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Abstract. The problem of designing observing sequences to detect and 
characterize periodic phenomena occurs regularly in astronomical inves- 
tigations. Examples of current interest include Cepheid variable searches 
in external galaxies (with Hubble Space Telescope), and future high ac- 
curacy astrometric observations of nearby stars with the Space Interfer- 
ometry Mission (SIM) satellite to search for planetary companions. Var- 
ious sampling strategies have been proposed to obtain good phase cover- 
age over an interesting range of periods. Recently, Loredo and Chernoff 
have proposed the use of "Bayesian adaptive exploration", a model-based 
Bayesian method that exploits observations made to date to determine 
the best future observation times according to a maximum information 
criterion. While this method makes the best possible use of any results 
already obtained, it does not address the "bootstrap" problem of schedul- 
ing in advance of any data collection. It also is highly compute-intensive, 
which is especially problematic when an integrated observing schedule 
for hundreds of targets is required, taking into account all of the various 
other constraints and preferences that come into play. In this paper we 
report on our progress on addressing these issues. We have developed an 
approximate expression for the uniformity of phase coverage that can be 
used when scheduling to assess candidate sample times. We describe the 
results obtained using this estimator, and compare them with detailed 
simulations. We describe our progress and plans for integrating optimiz- 
ing criteria for both periodic and non-periodic observations into a single 
observation sequence. 

1. Introduction 

Data analysis techniques for periodic phenomema have become very sophisti- 
cated (see e.g. Schwarzenberg-Czerny 1999, Bretthorst 2001), providing power- 
ful techniques for the estimation of periods and other source parameters. From 
the perspective of planning to acquire data, the question naturally arises of 
how best to schedule data collection, in order to optimize post-observation data 
analysis. Information-theoretic approaches have been proposed, such as de- 
scribed by Sebastiani and Wynn (2000), motivated by the criterion that it is 
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preferable to make observations which provide the greatest additional informa- 
tion, given all that is currently known. 

This approach has been elaborated in detail by Loredo and Chernoff (2003) 
who propose a technique called Bayeszan Adaptive ExpZoratZon (BAE).  Their 
approach is based on a Bayesian model of the phenomena, from which is derived 
an expression for the expected information gain as a function of (a) results 
from observations to date and (b) the derived model probability distribution. 
Such an approach is extremely appealing in that it makes maximum use of all 
available information, and is specific to the detailed form of the model for the 
phenomena under investigation. However, there are some practical drawbacks 
to the method: it is computationally very expensive (multiple Markov Chain 
Monte Carlo simulations may be required to numerically evaluate the model), 
and it requires data from past observations to estimates times for future ones. In 
large scale planning and scheduling applications, where many future observation 
possibilities must be considered in the context of interacting constraints and 
preferences, it is infeasible to use this kind of approach. 

In the following we describe an approximation, motivated and based on 
the Bayesian modeling approach, which allows us to estimate the uniformity of 
phase coverage as a function of a set of observing times, past and future. We first 
describe the approach, then provide several examples of how our approximation 
can be used in practice. We conclude with some comments on future research 
and application areas. 

2. Approach 

Our approach is based on the results of Bretthorst (2001) who analyzed in detail 
the case of a noisy sinusoidal signal with non-uniform samples. He derived an 
expression for the Bayesian posterior probability distribution for the frequency 
f ,  given a set of observations di(t) = Aexp(-2nifti) -t- n(ti), where di are the 
data samples at times ti, A is the signal amplitude, and n the noise level. If we 
examine the expression for P ( f ) ,  the posterior probability of frequency f ,  we 
note that the denominator of Bretthorst's statistic is a function only of ti (i.e. 
is independent of the data values di) and provides a measure of the variation in 
the measured probability that arises solely from the choice of sampling times ti. 
This expression has the form: 

We use the normalized mean square deviation of the quantity V(f ) ,  over a 
frequency range of interest [fmi,, jm,,], as a measure of phase coverage nonuni- 
formity - the quantity to minimize. We have compared this quantity to the 
results of simulation runs with noisy data analyzed to determine the signal fre- 
quency: we find that this approximation tracks quite well the likelihood that 
the true frequency will be determined. 
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Figure 1. Comparison of (a) power law and (b) geometric series Sam- 
pling for a range of sample sizes. 

3. Examples 

1. Sample Time Selection - Consider the case of selecting in advance a set 
of observation times with the goal of detecting a periodic signal of frequency in 
the range [fmi,, f,,,]. This situation arises in Cepheid searches (e.g. Freedman 
et al. 1994) and other variable star observations. A comparison of power law 
and geometric series sampling strategies is shown in Fig. 1 for a range of sample 
sizes (time span of 100d, period range 2-100d). The conclusion that power law 
sampling is preferred is consistent with previous investigations. 
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Figure 2. Variation in phase coverage as a function of scheduled time 
of observation N -t I. The results depend on the frequency range of 
interest: in (a) the period range is 2d to 100d, while in (b) the range 
is 10d-20d. 

2. Incremental Scheduling - Suppose we have scheduled N observa- 
tions and seek the best time to schedule observation N + 1. This is the situation 
addressed by BAE when there exists both data and a model. When we have no 
data, we can use our approximation to find a time of minimal variation in phase 
coverage given a frequency range of interest. An example where N = 4 is shown 



4 Johnston & Knight 

in Fig. 2, where the best sample time depends on what one expects to be the 
period range of interest. 

3. Eliminating Redundant; Schedule Times - In some cases we have 
given a set of candidate schedule times that is larger than can be actually accom- 
plished - a situation which arises in some satellite mission scheduling problems 
such as SIM (Schwartz and WehrIe 2004). The problem is to reduce the set 
to one of manageable size. The approximation formula can be used to assess 
candidate subsets. We have conducted numerical experiments that show that a 
guided selection of a good subset can improve by factors of several the variation 
in phase coverage. Such an improvement can make a dramatic difference in the 
detectability of periodicities at the sensitivity limit. 

4. Fu tu re  Directions 

There are several directions for future research and application of this work: 
Incorporate information gained from past observations 
Broaden to non-sinusoidal variability (if analysis shows this useful) 
Automate the analysis of redundant candidate schedule times 
Investigate integration with schedulers such as ASPEN (Chien et al. 2000) 
as a specialized heuristic 
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