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1. INTRODUCTION 

The Multi-angle Imaging SpectroRadiometer (MISR) 
is one of a suite of five instruments onboard NASA's 
Terra EOS satellite, launched in December 1999. 
Typical satellite imagers view the earth from a single 
direction, but MISR's cameras image the earth 
simultaneously from nine different directions in four 
spectral bands. In this way, MlSR provides unique 
multiangle information about solar radiation scattered 
from clouds, aerosols and other terrestrial surfaces. 
One of the primary goals of the MlSR mission is to 
improve our understanding of how ctouds and aerosols 
affect the earth's global energy balance. 

MlSR has now been operational for over four years, 
acquiring more than 50 Terabytes of high quality data at 
a resolution of 1 .I km x 1 .I km, with a subset of data at 
an even higher 275 m x 275 m resolution. In order to 
make use of this amount of data on a global scale, we 
have applied Support Vector Machines (SVMs) to MlSR 
imagery classification. SVMs are a type of supervised 
learning algorithm, in the same category as Artificial 
Neural Networks, Decision Trees, and Na'ive Bayesian 
Classifiers. Using SVMs, we have developed a global 
cloud mask, a global cirrus cloud detector and a 
combination global aerosol detector and classifier. 

2. BACKGROUND 

This section describes the data available from MISR, 
other applications of machine learning to satellite image 
classification, with specific emphasis on cloud detection 
and classification, and provides a brief introduction to 
Support Vector Machines and the existing MlSR cloud 
detection algorithms. 

2.7 MISR Data 

The Terra satellite, which carries MISR, is in a sun- 
synchronous, polar orbit that crosses the equator every 
99 minutes during the descending portion of the orbit at 
approximately 10:30 a.m. local time. The MlSR 
instrument consists of nine pushbroom cameras with an 
average swath width of about 360 km (see Fig. 1). The 
cameras sample data in four spectral bands - blue, 
green, red and near-infrared -from nine different 
directions: *70.5', *60°, M5.6", i26.1" and 0" (nadir). 
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MlSR has a repeat cycle of 16 days, but, because of 
overlap, the instrument obtains global, multiangle 
coverage of the entire earth in nine days at the equator 
and two days at the poles. For more detailed 
information on MISR see Diner et al. (1998) or the MlSR 
website http://www-misr.ipl.nasa.qov. 

Figure I. Computer-generated image of NASA's 
Terra EOS satellite with the MlSR instrument 
onboard. Sampling is as high as 275 m x 275 m 
per pixel. To reduce the data volume, most images 
are obtained at a resolution of 1.1 km x 1.1 km. 
Image courtesy of Shigeru Suzuki and Eric M. De 
Jong. Solar Sysfern Visualization Project. JPL 
Image P-49081. 

As MlSR passes over the earth, the most forward 
looking camera (Df +70.5") images a point 2800 km 
away from the point imaged by the most aftward camera 
(Da -70.5"). It takes seven minutes for a point on the 
surface to be imaged by all nine MlSR cameras as the 
instrument passes over. When the data is processed, 
the cameras are registered so that each point on the 
surface is effectively seen from nine different viewing 
directions by a "virtual" MlSR instrument (see Fig. 2). In 
actuality, the cameras are registered either to an 
idealized earth "ellipsoid" or to terrain provided by a 
digital elevation model (DEM). Because they are 
physically closer to the instrument, objects above the 
surface, such as clouds and some types of aerosol, 
appear to move relative to the surface from one camera 
to the next due to the effect of parallax. 

The processed MlSR data is stored in Hierarchical 
Data Format (HDF) and is available from the NASA 
Langley Research Center Atmospheric Sciences Data 
Center. 
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2.2 Other Applications of Machine Learning to 
Satellite Cloud imagery Classification 

Beginning as early as Shenk et al. (1976), artificial 
intelligence methods have been applied to the problem 
of cloud detection and classification in satellite imagery. 
Computer pattern recognition was used by Ebert (1 987), 
Garand (1988) and Ebert (1989). Neural network 
approaches, by far the most popular, were adopted by 
Key et al. (1989), Lee et al. (1990), Peak and Tag 
(1992; 1994), Bankert (1994), Bankert and Aha (1 996), 
Miller and Emery (1997) and Tian et al. (2000). This list 
is by no means exhaustive. Usually these artificial 
intelligence approaches have been applied only to a 
small range of scenes or within a geographically limited 
region. Few artificial intelligence methods have been 
applied to global satellite data. 

However, SVMs have some important properties that 
make them an appropriate choice for this type of work. 
First, the SVM training algorithm is deterministic and 
avoids becoming trapped in local minima during 
optimization. Second, the training algorithm inherently 
incorporates a technique to balance maximal accuracy 
with maximal generalization performance. While not a 
panacea, this does help to mitigate problems of 
ovehtting often seen with other learning classifiers 
(Schdlkopf and Smola 2002). Finally, because SVM 
training depends only on the distances between feature 
vectors, which can be computed in a single 
preprocessing stage that is inherently parallelizable, it is 
possible to explore very large feature vectors (hundreds 
of features), making the difficult feature selection stage 
less important. 

2.4 Existing MlSR Cloud Detectors 
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Figure 2. When data is initially acquired, each 
MlSR camera views a different portion of the 
earth. After processing, all nine MlSR cameras 
are registered to the same point on the surface. 

2.3 Support Vector Machines 

Support Vector Machines are similar to other 
supervised learning algorithms (Artificial Neural 
Networks, NaTve Bayesian Classifiers, etc.) in that they 
learn to classify new data based on fully labeled training 
data. In the applications discussed here, SVMs have 
been used to classify individual pixels in MlSR images. 
Each pixel is classified using "feature vectors" that 
incorporate information from multiple MlSR cameras 
and spectral bands. 

This paper is not an introduction to SVMs; for the 
purposes of this discussion SVMs can be considered to 
be "black boxes" that take labeled feature vectors as 
input and produce deterministic classification algorithms 
that can be applied to classify feature vectors from novel 
data. Readers who are interested in the details of 
SVMs should refer to Cortes and Vapnik (1995) or the 
excellent website http:l/w.kerneI-machines.org for 
more information. 

Most of the techniques used to develop the MlSR 
classifiers described here could be applied equally well 
to any other supervised classification technique. 

Cloud detection and screening are important for the 
MlSR mission's scientific objectives, some of which 
require accurate retrievals of aerosol and surface 
properties. Three cloud detectors - called cloud 
"masks" - have been developed by the MISR science 
team specifically for use with MISR. These cloud masks 
are designed to classify each I .I km x 1 . I  km MlSR 
pixel individually as either cloudy or clear, with high 
confidence or low confidence. 

The Radiometric Camera-by-camera Cloud Mask 
(RCCM) uses the mean and variance of the red and 
near-IR radiances from each of MISR's nine cameras 
individually to identify cloudy and clear regions. A 
statistical method provides dynamic thresholds that 
separate cloudy pixels from clear pixels based on the 
input data (Diner et al. 1999b). As shown in Fig. 3 the 
RCCM is extremely accurate over water, where good 
thresholds have been implemented. However, the 
RCCM is less reliable over land, where the thresholds 
are still in the development stage. Additionally, the 
RCCM has difficulty correctly classifying specular 
reflection from bodies of water, commonly called "sun 
glint" or "sun glitter." For this reason, a conservative, 
geometrically derived "glitter mask," specific for the 
geometry of each camera, is used to designate areas in 
an image where sun glint might be expected to cause 
problems for the RCCM retrieval. 

The Stereoscopically Derived Cloud Mask (SDCM) 
takes advantage of MISR's multiangle capability. A 
feature matching algorithm is used with combinations of 
MISR's cameras to determine the height of observed 
reflecting surfaces (Moroney et al. 2002). If this height 
is greater than the height of the terrain at that location, 
given by the digital elevation model, then the associated 
pixel is assumed to be cloudy (Diner et al. 1999a). 
Figure 3 shows that the SDCM is only slightly less 
accurate than the RCCM, but the SDCM performs 
equally well over land and water. However, there are 
times when the feature matching algorithm is unable to 
find a satisfactory match between features in multiple 
cameras. This can occur, for example, when clouds in 



the scene are extremely homogeneous horizontally. As 
a result, roughly one third of the MlSR image pixels are 
left unclassified by the SDCM. 

Finally, the Angular Signature Cloud Mask (ASCM) 
was developed based on the Band-Differenced Angular 
Signature (BDAS) approach, described by Di Girolamo 
and Davies (1994). BDAS utilizes both spectral and 
angular changes in reflectivity to distinguish clouds from 
the background. The ASCM has only recently become 
a MlSR operational product and was not used for 
comparison in the work described here. 

Each of these cloud masks works extremely well 
under certain conditions, but no single one appears to 
be robust enough for highly accurate global cloud 
detection. For this reason, an artificial intelligence 
approach was applied to the MlSR global cloud 
detection problem. This was the beginning of work that 
led to the further development of a cirrus cloud detector 
and a combined global aerosol detector and classifier. 

3. APPROACH 

Our initial goal was specifically to explore the ability of 
SVMs to produce a global cloud detection algorithm 
more accurate and robust than the two MlSR cloud 
masks (RCCM and SDCM) operational at the time. This 
led, in a logical way, to the development of new SVM 
applications for other MlSR imagery classification tasks. 

3. I Global Cloud Mask 

Rather than attempting to build a cloud mask from 
first principles, we decided instead to leverage the 
strengths of the existing cloud masks to develop the 
new SVM cloud mask. We began by making the 
unconventional choice of constructing feature vectors 
out of a large number of "raw" features, instead of using 
a smaller number of higher-level features. This was 
motivated, in part, by the observation that SVMs were 
successful at classifying images of handwritten digits 
simply using grayscale pixel values as inputs, with no 
higher-level features (DeCoste and Scht~lkopf 2002). 

For each 1 .I km x 1 .I krn pixel of MlSR data, we 
constructed a feature vector consisting of the red-band 
radiances of each of the 5x5 square of pixels centered 
at that point, using the three most nadir-pointing MlSR 
cameras (Af +26.1e; An On; Aa -26.1 "). Then, the 
radiances from the green, blue and near-infrared bands 
were incorporated for the smaller 3x3 region of adjacent 
pixels. Nexf, 25 features containing the standard 
deviation of the higher-resolution data within each pixel 
in the 5x5 region from the nadir camera (An) red band 
were added. Finally, one additional feature, the 
normalized solar zenith angle, brought the total set of 
inputs to the feature vector to 182 per pixel. Because 
there are well-known difficulties in cloud detection due 
to persistent snow and ice at high latitudes, we confined 
our "global" cloud detector to latitudes less than 60" in 
both hemispheres. 

Since our goal was to train a single classifier that 
would be useful globally, it was necessary to obtain a 
large number of training labels for a variety of scene 
types. Faced with the daunting possibility of needing to 
individually label potentially tens of thousands of pixels 
as cloudy or clear around the globe, we instead settled 
on an approach that piggybacked on the existing cloud 
masks. We constructed several million feature vectors 
from randomly distributed MISR pixels. Then, we used 
those pixels where the RCCM and SDCM were most 
confident to label a subset of these globally distributed 
pixels. Specifically, we used the highest-confidence 
RCCM labels over glint-free ocean and the highest 
confidence SDCM labels over land and shallow water. 
Because each MISR pixel is already categorized as 
being located over ocean, land, or shallow water, based 
on a geographic landlwater mask, this was a natural 
distinction to make. 

Due to inaccuracies h both the RCCM and SDCM, it 
was likely that many of our training labels were 
incorrect. Even so, we expected that the SVM would be 
tolerant of these incorrect labels and still be capable of 
appropriate generalization. To calibrate the training 
process and validate the results, approximately 3,500 
pixels were hand-labeled by an expert as cloudy or clear 
based on visual inspection of the images. Finally, the 
SVM training parameters were chosen that maximized 
the resulting classification accuracy on this set of test 
vectors. 

3.2 Global Cirrus Cloud Detector 

MlSR is an ideal instrument for studying cirrus clouds, 
which play an important role in the earth's global energy 
balance but often go undetected by nadir-pointing 
instruments because they are optically thin. Scenes 
that appear to be clear in a nadir view can sometimes 
appear completely cloud covered in MISRts 70" view 
because the pathlength of radiation through the cloud is 
increased by a factor of three at this angle. 

Based on our initial success with the global cloud 
classifier, the feature vectors used for the SVM cirrus 
cloud detector were exactly the same as those 
described for that case. The primary difference was that 
radiances from the 45.6", 60" and 70.5" cameras were 
chosen to exploit the increased pathlength of radiation 
through clouds at these angles relative to nadir-pointing 
instruments. The forward-pointing cameras (Bf +45.6; 
Cf +60°; Df +70.5") were used in the northern 
hemisphere and the aftward-pointing cameras (Ba 
-45.6"; Ca -60"; Da -70.5") were used in the southern 
hemisphere to make the most advantage of forward 
scattering in either hemisphere. Labels for each feature 
vector were designated relative to the center pixel of the 
60" camera; i.e., a vector was only labeled as cloudy if 
the central pixel in the 60" camera contained part of a 
cirrus cloud. 

Because no MlSR cloud mask currently detects only 
cirrus clouds, it was not possible to gather training data 



from existing classifiers as was done in developing the 
original global cloud classifier. Instead, all the training 
labels for this case were provided by an expert using an 
interactive, graphical tool in development at the Jet 
Propulsion Laboratory called PixelLearn. This tool, 
originally devised for the MlSR work described here, but 
later adapted to work with MODIS and Hyperion data, 
allows the user to explore multispectral, multiangular 
images, click on\pjxels and regions to label them as one 
of several classes, then interactively train an SVM to 
classify this data and immediately see the results of the 
SVM classification based on the labels provided. This 
tool made it possible to build an initial cirrus detector 
very rapidly and then focus the majority of the 
subsequent effort on reducing errors in those few places 
where it was clear that the classifier was making 
blunders, such as in regions with thin stratus clouds, by 
providing additional training labels. 

3.3 Global Aerosol Classifier 

To increase the level of complexity of the 
classification task, we next,focused our attention on 
constructing a pixel-level classifier that would not only 
identify aerosols - in much the same way a cloud mask 
identifies clouds - but that would also classify aerosols 
into a variety of types. This task is slightly more 
complicated than the "binary" classification task of 
cloudy vs. clear pixels. 

We began by adapting the original global MlSR SVM 
cloud detector, which used only the three near-nadlr 
cameras. Our initial expectation was that it would be 
difficult for the SVM to discriminate between aerosols 
and clouds. A number of training labels were provided 
by an expert for a variety of aerosol types, including 
smoke, dust and a generic "pollution" category. To our 
surprise, we found that the SVM was able to separate 
most clouds from aerosols with ease, apparently due to 
the spectral signatures present in the aerosols, which 
are not present in most clouds. Additionally, the 
combination of spectral and multiangle data allowed the 
aerosols themselves to be discriminated from one 
another. To increase the likelihood of aerosol detection 
by increasing th&pathlength of radiation through the 
aerosol, the near-nadir cameras used initially were 
replaced by the most oblique (Bf, Cf and Df) cameras. 
We restricted this study to the northern hemisphere at 
latitudes less than 60°, to allow for preferential forward 
scattering into the forward bank of MlSR cameras. 

Aerosol classification was performed in a stepwise 
fashion, with pixels being assigned a single class by an 
SVM developed specifically to discriminate that class 
from all others. The complete algorithm was capable of 
distinguishing six different classes: clouds, clear water, 
clear land, smoke, dust and general pollution. Once 
properly trained based on expert labels, the algorithm 
was allowed to run independently on unclassified MISR 
data to identify new scenes containing a significant 
amount of aerosol. 

4. RESULTS 

The following section describes the results of the 
three classification tasks in a variety of ways. Examples 
have been selected to be illustrative of the capabilities 
of the SVM classifiers, rather than comprehensive 
assessments of their performance. 

4.1 Global Cloud Mask 

Ovcr Land Over Water Overall 

Figure 3: The graph depicts the performance of 
MISR's RCCM (yellow) and SDCM (green) cloud 
masking algorithms compared with the SVM global 
cloud mask (violet). The y-axis shows the error 
relative to expert labels. Smaller numbers indicate 
better performance. Performance is compared for 
three cases: just land scenes, just water scenes and 
all scenes. 

Once training was completed for the SVM global 
cloud mask, using the approach described in Section 
3.1, the performance of all three cloud masks was 
assessed using 3,500 labels provided by an expert. 
Figure 3 shows the results of this comparison. Results 
were obtained for classification over only land and only 
water, as designated by the MlSR geographic 
landhater mask, and for all pixels independent of their 
landlwater designation. Classifier performance is 
shown in Fig. 3 in terms of overall percentage error. A 
classifier that matched the expert labels perfectly would 
have an error of 0%. A penalty is assessed equivalently 
whether a cloudy pixel is misclassified as clear or vice 
versa. However, failure to classify a pixel as either 
cloudy or clear did not result in a penalty in this case. 

Over land, where the RCCM thresholds were still 
being actively developed, the RCCM performed the 
worst of the classifiers, misclassifying one third of the 
pixels. The SDCM performed significantly better, 
misclassifying only 12.2% of the pixels relative to the 
expert labels. The SVM classifier, which was trained 
based on inputs from these other two classifiers over all 
scenes, was able to generalize appropriately and cut the 
classification error nearly in half relative to the SDCM, 
only misclassifying 7.1% of the land pixels. 

The situation over water reveals a completely different 
story. The thresholds used by the RCCM are highly 
accurate over water, as evidenced by the extremely low 
5% classification error for the RCCM. Because the 



SDCM classifies pixels based on height above the 
surface, the performance of this detector was relatively 
unchanged. The SVM detector was only slightly less 
accurate than the RCCM, with an error rate of 5.4%. 
Comparison the SDCM results over land and water 
shows a difference of 0.6%, which can be taken as a 
rough estimate of the confidence of this assessment, 
since the performance of the SDCM is expected to be 
independent of the type of surface, purely on physical 
grounds. Therefore, it can be fairly said that the RCCM 
and the SVM classifier essentially performed 
equivalently for water pixels. 

Globally, the RCCM and SDCM performed about 
equally well relative to the expert labels. In either case, 
approximately 13% of the pixels were misclassified by 
the operational MlSR cloud masks: 12.8% for the 
RCCM and 12.6% for the SDCM. However, the 
performance of the RCCM is heavily biased due to its 
poor performance over land. Improved land thresholds 
have been incorporated into the MlSR operational 
product since this study was conducted. The SVM 
classifier shows significant improvement over the other 
two methods, reducing the global pixel level error by 
more than a factb~ of two, to 5.9%. This result shows 
that an SVM trained on the existing cloud masks, both 
of which have a larger global error, is capable of 
generalizing in such a way as to improve the overall 
effectiveness of the cloud classifier. Additionally, if 
those pixels were eliminated where the SVM output was 
less certain (where the output value fell between -1.0 
and 1.0), the remaining 70% of the pixels were 
classified with only 3% error. 

4.2 Global Cirrus Cloud Detector 

Due to the lack of ground truth data, the assessment 
of the performance of the cirrus cloud detector was 
primarily a visual one. Fig. 4 (found at the end of the 
paper) is an example scene containing some thin cirrus. 
The left-hand panel shows the typical nadir-looking view 
from MISR's An camera. The red, green and blue 
channels have been combined to provide a realistic 
RGB image. The center panel shows the same scene 
from MISR's Cf (+60°) camera. Radiation passing 
through the clouds in this image has twice the 
pathlength compared to radiation passing through the 
clouds in the left-hand panel. Note the cloud in the 
center left of the Cf image is slightly brighter than in the 
left-hand image. Very careful inspection of the image 
will also show that this same cloud has moved relative 
to the ground between these two images. This is due to 
the effect of parallax because the cloud is above the 
ground and closer to the instrument. The image on the 
right shows the result of applying the global cirrus cloud 
detector. The global SVM cloud detector was used to 
detect all the clouds in the scene; colored blue here. 
Cirrus clouds detected using the new SVM cirrus cloud 
detector appear in light yellow. 

4.3 Global Aerosol Classifier 

Here we are interested in showing the advantage 
derived from using MISR's multiple views, as opposed 
to the traditional single view for the global aerosol 
classifier. One of the advantages of the machine 
learning approach is that we did not need to add any 
information about how these additional features from the 
additional cameras were related. Simply augmenting 
each feature vector with additional information tended to 
improve the overall accuracy. 

As specific evidence of this, the two confusion 
matrices shown in Fig. 5 compare the ability of a multi- 
class SVM to distinguish between six classes when 
given feature vectors containing only one MlSR camera 
vs. three MtSR cameras. In a confusion matrix, each 
row represents a class of true pixels according to expert 
labels and each column represents the classification 
decision made by the machine learning classifier. A 
perfect classifier, then, would show 100% correct 
classification down the main diagonal. 

Figure 5: The two confusion matrices shown above describe 
the overall performance of the SVM aerosol detector and 
classifier. Correct classifications fall along the diagonal, while 
incorrect classifications lie off the diagonal. 

The captions above each of the confusion matrices in 
Fig. 5 show that increasing the number of input cameras 
to the SVM aerosol classifier results in an improvement 
of nearly a factor of two in the error rate. Inspection of 
the diagonal, highlighted in green, shows that in all but 
one case the addition of angular information results in 
improved classification accuracy. The category labeled 
"pollution" is a generic category intended to represent all 
aerosol pixels not clearly distinguishable into one of the 
other two classes, smoke and dust. The SVM with the 
larger number of inputs attempts to classify pixels 
labeled as "pollution" into the category "smoke" 52.4% 
of the time, which accounts for the decreased accuracy 
in this one category. Improvements in other areas of 
the matrix more than compensate for this shortcoming, 
however. The confusion matrices highlight the 
usefulness of the multiangle approach to aerosol 
classification. 



5. DISCUSSION REFERENCES 

This work has shown that our approach to machine 
learning classification can be very effective for many 
global image pixel classification problems. The first key 
to our approach is the use of large feature vectors 
containing many raw features from different camera 
angles and spectral bands throughout a large spatial 
neighborhood, as opposed to a smaller number of 
higher-level features. It is also important to gather a 
large number of training examples, either by leveraging 
existing classifiers, or using an interactive tool to quickly 
label many images. Finally, we chose to use a robust 
machine learning technique; specifically support vector 
machines, to train a classifier that generalizes well. This 
technique is effective for both binary classifiers - such 
as the global cloud and cirrus detectors - and multi- 
class classifiers - such as the aerosol-type classifier. 

From a scientific standpoint, the work with the SVM 
classifiers has been illuminating. Realizing that none of 
the existing MISR cloud classifiers was truly able to 
simultaneously take advantage of MISR's multiangle 
capabilities and the time-tested threshold-based 
approach to cloud detection in satellite imagery, we 
discovered that a machine learning algorithm was able 
to extract the best aspects of both approaches, yielding 
promising global cloud classifier. Although the effects of 
parallax have not yet been accurately accounted for, the 
work on the cirrus cloud detector provided useful 
insights into the problem of image registration for 
MISR's large view angle cameras and showed the utility 
of these cameras due to the increase in photon 
pathlength through thin clouds. Additionally, the aerosol 
detector provided some surprising information about the 
ability of a multiangle imager, making use of a limited 
number of shortwave spectral bands, to discriminate 
aerosols from clouds and different aerosol types from 
one another. The interactive SVM trainer also showed 
the importance bf~providing accurate positive training 
examples and the necessity of negative training 
examples to eliminate false positive identifications. 

6. FUTURE WORK 

Work currently underway at JPL involves developing 
a cloud classifier that is able to separate various 
common cloud types in MISR imagery. This task is 
particularly difficult because most cloud classes are 
based on large regional features, while our classifiers so 
far have been based on relatively local features. 
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Figure 4: This figure shows two views of a MlSR scene containing high, thin cirrus and the result of applying the SVM cirrus cloud 
detector. The left image shows the nadir, An (Do) camera RGB view. The center image is the forward-looking Cf (+60°) RGB view. 
Note in this image the increased brightness of the cloud slightly to the right of center due to the increased photon pathlength through 
the cloud at this larger angle relative to the An camera on the left. The right image shows the results of the SVM cirrus cloud 
detector. The key is shown below. 
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