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ABSTRACT 

An optical receiver concept or binary signals with performance approaching the quantum limit at low average signal 

background photons has been devised by Dolinar, however this receiver requires ideal optical combining and 
complicated real-time shaping of the local field, hence tends to be difficult to implement at high data rates. A simpler 
nulling receiver that approaches the quantum limit without complex optical processing, suitable for high-rate operation 
has been suggested earlier by Kennedy. Here we formulate a vector receiver concept that incorporates the Kennedy 
receiver together with a physical beamsplitter, but also utilizes the reflected signal component to improve signal 
detection. It is found that augmenting the Kennedy receiver with classical coherent detection at the auxiliary beamsplitter 
output, and optimally processing the vector observations, always improves on the performance of the Kennedy receiver 
alone, significantly so at low average photon rates. This is precisely the region of operation where modern codes 
approach channel capacity. It is also shown that the addition of background radiation has little effect on the performance 
of the coherent receiver component, suggesting a viable approach for near quantum-limited performance in high 
background environments. 

energies is develope 0 analyzed. A conditionally nulling receiver that reaches the quantum limit in the absence of 

I. INTRODUCTION 

Free-space optical communications enables high data rates with modest power levels and relatively small optical 
apertures, due primarily to the narrow beamwidths that can be generated at optical frequencies. Another advantage of 
optical communication is that energy detection becomes a viable option that can be used to discriminate between 
individual photons, due to the high energy of photons in the optical regime. Thus “photon-counting” techniques have 
been used to overcome thermal noise in the detection electronics, leading to “shot-noise’’ limited performance, where the 
only uncertainty is the inherent quantum-mechanical randomness in the weak optical fields. On the other hand, coherent 
detection of optical signals relies on the addition of a strong local optical field to generate a large cross-term between the 
received and local fields which, when detected using a suitable optical energy detector, can also overcome thermal noise 
and achieve shot-noise limited performance. 

In the following sections, the structure of a practical receiver for optical signals employing both photon counting and 
coherent detection principles will be described, and shown to approach the quantum limit in operating regions of interest. 
A complete description of the quantum and classical receiver structures is facilitated through the use of coherent states, 
which are defined in section 11. A vector receiver concept designed to approach the quantum limit is described in section ’ 

r 

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration. 



111, followed by the derivation of the detection algorithm based on maximum likelihood principles, and analysis of 
receiver performance in section IV. Numerical results are presented in section V, including a discussion of vector 
receiver performance in the presence of interfering photons, and a preliminary evaluation of the impact of modern codes 
on vector receiver performance. 

11. COHERENT-STATE REPRESENTATION OF OPTICAL SIGNALS 

It has long been realized that coherent states of the kind generated by lasers operating above threshold retain their basic 
properties even when suffering great losses, as usually occurs with long-range free-space communications, and 
especially in the emerging field of deep-space optical communications. This property of coherent states facilitates the 
design of optical communications systems, since the detection algorithm can be derived independent of the operating 
range. For this reason, optical communications systems based on laser transmitters generating coherent-state signals and 
conventional optical receiver components are attractive for long-range communications applications. A thorough 
description and performance analysis of optical communications systems generally requires a formulation of the problem 
in terms of coherent states. A brief description of coherent states, along with some of their most important properties, 
follows. 

A coherent-state I a )  , representing a 
orthonormal “number states” I n ) as i 

mode of an optical field, can be represented in 

Each number eigenstate 
outcome of an experiment 

n )  contains n photons, and hence the probability of obtaining exactly n photons as the 
s given by the Poisson distribution: 

where I CX 1’ the average number of photons in the coherent state. Coherent states are not orthogonal, as can be seen by 

considering the overlap between two arbitrary coherent states, lal ) and I a, ) . Orthogonality requires that the 
overlap vanish altogether, however for coherent states the squared magnitude of the overlap is not zero but instead is 
given by 

where we made use of the orthogonality of the number states to simplify the expression. Equation (3) demonstrates that 
there is always some overlap between coherent states, regardless of how great the average photon count in each state 
may be. In the context of optical communications, this implies that coherent states cannot be distinguished without error, 
even when individual photons can be observed without any interfering thermal noise. 

111. VECTOR RECEIVER STRUCTURE 

Optical receivers that approach the quantum limit [2,  31 and actually attain the quantum limit under ideal conditions [4] 
have been developed using conceptually realizable quasi-physical components and techniques. These receivers were 
designed primarily for the noiseless channel, and utilize idealized (lossless) optical components to coherently combine 



the optical fields, together with photon-counting detection, and wideband processing and control in an optical feedback 

optical components readily available in the laboratory, and investigate their ability to approach quantum limited 
performance under realistic deep-space operating conditions. 

configuration to achieve optimum performance. Here we search for simpler receiver structures employing 

A reasonable starting point is a version of the near-optimum receiver for the reception of Binary Phase Shift Key 
(BPSK) signals, but considered in a more general framework that includes realistic modeling O S  key optical components. 
The near-optimum receiver adds to the received field a local field of the same amplitude as the signal, with phase 
perfectly matched to the received phase under one of two hypotheses, f?, or f?, (with no loss in generality, we assume 

the phase of the local field corresponds to that of the received field, given f?, ). With perfect amplitude and phase 

matching, this implies that the amplitude of the received signal-field is doubled under HI , but that the received field is 

effectively cancelled under H ,  . We extend this original idealized construction presented in [2] by including a more 
realistic beam-splitter model with non-zero reflection, to which we add a local field of the correct amplitude to ensure 
that the constraints of the Kennedy receiver are met for any value of beam-splitter reflectivity. This construction implies 
that there will be a component due to the reflected signal and the transmitted local field, that will also contain 
information about the received hypothesis, and therefore should not be ignored. The following investigation is based on 
the generalized block diagram of Fig.1, in which both beam-splitter ports are identified and the relevant signal and local 
field parameters are defined. 
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Figure 1. Conceptual block diagram of vector receiver: bit decisions based on both beamsplitter outputs. 

The received optical fields are combined with a locally generated optical field of the same wavelength and precisely 
controlled amplitude and optical phase on the surface of a beam-splitter, whose reflectivity L can take any value between 
zero and one: 0 I L I 1 (here we take the view that reflectivity is a loss to the principle port). Combinations of the 
received and local fields appear at both outputs of the beam-splitter, and detected by photon counters or other 
appropriate optical detectors. Since our investigations are motivated by the receiver structure originally proposed by 



Kennedy [ 2 ] ,  which employs ideal combining optics and photon counters, therefore a photon counting detector was 
assigned to the principle output, or port, of the beamsplitter (here principle output is defined as containing most of the 
received signal field in the limit of vanishingly small reflectivity). The secondary output is not constrained, allowing the 
use of any appropriate detector or detection technique. As originally reported, the Kennedy and Dolinar receivers 
observe only the principle port, relying on arbitrarily small reflectivity and hence arbitrarily large local laser power in 
order to achieve the required field-matching: however, this approach is not always practical since practical local laser 
power is limited, but more importantly because scattering from imperfections or dust on the optical surfaces becomes 
intense as the laser power is increased, resulting in undesirable interfering photons. The results of a previous analysis of 
near-optimum receiver performance in the presence of background and random phase errors reported in [3], along with 
more recent simulations of the optimum receiver discussed in [5] ,  were used to investigate and compare receiver 
performance in the presence of background photons. As shown in Fig. 2, the addition of even a single background 
photon to the received signal during a bit-interval results in significant performance degradation in both receivers. 
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Figure 2. Performance comparison of optimum and near-optimum noiseless receivers, with background 

As a first step to extending the zero-reflectivity single-output analyses reported in [2,4], likelihood ratios were derived 
for the practical two-port scenario described in Fig. 1, where the beam-splitter reflectivity is allowed to vary and hence 
so is the required local laser power. 

When the inputs to the beamsplitter are coherent states, so are the outputs: only the amplitudes of the coherent states are 
affected. The resulting optical fileds at the “reflected” and “tr 
field) can be determined from the following matrix e q u a t i o n  

tted” outputs (with respect to the received signal 
h 

resulting in the scalar components: 



When the constraint of the Kennedy receiver is imposed on the local field (to cancel or reinforce he received field), the 
coherent state representing the local field required to cancel the transmitted portion of the received field becomes 

I ol,) =I Jma, /A). Under the two hypotheses H ,  and H ,  , this results in the following transmitted coherent 
states: 

At the same time the reflected components at the auxiliary port become: 

H ,  : I a,) =I a, /A} 
H ,  : I a,) =I (1-2L)as /A} 

The resulting transmitted fields give rise to coherent states with average number of photons proportional to the squared 
magnitude of the field amplitudes. These combined field amplitudes give rise to the following conditional densities of 
photons, k, for he transmitted field observed at the principle port: 

1 ,  k = O  
0, k 2 1  

. Although the received field under hypothesis zero is completely cancelled at the where 6 ( k )  = 

principle port, to facilitate the analysis we prefer to further condition on a small residual field giving rise to an average 
photon count of E ,  then let E approach zero. Similarly, the conditional densities of photons under the two hypotheses 
at the auxiliary popt become: 

Let us pause briefly to examine the key difference between the observed processes at the two receiver ports. Consider 
the case where the average number of photons in the received coherent state under either hypothesis is 1 photon, and the 
reflectivity is one percent, or L = 0.01. This represents a realistic region of operation of modern receivers, especially 
when the binary symbols are encoded for enhanced operation near channel capacity. At the principle port the receiver 
attempts to distinguish between complete absence of a signal (zero photons on the average), and an average value of 
4 x 0.99 = 3.96 photons: the probability of an erasure with this scheme is e-3'96 = 0 .019 ,  which leads to an average 
error probability of 0.0095 (after tossing a fair coin to resolve the ambiguity, according to the maximum likelihood 
detection strategy). This error probability is within a factor of two of the quantum limit, hence we may conclude that 
photon counting at the principle port leads to accurate detection under these conditions. 

At the auxiliary port, however, the receiver attempts to distinguish between a Poisson random variable of average value 
100 under hypothesis zero, and average value 96.04 under hypothesis one. Since the average values under both 
hypotheses are approximately 100 during each bit-interval, photon counting becomes impractical at high data-rates due 
to the high currents generated within the detector circuits, often leading to saturation or other losses in practical systems. 



refore, we propose the following detection scheme at the auxiliary port: add an unconstrained but strong local field to 
reflected field components, in phase with the constrained local field impinging on the beamsplitter as described 

above, then detect the resulting sum field using a simple unity-gain detector. Designating this second local field over 
each bit interval as I a,, ) , the average number of photons observed by the auxiliary detector under the two hypotheses 

where we made use of the fact that as << alZ. Because of the strong local oscillator field generated at the auxiliary 
port, it is customary to view the random processes under the two hypotheses as Gaussian, with mean values given by (8). 
Within the framework of the above assumptions, the detection problem is equivalent to deciding on the basis of the 
Gaussian conditional densities: 

L J 

where x is a continuous random variable proportional to the electric current generated by the detector in response to the 
intensity distribution due to the sum of a strong local field plus the signal field over the detector’s active surface. Since 
the detectors are observing two different beamsplitter outputs, the random processes generated at the detector outputs are 
independent, as are the random variables representing the integer-valued photon counts at the principle port, and the 
continuous observables at the auxiliary port. 

IV. MAXIMUM LIKELIHOOD DETECTION AND RECEIVER PERFORMANCE 

Since the statistics of the observed processes at the two ports are independent, the joint probability of the two-component 
observation vector can be expressed as the product of the individual conditional densities. Therefore, the maximum 
likelihood detection strategy is to compute the likelihoods on both sides of the inequality in (10) and select the 
hypothesis corresponding to the largest: 

Recalling that the logarithm is a monotone increasing function of its argument, we can taking the natural log of (10) to 
reduce the computational complexity: 

klnIE12 -1E12  - + ( x - 2 f i \ a 1 ) ~  i k l n [ 2 ~ ~ 1 w ( ] ~ - 4 ( 1 - ~ ) l a l ~  
HO 

HI 

- .(x 2 + 2 J L  I a I) 



Rearranging and simplifying yields: 

HO 

HI 

k l n ( l ~ 1 / 2 / a l m )  ’ < - 2 x I a I f i + + I ~ 1 ’  -2lal’ (1-L) 

For any & > 0 ,  there are two cases to consider: k = 0 , and k 2 1 . When k = 0 the test reduces to: 

When k 2 1 hypothesis W1 is chosen as & -+ 0 ,  because the logarithm on the left-hand side approaches - 00 as 
& 3 0 ,  therefore the right-hand side is always greater than the left hand side, regardless of the value of x. Next we 
determine the average probability of error for the vector-receiver, when the maximum likelihood detection algorithm is 
applied. 

The average error probability P(E) can be computed by first determining the average probability of correct detection, 
P(C), and subtracting it from one: P ( E )  = 1 - P ( c ) .  Next, we write the average probability of correct detection as 

the average of the conditional probabilities: P ( c )  = P ( c  I H,)P(H,)  + P ( c  I H , ) P ( H , )  . Each conditional 
probability can be further decomposed according to the observation of any photons at the principle port, then averaged: 
for M L  detection, the relevant photon counts are k = 0 and k 2 1. Therefore, after averaging over the count 
probabilities, we get P(C I H , )  = P(C I H ,  , k = O)P(k = 0) + P(C I H,,  k 2 l )P(k  2 1) , and similarly for 

P(C I H I ) .  Recalling that P ( k  = 0) = exp[-4 I a 1’ (1 - L)  and P ( k  2 1) = 1 - exp[-4 I a 1’ (1 - L)  , the 
probability of correct detection can be expressed as: 

The error probability of the vector receiver can be expressed in terms of the familiar error function, 

Q ( y )  = Idxexp[-z’ /2]/=,  as: 

- 
m 

Y 

In the following section, we shall evaluate the performance of the vector receiver as a function of the beamsplitter 
reflectivity L for a given signal strength, as well as a function of the signal strength with optimized reflectivity. Finally, 
the impact of coding on vector receiver performance will be discussed. 

V. NUMERICAL EVALUATION OF VECTOR RECEIVER PERFORMANCE 

The performance of the vector receiver was first evaluated as a function of the beamsplitter reflectivity L, for several 
values of average received signal photons, I a 1’. The results indicate a strong dependence on both L and I Ct 1’ , as 
illustrated in Figures 3a and 3b, which show the average probability of error as a function of L computed according to 



2 equation (15), at two different signal energies, namely I 
two bounds are also shown, namely, the lossless quantum limit (that is, the quantum limit corresponding to the total 
signal energy, and the error probability of the lossy near-optimum receiver. The lossless quantum-optimum receiver 

achieves P ( E )  = $[I - 41 - exp(-4 I a! 1') , as shown in [6,7], which evaluates to approximately 0.0046 at an 
average rate of 1 photon, and to 0.35 at an average rate of 0.25 photons per symbol. Note that the error probability of the 
vector receiver is always lower than that of the lossy near-optimum receiver as expected, since additional information 
about the received signal is obtained at the auxiliary port, and used in an optimum manner. As the beamsplitter 
reflectivity approaches zero (or, as the signal loss to the principle port approaches zero), the performance of the vector 
and near-optimum receivers coincide: however, operation in this regime requires infinite local laser energy. 

I = 1 in Fig. 3a and I a! 1 2 =  0.25 in Fig. 3b. In addition, 
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Figure 3a. Error probability of vector and near-optimum receivers as a function of reflectivity, I a 1' = 0.25 
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Figure 3b. Error probability of vector and near-optimum receivers as a function of reflectivity, I a l 2  = 1 



In Fig.3a, the error probability first increases as the reflectivity is increased from zero, following the performance of the 
near-optimum receiver, then reverses direction and begins to decrease as the reflectivity approaches one. However, 
performance is best near zero reflectivity for this “high signal energy” case, and in fact the same behavior is observed at 
even higher signal levels. This suggests that in this regime the reflectivity should be minimized and at the same time 
local laser power increased as required, in accordance with the original premise of the Near-optimum receiver. 4 
The behavior of the vector receiver changes substantially at low signal energies, as shown by the performance curves of 
Fig. 3b. In this region the performance of the near-optimum receiver again degrades with increasing loss as expected, 
however the performance of the vector receiver improves as the reflectivity increases, reaching a value close to the 
quantum limit as the reflectivity approaches one. In this regime of low signal energies, high reflectivities yiueld best 
performance. 

The performance of the two-port receiver as a function of the average number of signal photons per symbol, I a! I , with 

reflectivity optimized at each value of I a! 1 2 ,  is shown in Figure 4. Note that for 1 a! 1’ greater than about 0.4 photons 
per symbol the performance of the optimized vector receiver follows that of the lossless near-optimum receiver, but 
always improves on the near-optimum receiver when beam-splitter losses are taken into account. However, for 

I a! I < 0.4 photons, the vector receiver significantly outperforms the lossless Near-optimum receiver, approaching the 
quantum bound as the average number of signal photons decreases. These results are applicable to conditions when non- 
signal photons due to background radiation or scattering of the strong local oscillatoor fields from the beamsplitter 
surface, can be neglected. In general, the performance of the vector receiver can be approximated by the performance of 
the lossless Near-optimum receiver alone when I a! 1’ > 0.4, and by the performance of the coherent receiver alone 

when 0 <I a! I * <  0.4 . These approximations do not hold when significant amounts of interfering background or other 
non-signal photons are introduced into the system. 
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Figure 4. Average bit error probability of the vector receiver, compared with quantum limit 

When more realistic background reception conditions typical of the optical free-space channel are taken into account, the 
performance of the near-optimum and Optimum receivers degrade significantly, as demonstrated earlier in Fig. 2. A 
glimpse of the performance of the vector receiver in the presence of background can be gained by evaluating the 
performance of the two receiver components separately. Note that we have not derived the ML vector receiver structure 



in the presence of noise, but merely evaluated the performance of its two components. This initial approximation can be 
justified by arguing that in the noiseless case, the vector receiver is well approximated by its components in the two 
regions we have considered: low and high signal energies. With low signal energy characterized by average photon rates 
of less than 0.4 photons per symbol best performance is obtained as the reflectivity approaches one, hence the auxiliary 
port is used, implying the coherent receiver structure in our formulation. With higher signal energies the analysis 
indicates that the beamsplitter reflectivity should be minimized, yielding the near-optimum receiver structure as the 
reflectivity approaches zero. 

In order to evaluate the performance of the vector receiver components under conditions of moderate background 
photons, the maximum likelihood detection threshold was employed for the near-optimum receiver as derived in [2]. For 
the coherent detection algorithm at the auxiliary port, the signal-to-noise ratio was modified to account for strong 
background, replacing I a I in the argument of the Q-function by I Cl l 2  /(I+ 2; No, ) as described in [XI, where 

No, is the spectral level of the background radiation, q is the detector’s quantum efficiency, and h is Planck’s constant. 
Recalling that the average number of background photons for multimode background radiation is given 
by K ,  = 2 6  No, BT , where B is the bandwidth of the optical pre-detection filter and T is the symbol duration, it 

follows that 2;No, = K ,  / BT . Therefore, if we assume that there are an average of K,  = 1 multimode 
background photons per symbol, and that a 1 angstrom predetection filter was employed at a wavelength of 1 micron, 
then with 1 nanosecond symbol duration we find that BT 30, hence 2% No, = K ,  / BT E 1 / 30 in our example. 
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Figure 5. Comparison of near-optimum, optimum and vector receivers, with and without background 

The performance of the two vector receiver components, the near-optimum receiver and the coherent receiver, are shown 
in the presence of background noise of average value equal to one photon per symbol. For comparison, the performance 
of the optimum quantum receiver for BPSK symbols in the presence of background is also shown, computed two 
different ways: the truncated density-matrix eigenvalue solution originally worked out in [7], and the more recent 
“rotation algorithm” solution described in [ 1,8]. Note that both approaches are approximate, but yield nearly identical 
solutions in this case (however, the eigenvalue solution in [7] applies only to binary signals in noise, whereas the rotation 



algorithm can be applied to higher dimensional signal sets as well, when observed in the presence of noise, as described 
in [9]). The noiseless quantum limit is also included in Fig. 5 for completeness. 

The performance of the coherent receiver is hardly affected by background photons, since these are not phase coherent 
with the signal and therefore only contribute slightly to the variance of the Gaussian observables. However, the near- 
optimum receiver suffers significant performance degradation when background (or other interfering) noise photons 
enter the receiver along with the signal, since it responds to photon energy regardless of phase: at an uncoded error 
probability of 0.1, the near-optimum receiver performs approximately 4 dB worse than the coherent receiver in Fig. 5.  At 
the same uncoded error probability, the coherent receiver is within 1.3 dB of the quantum limit for detecting BPSK 
signals in the presence of noise. 

It is interesting to note that for the noiseless case, the crossover from the near-optimum receiver to the coherent receiver 
occurs for bit error rates of 0.1 or greater, which is precisely the region of interest for coding, since it is in the low- 
photon region where the capacity of the channel can be approached by powerful codes such as "low-density parity 
check" (LDPC) and turbo codes that employ efficient iterative techniques. Coded performance of the vector receiver has 
been investigated near the crossover point of I a! I = 0.4, for both the noiseless and noisy reception case, and some 

examples presented in Fig. 6. Here E, / N o  (dB) = lolog(1 a! l 2  /(1+ 1/ 30) . 
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Figure 6. Coded performance of the vector receiver in the vicinity of the crossover point. 

It can be seen that even at a relatively high uncoded bit error probability of 0.2, corresponding to I a! l 2  = 0.15 photons 

on the average, coded error probabilities of 
codes. To achieve the same performance, the near-optimum receiver would require 4.6 dB greater signal energy when 
operating in the presence of moderate background noise. Note that greatly improved receiver performance can be 
attained by the use of low-rate codes even when the uncoded bit error probability is greater than 0.1, which is precisely 
the region where the vector receiver closely approaches the noiseless quantum bound: however significant performance 
improvements can be realized with higher rate, hence less complex, codes when greater signal energies are available. 

or lower can be attained through the use of rate 1/4, 8920 length, turbo 



VI. CONCLUSIONS 

A practical optical receiver structure that employs both the transmitted and reflected components of a realistic optical 
beamsplitter has been examined, and a vector receiver structure that decides on the basis of both outputs is proposed. 
Combined field expressions for the two beamsplitter outputs were computed and the performance of this vector receiver 
determined for the case when the near-optimum receiver is assigned to the principle port. Based on practical 
considerations, coherent detection was proposed and investigated for the auxiliary port, and performance of the vector 
receiver determined for the simplest case of perfect field matching and negligible background photons. It was found that 
the performance of the vector receiver always improves upon the single-port near-optimum receiver, as expected, when 
realistic beam-splitter reflectivities are taken into account. However, performance of the vector receiver can be closely 
approximated by the coherent receiver component at the auxiliary port when low signal energies are received, and by the 
near-optimum receiver at the principle port when the signal energies are high. In the presence of significant background 
photons, the coherent receiver at the auxiliary port significantly outperforms the noiseless near-optimum receiver at the 
principle port, and in fact closely approaches the quantum limit for noisy detection. Finally, the impact of coding on 
vector receiver performance was examined, and found to yield greatly improved error probabilities even in the low- 
photon region of operation. 
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