
State-Based Models for Planning and Execution Coordination

Matthew B. Bennett, Russell L. Knight, Robert D. Rasmussen, Michel D. Ingham

Jet Propulsion Laboratory, NASA
4800 Oak Grove Drive
Pasadena, CA 9 1 109

{ Matthew.B.Bennett, Robert.D.Rasmussen, Russell.L.Knight, Michel.D.Ingham}@ jpl.nasa.gov

Abstract
Many traditional planners are built on top of existing
execution engines that were not necessarily intended to be
operated by a planner. The Mission Data System has been
designed from the onset to have both an execution and
planning engine and provides a framework for producing
state-based models that can be used to coordinate planning
and execution. The models provide a basis for ensuring the
consistency o f assumptions made by the execution engine
and planner, and the frameworks provide a basis for mn-
time communications between the planner and execution
engines.

Introduction
Many traditional planners are built on top of existing
execution engines that were not necessarily intended to be
operated by a planner. The planner must model the
execution engine’s behavior, must make the same
assumptions about the real world (which may be hidden in
the code), and must be aware of its quirks. For example, a
command may issued by an execution engine and have side
effects on the execution of subsequent commands. The
effects may be both on the behavior of the execution engine
and on what is being controlled in the real world. A planner
must be aware of these effects to generate plans that will
succeed when executed. Because there may be no well-
defined structure in the execution engine to model real-
world effects, it makes it difficult to build planning and
execution engines that work together under the same
assumptions. Fiurthermore, it is difficuIt to keep them
consistent in a parallel development effort.

The Mission Data System project at the Jet Propulsion
Laboratory has developed a state-based architecture,
modeling fiamework, and systems engineering
methodology for developing state-based models of plans
and execution behavior. These models provide the basis for
ensuring the design-time consistency of assumptions in the
execution engine and planner, and are the basis for run-
time communications and coordination between planners,
schedulers, and execution engines. MDS calls these models
“State Effects Models” and the methodology by which they
are developed “State Analysis.” The modeling framework
has been designed to be an open architecture for applying

various formalisms and algorithms for spacecraft
operations planning and execution.

MDS state-based models of plans and execution behavior
provide a basis €or communication between planners,
schedulers, and the engines that execute scheduled plans as
folIows:

(1) MDS has clearly defined roles in the architecture for
planning and execution

(2) MDS has defined semantics of execution in terms of
state-histories that are represented using state
constraints. The MDS architecture has well-defined
interfaces for exchanging information between the
execution and planning engines, including methods on
achievers called by the planner.

(3) MDS handles mismatches in modeling by explicitly
representing uncertainty in state estimates produced
during execution, using this uncertainty in controllers,
planning for uncertainty in knowledge goals, and
ensuring the planned uncertainty during execution
using estimators.

(4) MDS deals with uncertainty in timing using flexible
time, uncertain time intervals, and worst-case state
predictions limited by temporal constraints that impose
deadlines.

(5) MDS state analysis is a systems engineering
methodology that with the MDS software frameworks
bridges the gap between how execution is treated in
the planning process, and what happens when the
resulting plan is actually executed.

Execution and Planning Semantics
MDS uses constraint-based semantics to model execution
behavior. A constraint on a state variable represents a set of
possible state trajectories over an interval of time. A state
trajectory is estimated during execution and must agree
with the planned constraints for the plan to execute
successfully. A state trajectory for state variable is
represented in MDS using a state value history, and is
updated by a state variable’s estimator during execution. A
state variable’s controller and estimator enforce the
planned constraints during execution.

Plans consist of constraint networks containing both
temporal and state constraints. State constraint semantics
are based on set theoretic operations such as union and
intersection over sets of possible state histories. These
semantics are used by the planner to generate plans.

The MDS architecture has designed goal networks to filly
describe plans a,s well as being directly executabIe. Planned
goal nets are monitored by the execution engine, which
issues goals to state variables when preconditions are met.
Temporal preconditions are represented directly in the goal
network. State predictions are checked by the goal runner
by consulting state information stored in state variables,
and by consulting the readiness of a state's achievers to
begin enforcing a constraint.

Roles andl Interfaces of the Planning and
Execution Engine

MDS has clearly defined roles in the architecture for
planning and execution. State Variables provide well-
defined interfaces between the planner and the execution
engine. State variables store state history and reference
plans. Achievers execute plans and model their own
execution behavior. State variables are consulted by the
planner for modeling information about the dynamics of the
state to be controlled and the execution behavior of the
state. For states that are actively estimated or controlled,
the state variable consults its achievers (estimators and
controllers) for determining the execution behavior.

The goal runner is part of the execution engine. It issues
goals to be executed to state variables when preconditions
are satisfied. Some of these preconditions are timing
constraints as developed in the plan, the others are
dependent on the current state history and the capabilities
of achievers. These other preconditions are provided by the
state variables, which in turn consult the achievers for
whether they are ready to begin executing a goal. During
execution of a goal, an achiever can use the same model for
determining which commands must be issued, and what
algorithms must do to control and estimate a state. The
state variables and achievers provide centralized places for
storing modeling information that is consistent for both
planning and execution uses. Rule and procedural based
approaches could be embedded within achievers to
implement these models.

State Effects Models
The MDS architecture defines the states of the system to be
controlled using state effects models. The state effects
model provides the basis for communication between
planners and execution engines. By defining the state
effects to be modeled in a single unifying fashion ensures
that both the planner and execution engines can make the

same assumptions about the system they are trying to
control.

State effects models define

(1) Physical models of the dynamic behavior of
states, including the physical effects between
states,

(2) Measurements that the control system uses to
estimate the states being controlled, and how the
physical states affect the measurements, and

(3) Commands that the control system uses to control
and estimate the states of the system under
control, and how the commands affect the states.

Diagram of diamond with CS and SUC, with command
and measurement interfaces between them.

The state effects model is used during planning and
execution to

(1) Decompose user intent into a plan of coordinated
constraints on affecting states as needed to
achieve intent,

(2) Validate the plan against predictions based on the
plan, and

(3) Provide state predictions to be enforced during
execution.

Plan Decomposition
Decomposition of user intent is called by MDS the process
of elaboration. Each high-level goal on a state elaborates to
constraint network on states that affect the state, as defined
by the state effects model. For example, if the user intent is
to have a new picture, then this may elaborate to goals on
the power state of the camera, the operational mode state of
the camera, the data storage resource state, etc.

Plan Validation
A plan is validated against its predictions by using the state
effects model to compute projections for each state in the
plan. Projections are represented as state constraints. For
example, a state effects model for a battery state of charge
is defined as being affected by the all the power sink and
source states. Thus, the projection for the battery state of
charge is computed according to a state effects model that
has the battery state equal to the integral of the sum of all
power sources minus the sum of all power sinks. The plan
for power sources and sinks are integrated and checked
against an overall constraint on battery state of charge to be
above 10%.

Prediction Enforcement
During execution, this projection can be checked as a
constraint on the battery state of charge. If it appears that
the charge is falling below its projection, the execution
engine can decide whether or not to recompute the

projection to see if there is a real problem, or to exercise a
another plan.

State Estimation
State estimators in the execution engine use the state effects
models for measurements and commands to estimate the
states to be controlled. The execution engine checks the
state estimates against the plan to ensure that the plan is
executing properly, and to determine when the plan can
progress. An example state effects model for a
measurement is a power switch measurement that is
affected by its corresponding switch open/closed state. The
estimator for the power switch state uses this measurement
to estimate the state of the power switch. In the absence of
a measurement, the estimator could use the power switch’s
command state effects model. In this case, the state effects
model would describe how the state of the power switch is
affected by the power switch command. The estimator
would use this model to estimate the state of the power
switch based on the last power switch command issued
(and potentially the health state of the power switch).

State Control
State controllers in the execution engine use the state
effects models for commands to determine when to issue
commands. When the execution engine issues constraints to
the controller to change a state in the system under control,
the controller responds by issuing the proper commands.
Per the example above, the state effects model for the
power switch command would show that the command
effects the power switch. The power switch state controller
would use this model to determine that it needs to issue this
command to change the state of the power switch,

Refinement of Projections to Incorporate
Execution Engine Behavior

In addition to the state effects model, projections can
reflect the behavior of the execution engine. The planning
engine consults state variables to compute projections,
which in turn can consult their achievers in the execution
engine. The achievers contain a model of their behavior
when they execute goals, and use this along with the state
effects model to refine the state prediction.

State Uncertainty
MDS handles mismatches in modeling by explicitIy
representing uncertainty in state estimates produced during
execution. A state variable’s history contains uncertainty
associated with a estimate for each point in time. An
estimator always updates the history with a measure of
uncertainty.

constraints. The bounds specified in planned state
constraints are checked by the controller against the current
estimated uncertainty. The controller takes actions to
ensure that the bounds are met given the uncertainty in the
state estimate. For example, if a constraint is to keep an
actuator’s position within a deadband, and the current
uncertainty is expressed as a range, then the controller must
actually control to a narrower range to account for the
uncertainty in the knowledge of the position.

If a given state constraint requires a certain state
uncertainty, then the planner’s elaboration of that constraint
incIudes a constraint on the uncertainty of the knowledge of
the state. This sort of uncertainty constraint is called a
knowledge goal, and is executed by the estimator that is
responsible for estimating the state. It is the responsibility
of the estimator to achieve the planned level of uncertainty
during execution. This is monitored by the execution
engine, which will fIag deviations to the planner if the
knowledge constraint is not being met.

Timing Uncertainty
MDS deals with uncertainty in the timing of plans using
flexible time. Each timepoint in the planned goal network
has a range of possible times, to allow for the uncertainty in
execution times of constraints. The state projections
produced by the planner take into account the range of
times. The planner assumes times that would produce the
worst-case state projections. The worst case projections are
bounded by the operators by imposing deadlines on
activities in the form of temporal constraints. An example
is a rover traverse followed by a fixed time Earth
communication window. The energy use during the
traverse is limited by the deadline imposed by the
communication window, when the rover must be immobile,
If the traverse is not completed by the communication
window, the traverse constraint ends early, and is replanned
to start after the communication window.

funcertain time interval description here]

State Analysis
State Analysis improves on the current state-of-the-practice
by producing requirements on system and software design
in the form of explicit models of system behavior, and by
defining a state-based architecture for the control system. It
provides a common language for systems and software
engineers to communicate, and thus bridges the traditional
gap between software requirements and software
implementation.

State Analysis provides a uniform, methodical, and
rigorous approach for:

A state’s controller has access to this uncertainty, and must
control to the bounds that are specified in the planned state

(1) discovering, characterizing, representing, and
documenting the states of a system;

(2) modeling the behavior of states and relationships
among them, including information about
hardware interfaces, operation, and achiever
behavior;

(3) capturing the mission objectives in detailed
scenarios motivated by operator intent;

(4) keeping track of system constraints and operating
tules; and

(5) describing the methods by which objectives will
be achieved.

The state analysis methodology recognizes the need for
specifying execution behavior and planning specifications
in terms of common models. State effects models are
developed in a spiral process of state discovery until all of
the states of the system to be controlled are known and
their physical models are well understood. The execution
and planning engine software is then specified in terms of
these physical models. This includes specifications for the
estimation and control algorithms, elaborations, constraint
semantics, projection algorithms, and other information
exchanged between the execution and planning engine,

Conclusion
We have discussed the MDS state-based architecture,
modeling fi-amework, and systems engineering
methodology for developing state-based models of plans
and execution behavior. These models provide a basis for
ensuring the design-time consistency of assumptions in the
execution engine and planner, and are the basis for run-
time communications and coordination between planners,
schedulers, and execution engines. The modeling
framework has been designed to be an open architecture for
applying various formalisms and algorithms for spacecraft
operations planning and execution.

MDS state-based models of plans and execution behavior
provide a basis for communication between planners,
schedulers, and the engines that execute scheduled plans as
follows:

(1) MDS has clearly defined roles in the architecture for
planning and execution

(2) MDS has defined semantics of execution in terms of
state-histories that are represented using state
constraints. The MDS architecture has well-defined
interfaces for exchanging information between the
execution and planning engines, including methods on
achievers called by the planner,

(3) MDS handles mismatches in modeling by explicitly
representing uncertainty in state estimates produced
during execution, using this uncertainty in controllers,
planning for uncertainty in knowledge goals, and
ensuring the planned uncertainty during execution
using estimators.

(4) MDS deals with uncertainty in timing using flexible
time, uncertain time intervals, and worst-case state
predictions limited by temporal constraints that impose
dead 1 ine s ,

(5) MDS state analysis is a systems engineering
methodology that with the MDS software frameworks
bridges the gap between how execution is treated in
the planning process, and what happens when the
resulting plan is actually executed.

Acknowledgments
The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. We wish to thank the rest of the Mission
Data System development team, and the Mars Science
Laboratory mission personnel who have participated in the
maturation of MDS.

References
D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks,
“Software architecture themes in JPL’s Mission Data
System,” Proceedings of the AIAA Guidance, Navigation,
and Control Conference, number AIM-99-4553, 1999.

M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada,
“Engineering Complex Embedded Systems with State
Analysis and the Mission Data System,” Proceedings ofthe
1st AIAA Intelligent Systems Technical Conference,
number AIM-2004-65 18,2004.

A. Barrett, R. Knight, R. Morris, and R. Rasmussen,
“Mission Planning and Execution Within the Mission Data
System,” Proceedings of the International Workshop an
Planning and Schedulingfor Space, 2004.

D. Dvorak, R. Rasmussen, and T. Starbird, “State
Knowledge Representation in the Mission Data System,”
Proceedings of the IEEE Aerospace Conference, 2002.

B.C. Williams, M. Ingham, S, Chung, and P. Elliott,
“Model-based Programming of Intelligent Embedded
Systems and Robotic Space Explorers,” Proceedings ofthe
IEEE, 91 (1):212-237,2003.

P. Morris, N. Muscettola, and T, Vidal, “Dynamic Control
of Plans with Temporal Uncertainty,” Proceedings of the
17th InternationaI Joint Conference on A. I. (IJCAI-OIJ,
Seattle, WA, 200 1.

I. Meiri, R. Dechter, and J. Pearl, Temporal Constraint
Networks, ArtlJiciaE Intelligence, 49:6 1 --95, 199 1.

G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A.
Govindjee, “Iterative Repair Planning for Spacecrafi

Operations in the ASPEN System," International
Symposium on APtiJiciul Intelligence Robotics and
Automation in Space (ISAIMS 1999), Noordwijk, The
Netherlands, June 1999.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, "Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling," International
Conference on Artificial Intelligence Planning Systems
@IPS 2OOU), Breckenridge, CO, April 2000.

A. K. Jonsson, P. H. Morris, N. Muscettola, K. Rajan, and
B. Smith, "Planning in Interplanetary Space: Theory and
Practice," Proceedings of the Fifth Inteernutional
Conference on ArtiJicial Intelligence Planning and
Scheduling (AIPS-ZOOU), 177-1 86.

N. Muscettola, P. Morris, E. Pell, and B. Smith, Issues in
temporal reasoning for autonomous control systems, In F.
Anger, editor, Working Notes from the AAAI worbhop on
Spatial and Temporal Reasoning, 1997.

Matthew B. Bennett, Russell L. Knight, Robert D. Rasmussen, Michel D. Ingham

NASA
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

{ Matthew.B.Bennett, Russell.L.Knight, Robert.D.Rasmussen, Michel.D.Ingham} @ jpl.nasa.gov

Abstract
Many traditional planners are built on top of existing
execution engines that were not necessarily intended to be
operated by a planner. The Mission Data System has been
designed from the onset to have both an execution and
planning engine and provides a framework for defining
state-based models that can be used to coordinate planning
and execution. The models provide a basis for ensuring the
consistency of assumptions made by the execution engine
and planner, and a basis for run-time communications
between the planner and execution engines.

Introduction
Many traditional planners are built on top of existing
execution engines that were not necessarily intended to be
operated by a planner. The planner must take into
consideration the execution engine s behavior, must make
the same assumptions about the real world (which may be
hidden in the code), and must be aware of its quirks. For
example, a command may be issued by an execution
engine and have side effects on the execution of
subsequent commands. The effects may be both on the
behavior of the execution engine and on what is being
controlled in the real world. A planner must be aware of
these effects to generate plans that will succeed when
executed. Because there may be no well-defined structure
in the execution engine to model real-world effects, and
because planners generally have no rigorous model of the
executive s behavior, it is challenging to build planning
and execution engines that work together under the same
assumptions. Furthermore, it is difficult to keep them
consistent in a parallel development effort.

The Mission Data System (MDS) project at the Jet
Propulsion Laboratory has developed a control
architecture, modeling framework, and systems
engineering methodology for developing state-based
models of real-world behavior and effects, and execution
engine behavior, which are used to inform both planning
and execution. More specifically, these models provide the
basis for ensuring the design-time consistency of
assumptions in the execution engine and planner, and are
the basis for run-time communications and coordination

between planners, schedulers, and execution engines. MDS
calls these models State Effects Models and the
methodology by which they are developed State
Analysis [2]. The modeling framework has. been designed
to be an open architecture for applying various formalisms
and algorithms for spacecraft operations planning and
execution.

In MDS, state-based models provide a basis for
communication between planners, schedulers, and the
engines that execute scheduled plans, as follows:

(1) MDS has clearly defined roles in the architecture for
planning and execution.

(2) MDS has defined semantics of execution in terms of
state-histories that are represented using state
constraints (goals). The MDS architecture has well-
defined interfaces for exchanging information
between the execution and planning engines.

(3) MDS handles inaccuracies in modeling by explicitly
representing uncertainty in state estimates produced
during execution, using this uncertainty in controllers,
planning for uncertainty in knowledge goals, and
monitoring and enforcing the planned level of
uncertainty during execution using estimators.

(4) MDS deals with uncertainty in activity duration and
event timing using flexible time, uncertain time
intervals, and worst-case state predictions limited by
temporal constraints that impose deadlines.

(5) MDS State Analysis is a systems engineering
methodology that with the MDS software frameworks
bridges the gap between how execution is treated in
the planning process, and what happens when the
resulting plan is actually executed [2].

Execution and Planning Semantics
MDS uses constraint-based semantics to model execution
behavior. A constraint (goal) on a state variable represents
a set of possible state trajectories over an interval of time.
A state trajectory is estimated during execution and must
agree with the planned constraints for the plan to execute
successfully. A state trajectory for state variable is

Historv cornoared to alms Predictions informed bv ~ l a n s , .

continuous-valued variable

QJ Past Future @

Figure 1: State value histones and plans shown as timelines

represented in MDS using a state value history (see figure
1)[4]. A state value history is updated by a state variable s
estimator during execution to reflect the system s best
estimate of what the state actually was. A state variable s
achievers (controller and estimator) enforce the planned
constraints during execution.

Plans consist of constraint networks containing both
temporal and state constraints. State constraint semantics
are based on set theoretic operations (such as union and
intersection) over sets of possible state histories. These
semantics are used by the planner to generate plans.

In the MDS architecture, goal networks fully describe
plans and are also directly executable. At execution time,
goal nets are monitored by the execution engine, which
issues goals to state variables when preconditions are met.
State variables forward the goals to the appropriate
achievers, which execute and enforce the constraints.
Temporal preconditions are represented directly in the goal
network. State preconditions are monitored by the goal
checker by consulting state information stored in state
value histories, and by consulting the readiness of a state s
achievers to begin enforcing a constraint.

Roles and Interfaces between the Planning
and Execution Engines

MDS has clearly defined roles in the architecture for
planning and execution. State variables and achievers
provide well-defined interfaces between the planner and
the execution engine. State variables store state history
during plan execution that can be inspected by the planner.
State variables also provide interfaces to access plans as
they are developed by the planner and to inspect plans by
the execution engine. Achievers execute planned state
constraints as part of the execution engine and provide
interfaces that describe their own execution behavior. State
variables are consulted by the planner for modeling
information about the physics of the state to be controlled
(state effects model) as well as for information about
control system execution behavior. For states that are
actively estimated or controlled, the state variable consults

its achievers for determining their execution behavior;
otherwise, the physics in the state effects model (discussed
in the next section) is sufficient to describe a state s
behavior.

The goal checker is part of the execution engine. It issues
goals to state variables to be executed when certain
preconditions are satisfied. Some of these preconditions
are timing constraints as developed in the plan; others are
state preconditions and the readiness of achievers to begin
enforcing specific constraints. These other preconditions
are checked through interfaces on state variables. State
variables provide state information stored in their value
histories for checking state preconditions. State variables
consult their achievers for checking the readiness of their
achievers to begin enforcing specific constraints.

The planner must be informed about the execution
capabilities of achievers (such as whether or not an
achiever can execute a goal). At plan time, the planner can
consult a state variable to determine if a goal is achievable,
if 2 goals can be achieved back to back, and what the
expected state will be when the execution engine executes
a particular goal. A state variable that has achievers can
consult its achievers in turn to answer these questions. In
this way, the planner can be informed about the execution
engine s behavior.

*

**

* +

. .

I

T

@her Harcfware I
t

I

.
**. System Under Confra!

e.... I.. ./. .a I. *.. . *. . .f .I *. . I f I. * f * I. * 1 .e*-

Figure 2: State effects model the physics of the system under control
and the interface to the system under control in terms of commands
and measurements.

State variables and achievers provide centralized places for
storing modeling information that is consistent for use in
both planning and execution. Rule-based and procedural
based approaches can be embedded within achievers to
model and implement achiever execution behavior.

State Effects Models
The MDS architecture defines the states of the system to
be controlled using state effects models. The state effects
model provides the basis for communication between
planners and execution engines. By defining state effects
to be modeled in a single unified fashion ensures that both
the planner and execution engines can make the same
assumptions about the system they are controlling.

State effects models define

(1) Physical models of the dynamic behavior of
states, including the physical effects between
states,

(2) Measurements that the control system uses to
estimate the states being controlled, and how
states affect measurements, and

(3) Commands that the control system uses to control
the states of the system under control, and how
the commands affect states.

The state effects model is used during planning and
execution to

(1) Decompose the user s intent into a plan of
coordinated constraints on affecting states needed
to achieve the intent,

(2) Validate the plan against predictions of states
based on initial conditions and predictions of
affecting states, and

(3) Generate state predictions to be checked and
optionally enforced during execution.

Each of these uses is discussed below in greater detail.

Mission Planning & Execution
I

Figure 3: The MDS control system architecture

Plan Decomposition
In MDS, decomposition of user intent is done through a
process of goal elaboration. Each high-level goal on a
state variable elaborates lo a supporting network of goals
on states that affect the state, as defined in the state effects
model. For example, if the user intent is to have a new
picture, then this high-level goal may elaborate to goals on
the power state of the camera, the operational mode state
of the camera, the data storage resource state, etc.

Plan Validation
A plan is validated against its predictions by using the state
effects model to compute projections on each state
variable s timeline. Projections are represented as state
constraints. For example, a state effects model for a battery
state of charge is defined as being affected by the all the
power sink and source states. Thus, the projection for the
battery state of charge is computed according to a state
effects model where the battery state is equal to the
integral of the sum of all power sources minus the integral
of the sum of all power sinks. The plan for power sources
and sinks is integrated and checked against an overall
constraint on the battery state of charge to be above 10%.

Prediction Enforcement
During execution, this projection can be checked as a
constraint on the battery state of charge. If it appears that
the charge is falling below its projection, the execution
engine can decide whether or not to recompute the
projection to see if there is a real problem, or to exercise a
another plan.

State Estimation
Estimators in the execution engine use state effects models
for measurements, commands, and state-to-state effects to
estimate state variables. The execution engine checks the
state estimates against the plan to ensure that the plan for
having proper state knowledge is executing properly, and
to determine when the plan can progress. An example state
effects measurement model is a camera s power switch
measurement that is affected by its corresponding switch
open/closed state. The estimator for the power switch state
uses this measurement to estimate the state variable of the
power switch. In the absence of a measurement, the
estimator could use the power switch s state effects
command model. In this case, the state effects model
describes how the state of the power switch is affected by
the power switch command. The estimator could use this
model to estimate the state of the power switch based on
the last power switch command issued (and potentially the
health state of the power switch). In the absence of either a
command or a measurement, the state estimator could infer
the state of the switch by consulting the camera operating
mode state variable. It would be correct do this by
reasoning from the following chain of state-to-state effects

in the state effects model: the power switch state affects
the power use, which in turn affects the camera operating
state.

State Control
State controllers in the execution engine use the state
effects models for commands to determine when to issue
commands. When the execution engine issues constraints
to a controller to change a state in the system under
control, the controller responds by issuing the proper
commands. Per the example above, the state effects model
for the power switch command would show that the power
switch command effects the power switch. The power
switch state controller would use this model to determine
that it needs to issue the power switch command to change
the state of the power switch.

Refinement of Projections to Incorporate
Execution Engine Behavior

In addition to the state effects model, projections can
reflect the behavior of the execution engine. The planning
engine consults state variables to compute projections,
which in turn can consult their achievers in the execution
engine. The achievers model their behavior when
executing goals, and can use this along with the state
effects. model to refine a state projection that would
otherwise be based purely on the state effects model. This
refined state projection reflects not only the state
constraint, and the state effects model, but also what the
achiever does to the physical state when the acheiver
executes the state constraint. This refined state projection
should be a subset of the original state constraint if the
plan is valid, otherwise the constraint is noted as
unachievable, and an alternative plan is considered. In this
way the execution engine models its capability to execute
constraints and provides this information to the planner.
By using the modeling information, the planner can insure
that the plans are consistent with the capabilities of the
execution engine.

State Uncertainty
MDS handles inaccuracies in modeling by explicitly
representing uncertainty in state estimates produced during
execution. A state variable s history contains uncertainty
associated with an estimate for each point in time. An
estimator always updates the history with a measure of
uncertainty.

A state s controller has access to this uncertainty, and must
control to bounds specified in the planned state constraints.
The bounds specified in planned state constraints are
checked by the controller against the current estimated
state and its uncertainty. The controller takes actions to
ensure that the bounds are met given the uncertainty in the

state estimate. For example, if a control constraint is to
keep an actuator s position within a deadband, and the
current uncertainty is expressed as a range, then the
controller must actually control to a narrower range to
account for the uncertainty in the knowledge of the
position.

If a given control constraint requires a certain state
uncertainty, then the planner s elaboration of the control
constraint includes a constraint on the uncertainty of the
knowledge of the state. This sort of uncertainty constraint
is called a knowledge goal, and is executed by the
estimator that is responsible for estimating the state. It is
the responsibility of the estimator to achieve the planned
level of uncertainty during execution. This is monitored by
the execution engine, which will flag deviations to the
planner if the knowledge constraint is not being met.

Timing Uncertainty
MDS deals with uncertainty in the timing of plans using
flexible time. Each time point in the planned goal network
has a range of possible times, to either allow for the
uncertainty in execution times of constraints or to
accommodate flexibility in the execution system.
Uncertain temporal intervals are appropriately labeled. The
state projections produced by the planner take into account
the range of times. The planner assumes times that would
produce the worst-case state projections. The worst-case
projections are bounded by the operators by imposing
deadlines on activities in the form of temporal constraints.
An example is a rover traverse followed by a fixed time
Earth communication window. The energy use during the
traverse is limited by the deadline imposed by the
communication window, when the rover must be
immobile. If the traverse is not completed by the
communication window, the traverse constraint ends early,
and is replanned to restart after the communication
window.

Determining that a plan with flexible time will execute
successfully boils down to determining dynamic
controllability of the temporal constraint network [6]. How
this execution actually ensues is called timepoint firing,
and is described in detail in [121.

State Analysis
State Analysis [2] improves on the current state-of-the-
practice by producing requirements on system and
software design in the form of explicit models of system
behavior, and by defining a state-based architecture for the
control system. It provides a common language for
systems and software engineers to communicate, and thus
bridges the traditional gap between software requirements
and software implementation.

State Analysis provides a uniform, methodical, and
rigorous approach for:

(1) discovering, characterizing, representing, and
documenting the states of a system under control,

(2) modeling the behavior of states and relationships
among them, including information about
hardware interfaces, operations, and achiever
behavior,

(3) capturing the mission objectives in detailed
scenarios motivated by operator intent,

(4) keeping track of system constraints and operating
rules, and

(5) describing the methods by which objectives will
be achieved.

The state analysis methodology recognizes the need for
specifying execution behavior and planning specifications
in terms of common models. State effects models are
developed in a spiral process of state discovery until all of
the states of the system to be controlled are known and
their physical models are well understood. The execution
and planning engine software is then specified in terms of
these physical models. This includes specifications for
estimation and control algorithms, elaborations, constraint
semantics, projection algorithms, and the other information
exchanged between the execution and planning engine as
discussed in the previous sections.

Conclusion
We have discussed the MDS control architecture,
modeling framework, and systems engineering
methodology for developing state-based models of real-
world behavior, effects, and execution engine behavior,
which are used to inform both planning and execution.
These models provide a basis for ensuring the design-time
consistency of assumptions in the execution engine and
planner, and are the basis for run-time communications
and coordination between planners, schedulers, and
execution engines. The modeling framework has been
designed to be an open architecture for applying various
formalisms and algorithms for spacecraft operations
planning and execution.

In summary,

(1) MDS has clearly defined roles in the architecture for
planning and execution

(2) MDS has defined semantics of execution in terms of
state-histories that are represented using state
constraints (goals). The MDS architecture has well-
defined interfaces for exchanging information
between the execution and planning engines,
including methods on achievers called by the planner.

(3) MDS handles inaccuracies in modeling by explicitly
representing uncertainty in state estimates produced
during execution, using this uncertainty in controllers,

planning for uncertainty in knowledge goals, and
monitoring and enforcing the planned level of
uncertainty during execution using estimators.

(4) MDS deals with uncertainty in activity duration and
event timing using flexible time, uncertain time
intervals, and worst-case state predictions limited by
temporal constraints that impose deadlines.

(5) MDS State Analysis is a systems engineering
methodology that with the MDS software frameworks
bridges the gap between how execution is treated in
the planning process, and what happens when the
resulting plan is actually executed.

Acknowledgments
The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. We wish to thank the rest of the Mission
Data System development team, and the Mars Science
Laboratory mission personnel who have participated in the
maturation of MDS.

References
[I] D. Dvorak, R. Rasmussen, G. Reeves, and A.

Sacks, Software architecture themes in JPLs
Mission Data System, Proceedings of the AIAA
Guidance, Navigation, and Control Conference,
number AIAA-99-4553, 1999.

[2] M. Ingham, R. Rasmussen, M. Bennett, and A.
Moncada, Engineering Complex Embedded
Systems with Sta1.e Analysis and the Mission Data
System, Proceedings of the 1st AIAA Intelligent
Systems Technical Conference, number AIAA-
2004-65 18,2004.

[3] A. Barrett, R. Knight, R. Morris, and R.
Rasmussen, Mission Planning and Execution
Within the Mission Data System, Proceedings of
the International Workshop on Planning and
Scheduling for Space, 2004.

[4] D. Dvorak, R. Rasmussen, and T. Starbird, State
Knowledge Representation in the Mission Data
System, Proceedings of the IEEE Aerospace
Conference, 2002.

[5] B.C. Williams, M. Ingham, S. Chung, and P.
Elliott, Model-based Programming of Intelligent
Embedded Systems and Robotic Space
Explorers, Proceedings of the IEEE, 9 1 (1):2 12-
237,2003.

Proceedings of the 17th International Joint
Conference on A. I. (IJCAI-Ol), Seattle, WA,
2001.

[7] A. Meiri, R. Dechter, and J. Pearl, Temporal
Constraint Networks, Artificial Intelligence,
49:61--95. 1991.

[SI G. Rabideau, R. Knight, S. Chien, A. Fukunaga,
A. Govindjee, "Iterative Repair Planning for
Spacecraft Operations in the ASPEN System,"
International Symposium on Artijkial Intelligence
Robotics and Automation in Space (ISAIRAS
19991, Noordwijk, The Netherlands, June 1999.

[9] S. Chien, R. Knight, A. Stechert, R. Sherwood,
and G. Rabideau, "Using Iterative Repair to
Improve Responsiveness of Planning and
Scheduling," International Conference on
Artificial Intelligence Planning Systems (AIPS
2000), Breckenridge, CO, April 2000.

[10]A. K. Jonsson, P. H. Morris, N. Muscettola, K.
Rajan, and B. Smith, "Planning in Interplanetary
Space: Theory and Practice," Proceedings of the
Fifth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS-
2000), 177-186.

[11]N. Muscettola, P. Morris, B. Pell, and B. Smith,
Issues in temporal reasoning for autonomous
control systems, In F. Anger, editor, Working
Notes from the AAAI workshop on Spatial and
Temporal Reasoning, 1997.

[I21 R. Knight, Evaporating tasks during execution of
dynamically controllable networks, AAAI
Workshop on Plan Execution, 2005.

161 P. Morris, N. Muscettola, and T. Vidal, "Dynamic
Control of Plans with Temporal Uncertainty,"

