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Objectives
• Develop pattern recognition methods for 

location and classification of unusual signals 
in GPS data.

• Use these methods for identification of 
regional phenomenon indicative of aseismic 
activity.

• Make these methods available to the 
scientific community through the QuakeSim 
web portal.

• Integration of the method with the SCIGN 
data collection network.
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• Statistical model with discrete states.

• Can be trained in supervised and 
unsupervised modes.

• Successful in many areas, notably speech 
processing and protein sequence analysis.

• These areas offer a great deal of information 
about the underlying system.

• In scientific exploration, however, little 
information is available.

Hidden Markov Model
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Hidden Markov Model
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GPS Data

0 100 200 300 400 500 600 700 800
−5

0

5

10

N
−S

 re
l. 

di
sp

. (
cm

)

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2

E
−W

 re
l. 

di
sp

. (
cm

)

t

0 100 200 300 400 500 600 700 800
−4

−2

0

2

V
er

tic
al

 re
l. 

di
sp

. (
cm

)

t

Daily displacement data from Claremont, CA

Hector Mine

Aquifer Draining



6

Geophysics HMMs

• Little or no labeled training data - so we are 
almost always using unsupervised training.

• Classification/segmentation results using the 
HMM state assignment are the goal.

• Data is complicated enough to induce large 
numbers of local maxima.
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Empirical Local Maxima

1000 tests on Claremont GPS data (EM).

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Model Size N

N
um

be
r o

f L
oc

al
 M

ax
im

a



8

Dealing With Local Maxima

• EM alone is not sufficient.

• Use Deterministic Annealing EM (DAEM) to 
avoid local maxima [Ueda 98].

• DAEM modifies the objective function 
according to a computational temperature.

• At hot temperatures (1/T ~ 0), the objective 
function is nearly flat, but at the coolest 
temp. (1/T = 1) it is identical to the original.

• Major features emerge first and are tracked.
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DA Problem

• DAEM tends to get stuck in local maxima 
where there are redundant states ([Whiley 
02] demonstrates this for Bayes networks).

• Intuitively, consider a perfectly flat objective 
function.  All probability distributions are 
identical - but this is a fixed point of EM for 
all objective functions!

• If this occurs at any temperature, the 
solution can’t escape.
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• Our approach is to devise regularization 
terms that guide the solution away from 
these redundant state local maxima.

• Results are not biased against any specific 
property of the observation data.  

• This preserves the usefulness of the method 
for exploratory research.

DA Problem: Solution
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Regularization
For the output distribution, there is no set prior.

P3(B) =
∏N

i=1

∏N
j=1 exp

(
ωQ3

2 (µi − µj)T (µi − µj)
)In the case of Gaussian outputs, we can choose a

prior based on the Euclidean distance:

∑N
i=1

∑T
t=1 τ (k)

it
ωQ3

2

∑N
j=1(µi − µj)T (µi − µj)

Which produces the regularization term

ωQ3 ≤ ||Σ−1
i ||/2N

To maintain concavity of the Q-function, we require



12

Regularization Results: Claremont (1)

Less than 3 maxima at slowest annealing rate until N =6;
11 maxima for N = 7 (3 comprise 92% of results)
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Regularized Classification: Claremont
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• GPS-integrated measurements of 3-D 
surface displacement calculated daily.

• Data collected over 800 days starting Jan 1, 
1998 from 127 stations.

• Trained 6-state HMMs separately on each 
data sequence. Classified observations based 
on trained HMMs.

• Identified correlated state changes across 
different stations.

SCIGN Data
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SCIGN State Change Correlations
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Spikes indicate the number of stations that change
state on a given day (e.g. 72 stations change on day ~420)
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SCIGN: EM and RDAEM Comparison
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SCIGN: Seismic Record Comparison
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Only the Hector Mine is correlated with a SCIGN
regional activity spike - aseismic activity?
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Conclusions

• Regularization, along with deterministic 
annealing, can be used to find optimal 
hidden Markov model parameters for 
unconstrained science data.

• HMMs can be used to segment/classify 
individual GPS time series.

• By comparing segmented individual time 
series in a GPS network, correlations can be 
found that indicate behavioral changes 
across the region.
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