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ABSTRACT

A Kalman flter based clock predictor is devaloped, and
its performance evaluated using both simulated and real
data. The clock predictor is shown fo possess a near {o
optimal Prediction Error Variance (PEV) when the
underlying noise consists of one of the power law noise
processes commonly encomiered in time and
frequency measurements. The predictor’s performance
in the presence of multiple noise processes is also
examined. The relationship between the PEV obtained
in the presence of mmitiple noise processes and those
obiained for the individual component noise processes
is examined. Comparisons are made with a simple
linear clock predictor. The clock predictor is used io
predict future values of the time offset between pairs of
NPL’s active hydrogen masers.

1. INTROBUCTION

National Measurement Institutes and Global Navigation
Satellite System (GNSS) operators have both shown
considerable inferest in constructing atomic timescales
that are mainiaioed as close as possible to UTC
Because of the well-known latency in the publication of
BIPM’s Circular T, it is necessary to predict the future
performance of an atomic timescale over periods of up
to 50 days in order to maintain a local timescale that is
close to UTC. Several anthors have developed clock
predictors. These range from the simple yet effective
{11 to more claborate designs for specific applications,
e.g. GNSS {21.

Most clock predictors will provide a close to optimal
prediciion in the presence of a single well-specified
noise process. The aim of the work described in this
paper is to develop a clack predictor that will provide a
close o optimal prediction In the presence of all noise
processes commenly encountered in tme and
frequency measurements and in the presence of linear
{requency drift. This is achieved by employing a two-
stage arvalysis process.. Initially, an adaptive Kalman
filter is used to estimate the magnitude of the noise
processes present within the clock measurements. The
Kalmar filter now possesses accurafe noise parameters.
This filter iz then used to estimate the clock drift

parameters, from which predictions of the fammre clock
offsets may be obizined.

A description of the noise processes encountered in
atomic clocks and the approach used in this paper o
model them is described in section 2. The design of the
Kalman filter is described in section 3. The clock
predictor’s performance in the presence of both single
and multiple noise processes is discussed in sections 4
and 5, respeciively. The relationship between the
Prediction Error Variance (PEV) obtained in the
presence of muttiple noise processes and those obtained
for individual component noise processes is examined.
The Kalman fitter predictor’s performance is compared
directly against that of a simple linear predictor. An
example of the applicaton of the clock predictor is
described in section 6, and concerns the prediction of
fitore values of the time offset between pairs of NPL’s
active hydrogen maser.

An adaptive Kalman filter method has been employed
io estimate the magnitude of the noise parameters. The
method is based on the work of Meyer [3], the
technique being modified and updated so as to estimate
the noise parameters used in the clock models used in
this paper. A detailed account of the noise parameter
estimation method will be published shortiy.

2. CLOCK NOISE AND DRIFT PARAMETERS

The noise processes ocourring in atomic clocks and the
associated measurement systems are  traditionally
modelled as a Iinear combination of five well known
power law noise processes [4], these being White Phase
Modulation (WPM), Flicker Phase Modulation (FPM),
White Frequency Modulation (WEM), Flicker
Frequency Modulation (FFM), and Random Walk
Frequency Modulation {(RWFM). An exact model of
either FPM or FFM cannot be incorporated into a
Kaiman filter.

In this paper we describe the nofse processes
miermediate In structure between WPM and WEM and
between WFM and RWFM ag a Hnear combination of
Markov and imtegrated Markov noise processes,
respectively {3]. This model enables us to construct a
good approximation fo all FPM and FFM power law



noise processes intermediate in character between
WPM and RWFM. In addition, we arc able to describe

noise processes observed in atomic clocks that are not |

well modelled as a lincar combination of power law
noise processes but may be described well using the
Markev and mntegrated Markov noise processes.

The deterministic characteristics of atomic clocks may
be described in terms of time offset, frequency offSet,
and in many situations linear frequency drift offset,
drift parameters. In addition the relaxation “memory”
associated with both the FPM and FFM noise processes
is described approximately as z finite number of
Markov drift parameters.

3. DESIGN OF THE CLOCK PREDICTOR

3.1 Kalman filtey desion

A clock predictor is used to estimate the future offsets
between two clocks, using both current and previous
measurements of the time difference. The Kalman filter
clock predictor provides estimates of the deterministic
parameters of the offset along with the PEV.

The clock predictor is implemented using the standard
Kalman filter equations [6]. The measurements are
assumed to be noiseless. '

The state vector af measutcment » is given by
X, where ‘
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Here, £ ., 7., and £ are the time offset, frequency
offset, and linear frequency drift offset components of
the state vector, and e, and p arc the frequency and

time offset of the ¥ Markov frequency and phase

components respectively.
The design matrix # is given by

H=(@ 0, 0, 0 0, 1 - 1} (32
The state propagation matrix @ and process
covariance matrix ¢ are based on equations (3.3) and
(3.4) of {5]. The matrices describad in [5] are extended
to include components that operate on the Markov
phase components of the state vector. The off-diagonal
clements of these additional rows and columas are zero,
and the vectors describing the diagonal elements are
given by

@, =lexn(R ;7,) exp(-R, 7)) (B4
and
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respectively, where sz is the time constant of the

Markov process, 7, is the spacing between successive

-ih

measurerpents, aud G;‘;. is the ¥ Markov noise

parameter.
3.2 Initialisation
To initialise the Kalman filter, the updated parameter
covariance matrix P is set to £ where P, contains

only diagenal elements described by the vector 7o
where

£ 2 z 2 2 \F
T =l oo oo T - ot 6;1 . G.;E\I - (36)
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The T, . 7, and 7, components are st to very large
vatues, and the 7/ and 7, components are set o the

“steady stafe” variances of the Markov processes. All
clements of the state vector estimates #r are set to zero.

In the situafion where we aré confident that linear
frequency drift is nmot present in the clock
measurements, e.g., in the long ferm comparisons of

twe caesisn fountain clocks, then the ¢ Hnear
frequency drift parameter component of the state vector
may be removed or alternatively To.is set to zero.

3.3 Prediction

To obtain a prediction of the clock offsets and the
corresponding uncertainties we need to runt the Kalman
filter beyond the last available measurcment j.. The

state vector estimates X ,and parameter covariance
matrix P at prediction length J are obtained using
P where
25 = ©(8)ET, (3.7
and
Pr=@@B)POT(SY+0(5). (38)

The time offset prediction ¥ s and the associated PEV

vf are then given by

Y5 = Hij (3.9)
and
VS =HP;HET. {3.10)

Combining eguations (38) and (3.10) gives the
following expression for the PEV:

V5 =HO(S)P @ " (6)H " + HQ (8)H T .(3.11)



The first term on the right of equation (3.11} depends
on the wncertainly in the exfrapolation of the current
estimate of the clock offset drift parameters, while the
second term depends completely upon the stochastic
processes oocurring within the clocks.

4. PERFORMANCE IN THE PRESENCE OF A
SINGLE NOISE PROCESS

4.1 Comparison with simple linear sud optimal
predicters

We compare the performance of the Kalman fiter
clock predictor against that of & simple Inear predictor
and where possible against that of an optimal clock
predictor. The minimum possible PEV V* has been
previously calculated i the case of several power law
noise processes from the power spectral demsity of
those noise processes |1, 71 Where possible we relate
the PEV to the Allan variance o (&) of the noise

process. -

4.2 WEM Naoise

In the presence of only WFM noise, assmming an
infinite length data sef and kaown linear frequency drift
parameter, both the Kalman filter and simple linear
clock predictors provide optimal predictions. This
prediction is obtained from two infinitely spaced data
points resulting in exact knowiedge of the frequency

offset parameter. The PEV and o *(§) are then related
by
Vie =80 {8)y=00 &, - &1

4.3 RWEM Noise
In the presence of RWFM noise and kuown linear
frequency drift parameter, the optimal PEV is given by
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The PEV of the Kaiman fitter predictor is given by

& T (43)
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The optimal PEV is omnly reached when we wuse
nfinitely smal! data spacing. This it due to the
frequency offset parameter changing during the interval
between the two measarements.

4.4 Single integrated Markev noise process
To study the performance of both the Kalman filter and

simple linear predictor in the presence of FFM it is
useful to determine the performance of these predictors
in the presence of a single integrated Markov noise
process. The relative performances of the two

predictors are shown in figure 1. The linear predictor is
optimised at cach prediction length &
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Figure 1 shows plots of Iog (c,/8), against
Log, (5), obtained from the Kalmon filter predictor
{black and pink), and the simple linear predictor (blue

and red), obtained both jrom theory (PED) and from
simailations (RMSE) (2008 estimates).

Graphs of Log, (5, /&) against Log, (5} are plotted in
figure 1, where o, is the prediction error deviation.
The results are presented in this form so that the
gradients of the corves would be similar to, and hence
easily compared with, graphs of Log, (o (5)) against
Log,(5). The Prediction Error Deviation (PED)

valnes obtained from theory and Room Mean Square
Error (RSME) obtained from simulation agreed well.

A single Markov process is considered where R =
1.18x107s", 7z, =105, and the daia length is ten times

the maximum prediction length. The PEV was found to
be lower in the case of the Kalman filter predictor at the
“centre” of the Markov process. Af long and short
pradiction lengths where the noise process resembles
WEM and RWEM, respectively, the PEV wvaluss
obtained from the two predictors were found to be
similar.

5. PERFORMANCE IN THY PRESENCE OF
MULTIPLE NOISE PROCESS

3.1 PEV inequality
The following inequality applies to the PEV obtained
for a fixed & when multiple noise processes are present:

-3 N 7l (5.1)



where V¥ is the minimum PEV for the sum
x,{t)+x;{z) of two independent noise processes, and
¥ and V¥ are the minimum PEV values obtained
individually.

In previous literature [1, 7] the above inequality has
been assnmed fo be an equality. While this may in
some situations provide a reasonable approximation it
may lead in many exampies to significant errors in the
PEV estimation.

To understand the origin of the shove ineguality we
examine further equation (3.11). The second torm on
the right hand side of equation (3.11)

V= HO(SH" (5.2)

is the stochastic component of the PEV, its origin is doe
to noise occwrring within the clock gffer the last
measurement has occurred. When two or more noise
processes arc present this component of the PEV will
add tinearly.

The first tezm on the right hand side of equation (3.11)

V2 = HO(SYP B(GY HT (531

gives the contribution to the Kalman filter PEV from
uncertainties in the codrapolaton of the drift
parameters. The PEV inequality occurs within this
“parameter extrapolation” term:r When only  the
individual noise processes are presemt, the individual
PEV values }/, and }, are obtained using optimal
values of the Kalman gain, X, and X, respectively.
When we compute the PEV V,, , from the combined
noise processes we are using a different vaive X, |

for the Kalman gain. In general the K, value of the
Kalman gain will not be the optimal Kalman gain when

computing the PEV for either component noise process.

Hence the resulting PEV V,_, will be greater than the
sum of the individual ¥ and ¥V, PEV values and so
leads to the inequality. If we used the same Kalman
¢ain in all three cases the inequality would not occur,
however the PEV values would then in most situations
be sub-optimal

5.2 Combination of WFM and REWFM  noise

processes

Consider the following example where there is a
mixture of WFM and RWFM noise processes present
with magnitudes 52 and &2 . We assume an

infirite data set so that the Kalman filter has reached a

" steady state, and that the linear frequency drift term is
eithér known or absent.
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Figure 2 slowing plots of Leg,(c,/8) against
Log, (8), obtained from the Kalman filter parameter
covarianee mairix (PED) and from simulation (RMSE)
(500 estimales), in the case of WFM (pinkl, RWFAS
{green), a combination of WEM and RWFM (brown)
and the sum of the individual noise process PEV values

fblue).

The parameter covariance matrix then propagates
according to the steady state Kalman {ilter equations

P =®P® + 0 (5.42)
K=PHTHPH"Y'  (5.4b)
Pt = (I - KH)P" (5.40)
where
@z[i T;] , 5.5
and [8]
( 2 Tsﬁ—;mﬂm r02 Jzi}ms,{)
AN o g
o= , 3 2 (5.6)
Tn il o 9
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BF=(1 0}, and becamse the measurements are

noiscless
- c(ﬁ 03. (5.7)
0 p

Solving the above simulianeous equations (3.4} for p
and then substituting into equation (3.11) gives
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The right hand term of (5.8} contains terms that inclade
the multiplication of O, and &, the
mequality given in equation (5.1} is clearly evident.

Comparing the brown and blue curves of figure 2 we
cbserve that the PEV eguality is clearly evident with
the PEV valnes obtained from the combined noise
processes (brown) possessing the higher PEV values.

5.3 Perfarmance in the nresence of FEM
FFM noise is present in active hydrogen masers. The
optimal PEV obtained o the presence of a FFM noige
process has been previcusiy calculated {1, 7] as
o Jf &*
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Figure 3 slowing plots of Log, (o, /&) agaiﬁst
Log,, (§) obtained from the Kalman filler predictor

(blue and pin), simple linear predictor (ereen and
black), and from an opfimal predicior (ved); obtained
both from theory (PEDJ ond from simulations (RMSE)
(2000 estimates).

The performance of both the Kalman filter and simple
linear clock predictors in the presence of FFM and in
the absence of linear frequency drift is shown in figme
3. These plois were obtained using simulated data and a
data set that is ten times the maximum prediction
length. The performance of the Kalman filier clock
predictor is close to that of an optimal predictor, except
at prediction lengths that are only a small pmltiple of
the minimum data spacing %. In contrast, the simple
linear predictor does not provide an optimal prediction.
The best linear prediction was found to occar where the
predictor point spacing was equivalent to the prediction
lengih, :

6. PREDICTOR EVALUATION USING REAL
CLOCK AND TIME TRANSFER DATA

The performances of both the Kalman filter and simple
linear predictors have been examined using 150 days of
clock measurements made between NPL’s three active
hydrogen masers, with mimimal spacing 7, of 600 s.
The three pairs of clock differences were examined
separately. The magnitude of the noise parameters were
estimated as ocutlined in section 6 assuming that the
clock noise may be described as a Hnear combination of
integrated Markov noise processes. Clock predictions
were made throughout the lencth of the data sets, and
these were then compared against the actual clock data.
The method was repeated using a simple linear
predicior with optimal “point spacing”.

Logid)

—RMSE (HM2 - HM1) ——PED (HM2 - HI1}

~—PED {(HM3 - HM1)

~— RMSE (HM3 - HM1}

l
][ —-RMSE (HM3 - HM2) — PED (HM3 - HN2)

Figure 4 showing plots of Log,o(c/8 against Logof 5
Jor all three pairs of maser differences obtained from
theory (PED) and simulation (RMSE) using the Kalman
Sfilter predicior.

Figure 4 plots  of  Log{o,/5)against
Log,,{(6)shew that the RMSE obtained from the

clock data and the PED estimates obtained from the
Kalman filter agreed well at all prediction lengths. This
helps condirm the validity of our model.
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Figure 5 showing plots of Logo( /'8 against Log(d)
Jfor the (HM2 -HR1)} maser comparisons obioined from
theory (PEDY) and sinmulation (RMSE} using hoth o
Kalman fifter and simple linear predictor.

Figure 5 shows the variation of PEV against prediction
length for both the Kalman filter and simple linear
predictor. The PEV and the root mean square prediction
error agree well for both the Kalman filfer and stmple
linear clock predictors. At all prediction lengths the
theoretical PEV values are lower in the case of the
Kalman filier clock predictor. The root mean square
prediction errors obtained from the Kalmam filter
predicior are lower than those obtained from the linear
predictor at most prediction lengths. At prediction
lengths close to one day ws cbserve that the root mean
square prediction error obtained from the simple lingar
predictor is very slighfly lower. One possible cause
may be diurnal changes cccurring witlin NPL’s clock
rooms, this may result in wp-modelled pertodic like
effects perfurbing the Kalman filter predictor.

8. CONCLYUSIONS

A Kalman filter clock predictor has been developed.
The performance of this predictor was found to be very
close to optimal when operating on noise processes
where the optimal PEV was known. The Kalman filter
clock predictor performs significantly beiter than a
simple Huear predictor, in the presence of a single
integrated Markov noise process, FFM noiss and when
used on NPL’s hvdrogen maser clock data.

The relationship between the PEV obtained in the
presence of a single noise process and mwoltiple noise
process has been examined, and the magnitude of the
PEV “inequality” examined.’
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