to be 
loaded (Le., t k  = tl),  an additional artificial time update is 
used of the form, 

r k ( + )  = s l r k  (22) 

p k ( + )  = S 1 p k S T  (23) 

where SI has been defined earlier in (16). If instead, time 
t k  corresponds to a time when delay state 2 is to be loaded 
(i.e., t k  = t z ) ,  an additional artificial time update is used of 
the form, 

&(+I = SZFk (24) 



Mk,(+) = S z M k s ;  (25) 

where S2 has been defined earlier in (1 8). 

V. MEASUREMENT UPDATE 
A. Landmark Table (LMT) Update 

The Landmark Table (LMT) is a table of bearing angles 
to known landmarks that is provided by the computer vision 
processing function. Typically, the LMT may contain as 
many as 50 landmarks. The format of the LMT is shown 
in Table 1. 

Landmark Table (LMT) 'e 
LANDMARK TABLE (LMT) SPECIFYING BEARING ANGLES TO KNOWN 

LANDMARKS 

In the sensor frame, one can write the following relation 

(26) 
between vectors, 

r =  SAT^^ - sc - SAP 

where T denotes the position vector from the Camera origin 
to the landmark location on the Target body, resolved in 
3s; f denotes the position vector from the Target body 
CM to the landmark location, resolved in .FT; c denotes 
the position vector from the Spacecraft CM to the Camera 
origin, resolved in Fsc; A is the spacecraft attitude as a 
DCOS matrix; S is the Spacecraft-to-Camera transforma- 
tion as a DCOS matrix; and T is the Target attitude as a 
DCOS matrix. 

Equation (26) can be rewritten as, 
r = & S A p  (27) 

where 2 is the fixed offset vector, 
(28) d = SATTf - SC 

Each row of the LMT contains camera measurements z,, zp 
which are defined as the projections of r into the camera 
frame. Specifically, 

(29) z ,  = tan(a) = rV/r ,  

(30) zp = tun(0) = r,/r, 

- A  

A 

A 

where. 

The camera information from a single landmark (i.e., one 
row of the LMT) can be wrirten as, 

(32) 
- 

where n, and n p  are independent noises associated with 
the camera measurement. 

In order to develop a linearized measurement, the sensi- 

1 
= - [ry, -r,, 01 S A  (34) 

Let po denote a nominal value of the relative position 

(36) 
vector, and consider the first-order expansion, 

y = yo + H ( p  - p") + n 

A 

n = [ ] ; N = Cov[n] = 

Rearranging (36) gives the desired linear measurement 
equation in the relative position p, 

(39) 

These rows are then noise-normalized by multiplying on the 

A 
dy = - y o  + Hpo = H p + n  

left by N-4 = diag[&, 1 -1 to give, - 
d f j = H p + f i  (40) 

where, 
~g = ~ - 4 6 ~ ;  k = N-?H (41) 

ii = N - i n ;  COW[?L] = 1 (42) 

It is convenient to index each of these 2 x 1 measurements 
by j (corresponding to the j'th row of the LMT), so that 
(40) is replaced with, 

6fjj = Hjp + f i j ,  j = 1, ..., N (43) 

The noise-normalized equations (43) are then stacked into 
a single tall measurement update of the form, 

(44) 

&ack = [ 6y  ] ; Hstack  = [ ] (45) 

- 

Ystack = Hstack p + nstack 

where, 

df jN H N  

nstack = 

A pre-processing step will now be introduced that uses 
a QR factorization to improve numerical robustness, and 
to reduce overall in-flight computation. Specifically, a QR 
decomposition of Hstack is taken of the form, 

Hstack = QR = [QI,&z] [ 'il ] = QlRll (47) 

where R11 E R3x3. Multiplying (44) on the left by QT and 
using (47) gives the equivalent measurement equation, 

(48) QT&ack = [ R;l ] P i -  QTnstaclc 



A key observation is that all but the top 3 equations of 
(48) are pure noise and can be removed from consideration. 
Keeping only the top 3 equations of (48) gives, 

where, 
~3 = Riip + n 3  (49) 

(50) 

(51) 
REMARK 2 Using a well-known method, additional com- 
putation can be saved by not forming Q1 explicitly, but 
rather, augmenting Hstack  on the right with Ystack before 

rn 
REMARK 3 If the stacked measurement (44) were used 
directly in a KF update, it would involve inversion of an 
N x N matrix. This step alone requires approximately N 3  
flops, which is prohibitive for large N (say N = 50). 
Alternatively, because the noise covariance is diagonal (Le., 
C o v [ n S t a c k ]  = I ) ,  the measurements can be applied as 
scalar updates. When carefully arranged (see Bierman’s 
approach [3]),  scalar updates can reduce the computation 
to approximately gNn2 flops (where n is the number of 
states and N the number of measurements), which amounts 
to considerable savings when N >> n. The proposed QR- 
factorization approach has further computational savings 
and other advantages relative to scalar updates that are now 
discussed. 

Equation (49) is equivalent to the stacked measurement 
equation (44) but has been heavily compressed into only 
3 equations. It can be shown [2] that this QR-based pre- 
processing stage is equivalent to using an information filter 
to compress the data in the LMT, but with the additional 
advantages of (1)  computation on the order of Nn2 which 
is almost an order of magnitude reduced compared to scalar 
updates; (2) not squaring the condition number of H s t a c k ;  

(3) avoiding an unnecessary matrix inversion of R11, and 
(4) keeping the noise covariance Rs an identity matrix, to 
allow arbitrary ( e g ,  scalar) updates. This particular use 
of QR factorization for pre-processing appears to be new 
and very useful. However it is closely related to existing 
approaches for applying QR methods (and more generally, 
unitary triangularization) to least-squares problems [ 81 and 

The algorithm checks the size of the elements in each 
row of R11 (an upper triangular matrix) to see whether 1, 
2, or 3 of the measurements in (49) should be applied for 
KF updating. They can then be applied as scalar updates, 
or in a single update (requiring the KF to invert at most a 
3 x 3 matrix). 

T 
~3 = &:%tack; 723 = Q1 nstaclc 

R 3  = C o v [ n 3 ]  = I 

taking the QR factorization in (47)(cf., [16]). 

square-root filtering problems [ 1][ 101. 

One can write p as, 
P = [ I ,  01 0, OIE (52) 

Substituting (52) into (49) gives the final measurement 
equation of the form, 

(53) 
where, 

Y 3  = H 3 E  + n 3  

# 
1 

(54) 

&a zp2 00/2 002 z,1 241 U,l up1 

B. Paired Feature Table (PFT) Update 

The format of the PFT is shown in Table 2. Consider a 
first image 11 taken at time tl and a second image 1 2  taken 
at time t 2 .  The bearing angles to each feature recognized 
as being common to the images 11 and I2 are reported in 
a separate row in the PFT. Typically, the PFT may contain 
as many as 50 feature points. Unlike the LMT, the feature’s 
physical location on the target body is not required for 
generating the PFT, 

PAIRED FEATURE TABLE (PFT) SPECIFYING BEARING ANGLES TO 

FEATURES COMMON TO TWO IMAGES 

At time tl one can write the following relation between 
vectors in the sensor frame, 

7-1 = SAlTTf - Sc - SAlpl (55 )  

where 7-1, AI ,  TI correspond to r, A, T defined earlier in 
Section V-A, but sampled at time tl. 

Each row of the PFT contains camera measurements 
zal, zp l  taken at time tl which are ideally defined as the 
projections of 7-1 into the camera frame. Specifically, 

z,1 = tan(a1) = rly/rlx (56) 

(57) 

Solving for f in (55) and using the relation (58) gives, 
f = TIATSTrl + T1ATc + T1p1 

Likewise, at time t 2  one can write the following relation 

(60) 7-2 = SA2TFf - Sc  - SAzp2 

where rz, Az, T2 correspond to T,  A, T defined earlier in 
Section V-A, but sampled at time t 2 .  

Each row of the PFT contains camera measurements 
z , ~ ,  zp2  taken at time t 2  which are ideally defined as the 
projections of 7-2 into the camera frame. Specifically, 

(61) 

in the sensor frame, 

z,2 = tan(a2) = r2y/r2x 



Solving for f in (60) and using the relation (63) gives, 
T T  f = T2A2 S 7 2  + TzATc + T2p2 

= T2ATST [ i; ] rzX +TzATc+Tzp2 (64) 

Since the same feature on the target body is common to both 
images, one can equate (59) and (64) to give the desired 
relation, denoted as the “Invariant Equation”, 
Invariant Equation 

1 

ZP l  

z,l ] + TIATc + Tipl (65) 

Even though f is unknown in the Invariant Equation, it 
does not cause a problem because it can be eliminated by 
rearranging (65) to become, 

T2p2 - T I P I  = [hi ,  hz] [ ] + (TI - T2ATc) (66) 

It will be convenient to define the notation, 
D Z = T2p2 - Tip1 (68) 

The quantity 5 serves as a reduced state vector containing 
only the delay-states. With this notation, equation (66) can 
be rearranged to give, 

(70) 

where, 
H = [hi, h2]; 2 = (T~ATc - T~ATc)  (71) 

REMARK 4 Unfortunately, it is impossible to use (70) as 
a measurement equation because the quantities rlX and 1 - 2 ~  

are unknown, i.e., they are associated with a feature having 
an unknown location. The remainder of this section is 
directed at mitigating this problem. Note that this difficulty 
does not arise in reference [ 141 because that paper assumes 
a measurement of the full Cartesian difference (equivalent 
to y = p 2  - pi),  rather than just the bearing angles. 

At this point, a QR factorization of H is performed to 
give, 

H = QiRii (72) 

where, 
Qi = [qi,q2] E R3x2; E11 E R2x2 (73) 

Since q1 and q2 are orthogonal and in R3, one can complete 
the triad by forming 43 where, 

(74) 43 = 41 x q2  

It is noted that q3 is a left annihilator of H since by 
construction q $ Q I  = 0 and hence, 

This special property will now be used to advantage. 
Equation (70) can be left multiplied-by 43 to give, 

A 

q r H  = q?QiRii = 0 (75) 

Applying the annihilation condition (75) to (76) gives the 
simplified expression, 

(77) qT2 = q3 DX 

This serves as the desired measurement equation, since the 
right hand side is a linear function of the reduced state F .  
REMARK 5 It is emphasized that the annihilation property 
qTH = 0 was invoked here to remove the dependence of 
(76) on the unavailable quantities T I x ,  rzZ. This led directly 
to the desired linear measurement equation (77) for the 
PFT update. The use of an annihilator in this fashion is 
a novel aspect of the present research. However, the idea is 
not completely original, being closely related to the notion 
of the “epipolar constraint” found in the computer vision 

Interestingly, if R11 is singular, an additional measure- 
ment relation can be derived. Due to space constraints, the 
reader is referred to [2] for details. 

The resulting measurement equations are then noise- 
normalized, stacked, and then pre-processed using a QR- 
factorization step analogous to the one used previously for 
the LMT update. It has been found empirically that only 
the top 3 rows of the resulting compressed measurement 
equation contribute significantly and need to be used for 
the KF update. 

C. Kalman Filter Measurement Update 

equations of the general form, 

T -  

literature [6]. 

The LMT and PFT data types lead to measurement 

Y k  = H k t k  + n k  (78) 

C O ’ U [ n k ]  = R k  (79) 

Given measurements of this form, the Kalman filter mea- 
surement update_has the general fom_(cf., [71), 

r k l k  = Eklk-1 + K k ( Y k  - H k E k l k - l )  (80) 

K k  = k f k H T ( ( 1  + U W ) H k m k H F  + Rk)-l  (81) 

(82) P k  = (1 - K k H k ) M k ( I  - K k H k ) T  + K k R k K T  

The use of an underweighting factor uw > 0 is inherited 
from the NASA Apollo program, and is used to intentionally 
slow adaptation in linearized estimation problems. The use 
of Joseph’s form in (82) ensures that the covariances will 
still be propagated correctly using the associated reduced 
estimator gains [7]. 



VI. EXAMPLES 
A fly-around scenario is shown in Figure 2. Here, a 5 

hour scenario is shown where the spacecraft takes 1 hour 
to get into position, and then flies a 4-hour forced trajectory, 
using thrusters, around the small body. The accelerometer 
has a 40 ug bias error, a velocity random walk of Qa = 
l e  - 6 . I (rn2/s3) ,  and the unmodelled accelerations are 
simulated with covariance Q b  = l e  - 6 . I (m2/s3). The 
estimator is given a 500 meter initial position error, and a 
50 (cmlsec) initial velocity error. 

Fig. 2. Fly-around trajectory for estimator study 

A. Case Study: Landmark Table (LMT) Measurement 
The LMT is generated by assuming that a set of 4 

landmarks separated by approximately 80 meters is visible 
to, and recognized by the camera at all times. The camera 
accuracy in computing bearing angles is assumed to be 1/20 
degree, 1-sigma, and an underweighting factor of uw = 5 
is used for all measurement updates. 

The true and estimated position, and the errors between 
them, are shown in Figure 3 and Figure 4 respectively. 
The true and estimated velocity, and the errors between 
them, are shown in Figure 5, and Figure 6, respectively. All 
estimation errors agree with their expected 1-sigma bounds. 
The position converges to about 2-3 meters error, and the 
velocity converges to about 2-3 cmlsec error. The position 
transient converges in about 50 seconds while the velocity 
transient takes longer and converges in about 300 seconds. 

B. Case Study: Paired Feature Table (PFT) Measurement 
The PFT is generated by assuming that a set of 8 

landmarks separated by approximately 80 meters is visible 
to, and recognized by the camera in all images. The camera 
accuracy in measuring bearing angles is assumed to be 1/20 
degree, I-sigma, and an underweighting factor of u w  = 5 is 
used for all measurement updates. The PFT measurements 
are generated once every 2 minutes. 

The true and estimated velocity, and the errors between 
them, are shown in Figure 7 and Figure 8, respectively. It 
is seen that the estimation errors agree with their expected 

Fig. 3. True (solid) and estimated (dashed) position using LMT 

I 

E O  

Fig. 4. Position error (dash) and 1-sigma bound (solid) using LMT 
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Fig. 5. True (solid) and estimated (dashed) velocity using LMT 

Fig. 6. Velocity error (dash) and I-sigma bound (solid) using LMT 



1-sigma bounds. The velocity error converges in about 3000 
seconds. The PFT update is important because it keeps the 
velocity error from growing in an unbounded fashion due 
to the bias in the accelerometer. 

Fig. 7. True (solid) and estimated (dashed) velocity using PIT 

Fig. 8. Velocity error (dash) and 1-sigma bound (solid) using PIT 

VII. CONCLUSIONS 

It is shown that an on-board state estimator can be 
designed that accepts both LMT and PFT type measurement 
updates obtained from real-time vision-based processing of 
images. Such measurement types are central to camera- 
based approaches for exploration of small bodies. Several 
new algorithmic innovations were introduced to accom- 
modate these highly specialized vision-based measurement 
types, including a pre-processing step based on QR factor- 
ization (to optimally compress LMT and PFT updates hav- 
ing large numbers of recognized features), an annihilation 
method to form a linear measurement equation from the 
PFT data type, and a state augmentation method to handle 
measurements (e.g., of the PFT type), that relate states from 
different time instants. The estimation algorithm has been 
shown by simulation to perform as expected, with the LMT 
updates providing good position type information, and the 
PFT updates providing useful velocity type information. 

Future research will concentrate on accommodating land- 
mark location errors in the LMT definition, and on handling 

potential uncertainty in the data associations made in con- 
structing both the LMT and PFT. 
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