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Abstract 
Many traditional planners are built on top of existing 
execution engines that were not necessarily intended to be 
operated by a planner. The Mission Data System has been 
designed from the onset to have both an execution and 
planning engine and provides a framework for producing 
state-based models that can be used to coordinate planning 
and execution. The models provide a basis for ensuring the 
consistency o f  assumptions made by the execution engine 
and planner, and the frameworks provide a basis for mn- 
time communications between the planner and execution 
engines. 

Introduction 
Many traditional planners are built on top of existing 
execution engines that were not necessarily intended to be 
operated by a planner. The planner must model the 
execution engine’s behavior, must make the same 
assumptions about the real world (which may be hidden in 
the code), and must be aware of its quirks. For example, a 
command may issued by an execution engine and have side 
effects on the execution of subsequent commands. The 
effects may be both on the behavior of the execution engine 
and on what is being controlled in the real world. A planner 
must be aware of these effects to generate plans that will 
succeed when executed. Because there may be no well- 
defined structure in the execution engine to model real- 
world effects, it makes it difficult to build planning and 
execution engines that work together under the same 
assumptions. Fiurthermore, it is difficuIt to keep them 
consistent in a parallel development effort. 

The Mission Data System project at the Jet Propulsion 
Laboratory has developed a state-based architecture, 
modeling fiamework, and systems engineering 
methodology for developing state-based models of plans 
and execution behavior. These models provide the basis for 
ensuring the design-time consistency of assumptions in the 
execution engine and planner, and are the basis for run- 
time communications and coordination between planners, 
schedulers, and execution engines. MDS calls these models 
“State Effects Models” and the methodology by which they 
are developed “State Analysis.” The modeling framework 
has been designed to be an open architecture for applying 

various formalisms and algorithms for spacecraft 
operations planning and execution. 

MDS state-based models of plans and execution behavior 
provide a basis €or communication between planners, 
schedulers, and the engines that execute scheduled plans as 
folIows: 

(1) MDS has clearly defined roles in the architecture for 
planning and execution 

(2) MDS has defined semantics of execution in terms of 
state-histories that are represented using state 
constraints. The MDS architecture has well-defined 
interfaces for exchanging information between the 
execution and planning engines, including methods on 
achievers called by the planner. 

(3) MDS handles mismatches in modeling by explicitly 
representing uncertainty in state estimates produced 
during execution, using this uncertainty in controllers, 
planning for uncertainty in knowledge goals, and 
ensuring the planned uncertainty during execution 
using estimators. 

(4) MDS deals with uncertainty in timing using flexible 
time, uncertain time intervals, and worst-case state 
predictions limited by temporal constraints that impose 
deadlines. 

( 5 )  MDS state analysis is a systems engineering 
methodology that with the MDS software frameworks 
bridges the gap between how execution is treated in 
the planning process, and what happens when the 
resulting plan is actually executed. 

Execution and Planning Semantics 
MDS uses constraint-based semantics to model execution 
behavior. A constraint on a state variable represents a set of 
possible state trajectories over an interval of time. A state 
trajectory is estimated during execution and must agree 
with the planned constraints for the plan to execute 
successfully. A state trajectory for state variable is 
represented in MDS using a state value history, and is 
updated by a state variable’s estimator during execution. A 
state variable’s controller and estimator enforce the 
planned constraints during execution. 



Plans consist of constraint networks containing both 
temporal and state constraints. State constraint semantics 
are based on set theoretic operations such as union and 
intersection over sets of possible state histories. These 
semantics are used by the planner to generate plans. 

The MDS architecture has designed goal networks to filly 
describe plans a,s well as being directly executabIe. Planned 
goal nets are monitored by the execution engine, which 
issues goals to state variables when preconditions are met. 
Temporal preconditions are represented directly in the goal 
network. State predictions are checked by the goal runner 
by consulting state information stored in state variables, 
and by consulting the readiness of a state's achievers to 
begin enforcing a constraint. 

Roles andl Interfaces of the Planning and 
Execution Engine 

MDS has clearly defined roles in the architecture for 
planning and execution. State Variables provide well- 
defined interfaces between the planner and the execution 
engine. State variables store state history and reference 
plans. Achievers execute plans and model their own 
execution behavior. State variables are consulted by the 
planner for modeling information about the dynamics of the 
state to be controlled and the execution behavior of the 
state. For states that are actively estimated or controlled, 
the state variable consults its achievers (estimators and 
controllers) for determining the execution behavior. 

The goal runner is part of the execution engine. It issues 
goals to be executed to state variables when preconditions 
are satisfied. Some of these preconditions are timing 
constraints as developed in the plan, the others are 
dependent on the current state history and the capabilities 
of achievers. These other preconditions are provided by the 
state variables, which in turn consult the achievers for 
whether they are ready to begin executing a goal. During 
execution of a goal, an achiever can use the same model for 
determining which commands must be issued, and what 
algorithms must do to control and estimate a state. The 
state variables and achievers provide centralized places for 
storing modeling information that is consistent for both 
planning and execution uses. Rule and procedural based 
approaches could be embedded within achievers to 
implement these models. 

State Effects Models 
The MDS architecture defines the states of the system to be 
controlled using state effects models. The state effects 
model provides the basis for communication between 
planners and execution engines. By defining the state 
effects to be modeled in a single unifying fashion ensures 
that both the planner and execution engines can make the 

same assumptions about the system they are trying to 
control. 

State effects models define 

(1) Physical models of the dynamic behavior of 
states, including the physical effects between 
states, 

(2) Measurements that the control system uses to 
estimate the states being controlled, and how the 
physical states affect the measurements, and 

(3) Commands that the control system uses to control 
and estimate the states of the system under 
control, and how the commands affect the states. 

Diagram of diamond with CS and SUC, with command 
and measurement interfaces between them. 

The state effects model is used during planning and 
execution to 

(1) Decompose user intent into a plan of coordinated 
constraints on affecting states as needed to 
achieve intent, 

(2) Validate the plan against predictions based on the 
plan, and 

(3) Provide state predictions to be enforced during 
execution. 

Plan Decomposition 
Decomposition of user intent is called by MDS the process 
of elaboration. Each high-level goal on a state elaborates to 
constraint network on states that affect the state, as defined 
by the state effects model. For example, if the user intent is 
to have a new picture, then this may elaborate to goals on 
the power state of the camera, the operational mode state of 
the camera, the data storage resource state, etc. 

Plan Validation 
A plan is validated against its predictions by using the state 
effects model to compute projections for each state in the 
plan. Projections are represented as state constraints. For 
example, a state effects model for a battery state of charge 
is defined as being affected by the all the power sink and 
source states. Thus, the projection for the battery state of 
charge is computed according to a state effects model that 
has the battery state equal to the integral of the sum of all 
power sources minus the sum of all power sinks. The plan 
for power sources and sinks are integrated and checked 
against an overall constraint on battery state of charge to be 
above 10%. 

Prediction Enforcement 
During execution, this projection can be checked as a 
constraint on the battery state of charge. If it appears that 
the charge is falling below its projection, the execution 
engine can decide whether or not to recompute the 



projection to see if there is a real problem, or to exercise a 
another plan. 

State Estimation 
State estimators in the execution engine use the state effects 
models for measurements and commands to estimate the 
states to be controlled. The execution engine checks the 
state estimates against the plan to ensure that the plan is 
executing properly, and to determine when the plan can 
progress. An example state effects model for a 
measurement is a power switch measurement that is 
affected by its corresponding switch open/closed state. The 
estimator for the power switch state uses this measurement 
to estimate the state of the power switch. In the absence of 
a measurement, the estimator could use the power switch’s 
command state effects model. In this case, the state effects 
model would describe how the state of the power switch is 
affected by the power switch command. The estimator 
would use this model to estimate the state of the power 
switch based on the last power switch command issued 
(and potentially the health state of the power switch). 

State Control 
State controllers in the execution engine use the state 
effects models for commands to determine when to issue 
commands. When the execution engine issues constraints to 
the controller to change a state in the system under control, 
the controller responds by issuing the proper commands. 
Per the example above, the state effects model for the 
power switch command would show that the command 
effects the power switch. The power switch state controller 
would use this model to determine that it needs to issue this 
command to change the state of the power switch, 

Refinement of Projections to Incorporate 
Execution Engine Behavior 

In addition to the state effects model, projections can 
reflect the behavior of the execution engine. The planning 
engine consults state variables to compute projections, 
which in turn can consult their achievers in the execution 
engine. The achievers contain a model of their behavior 
when they execute goals, and use this along with the state 
effects model to refine the state prediction. 

State Uncertainty 
MDS handles mismatches in modeling by explicitIy 
representing uncertainty in state estimates produced during 
execution. A state variable’s history contains uncertainty 
associated with a estimate for each point in time. An 
estimator always updates the history with a measure of 
uncertainty. 

constraints. The bounds specified in planned state 
constraints are checked by the controller against the current 
estimated uncertainty. The controller takes actions to 
ensure that the bounds are met given the uncertainty in the 
state estimate. For example, if a constraint is to keep an 
actuator’s position within a deadband, and the current 
uncertainty is expressed as a range, then the controller must 
actually control to a narrower range to account for the 
uncertainty in the knowledge of the position. 

If a given state constraint requires a certain state 
uncertainty, then the planner’s elaboration of that constraint 
incIudes a constraint on the uncertainty of the knowledge of 
the state. This sort of uncertainty constraint is called a 
knowledge goal, and is executed by the estimator that is 
responsible for estimating the state. It is the responsibility 
of  the estimator to achieve the planned level of uncertainty 
during execution. This is monitored by the execution 
engine, which will fIag deviations to the planner if the 
knowledge constraint is not being met. 

Timing Uncertainty 
MDS deals with uncertainty in the timing of plans using 
flexible time. Each timepoint in the planned goal network 
has a range of possible times, to allow for the uncertainty in 
execution times of constraints. The state projections 
produced by the planner take into account the range of 
times. The planner assumes times that would produce the 
worst-case state projections. The worst case projections are 
bounded by the operators by imposing deadlines on 
activities in the form of temporal constraints. An example 
is a rover traverse followed by a fixed time Earth 
communication window. The energy use during the 
traverse is limited by the deadline imposed by the 
communication window, when the rover must be immobile, 
If the traverse is not completed by the communication 
window, the traverse constraint ends early, and is replanned 
to start after the communication window. 

funcertain time interval description here] 

State Analysis 
State Analysis improves on the current state-of-the-practice 
by producing requirements on system and software design 
in the form of explicit models of system behavior, and by 
defining a state-based architecture for the control system. It 
provides a common language for systems and software 
engineers to communicate, and thus bridges the traditional 
gap between software requirements and software 
implementation. 

State Analysis provides a uniform, methodical, and 
rigorous approach for: 

A state’s controller has access to this uncertainty, and must 
control to the bounds that are specified in the planned state 



(1) discovering, characterizing, representing, and 
documenting the states of a system; 

(2) modeling the behavior of states and relationships 
among them, including information about 
hardware interfaces, operation, and achiever 
behavior; 

(3) capturing the mission objectives in detailed 
scenarios motivated by operator intent; 

(4) keeping track of system constraints and operating 
tules; and 

(5) describing the methods by which objectives will 
be achieved. 

The state analysis methodology recognizes the need for 
specifying execution behavior and planning specifications 
in terms of common models. State effects models are 
developed in a spiral process of state discovery until all of 
the states of the system to be controlled are known and 
their physical models are well understood. The execution 
and planning engine software is then specified in terms of 
these physical models. This includes specifications for the 
estimation and control algorithms, elaborations, constraint 
semantics, projection algorithms, and other information 
exchanged between the execution and planning engine, 

Conclusion 
We have discussed the MDS state-based architecture, 
modeling fi-amework, and systems engineering 
methodology for developing state-based models of plans 
and execution behavior. These models provide a basis for 
ensuring the design-time consistency of assumptions in the 
execution engine and planner, and are the basis for run- 
time communications and coordination between planners, 
schedulers, and execution engines. The modeling 
framework has been designed to be an open architecture for 
applying various formalisms and algorithms for spacecraft 
operations planning and execution. 

MDS state-based models of plans and execution behavior 
provide a basis for communication between planners, 
schedulers, and the engines that execute scheduled plans as 
follows: 

(1) MDS has clearly defined roles in the architecture for 
planning and execution 

(2) MDS has defined semantics of execution in terms of  
state-histories that are represented using state 
constraints. The MDS architecture has well-defined 
interfaces for exchanging information between the 
execution and planning engines, including methods on 
achievers called by the planner, 

(3) MDS handles mismatches in modeling by explicitly 
representing uncertainty in state estimates produced 
during execution, using this uncertainty in controllers, 
planning for uncertainty in knowledge goals, and 
ensuring the planned uncertainty during execution 
using estimators. 

(4) MDS deals with uncertainty in timing using flexible 
time, uncertain time intervals, and worst-case state 
predictions limited by temporal constraints that impose 
dead 1 ine s , 

(5) MDS state analysis is a systems engineering 
methodology that with the MDS software frameworks 
bridges the gap between how execution is treated in 
the planning process, and what happens when the 
resulting plan is actually executed. 
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Abstract 
Many traditional planners are built on top of existing 
execution engines that were not necessarily intended to be 
operated by a planner. The Mission Data System has been 
designed from the onset to have both an execution and 
planning engine and provides a framework for defining 
state-based models that can be used to coordinate planning 
and execution. The models provide a basis for ensuring the 
consistency of assumptions made by the execution engine 
and planner, and a basis for run-time communications 
between the planner and execution engines. 

Introduction 
Many traditional planners are built on top of existing 
execution engines that were not necessarily intended to be 
operated by a planner. The planner must take into 
consideration the execution engine s behavior, must make 
the same assumptions about the real world (which may be 
hidden in the code), and must be aware of its quirks. For 
example, a command may be issued by an execution 
engine and have side effects on the execution of 
subsequent commands. The effects may be both on the 
behavior of the execution engine and on what is being 
controlled in the real world. A planner must be aware of 
these effects to generate plans that will succeed when 
executed. Because there may be no well-defined structure 
in the execution engine to model real-world effects, and 
because planners generally have no rigorous model of the 
executive s behavior, it is challenging to build planning 
and execution engines that work together under the same 
assumptions. Furthermore, it is difficult to keep them 
consistent in a parallel development effort. 

The Mission Data System (MDS) project at the Jet 
Propulsion Laboratory has developed a control 
architecture, modeling framework, and systems 
engineering methodology for developing state-based 
models of real-world behavior and effects, and execution 
engine behavior, which are used to inform both planning 
and execution. More specifically, these models provide the 
basis for ensuring the design-time consistency of 
assumptions in the execution engine and planner, and are 
the basis for run-time communications and coordination 

between planners, schedulers, and execution engines. MDS 
calls these models State Effects Models and the 
methodology by which they are developed State 
Analysis [2]. The modeling framework has. been designed 
to be an open architecture for applying various formalisms 
and algorithms for spacecraft operations planning and 
execution. 

In MDS, state-based models provide a basis for 
communication between planners, schedulers, and the 
engines that execute scheduled plans, as follows: 

(1) MDS has clearly defined roles in the architecture for 
planning and execution. 

(2) MDS has defined semantics of execution in terms of 
state-histories that are represented using state 
constraints (goals). The MDS architecture has well- 
defined interfaces for exchanging information 
between the execution and planning engines. 

(3) MDS handles inaccuracies in modeling by explicitly 
representing uncertainty in state estimates produced 
during execution, using this uncertainty in controllers, 
planning for uncertainty in knowledge goals, and 
monitoring and enforcing the planned level of 
uncertainty during execution using estimators. 

(4) MDS deals with uncertainty in activity duration and 
event timing using flexible time, uncertain time 
intervals, and worst-case state predictions limited by 
temporal constraints that impose deadlines. 

( 5 )  MDS State Analysis is a systems engineering 
methodology that with the MDS software frameworks 
bridges the gap between how execution is treated in 
the planning process, and what happens when the 
resulting plan is actually executed [2]. 

Execution and Planning Semantics 
MDS uses constraint-based semantics to model execution 
behavior. A constraint (goal) on a state variable represents 
a set of possible state trajectories over an interval of time. 
A state trajectory is estimated during execution and must 
agree with the planned constraints for the plan to execute 
successfully. A state trajectory for state variable is 
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Figure 1: State value histones and plans shown as timelines 

represented in MDS using a state value history (see figure 
1)[4]. A state value history is updated by a state variable s 
estimator during execution to reflect the system s best 
estimate of what the state actually was. A state variable s 
achievers (controller and estimator) enforce the planned 
constraints during execution. 

Plans consist of constraint networks containing both 
temporal and state constraints. State constraint semantics 
are based on set theoretic operations (such as union and 
intersection) over sets of possible state histories. These 
semantics are used by the planner to generate plans. 

In the MDS architecture, goal networks fully describe 
plans and are also directly executable. At execution time, 
goal nets are monitored by the execution engine, which 
issues goals to state variables when preconditions are met. 
State variables forward the goals to the appropriate 
achievers, which execute and enforce the constraints. 
Temporal preconditions are represented directly in the goal 
network. State preconditions are monitored by the goal 
checker by consulting state information stored in state 
value histories, and by consulting the readiness of a state s 
achievers to begin enforcing a constraint. 

Roles and Interfaces between the Planning 
and Execution Engines 

MDS has clearly defined roles in the architecture for 
planning and execution. State variables and achievers 
provide well-defined interfaces between the planner and 
the execution engine. State variables store state history 
during plan execution that can be inspected by the planner. 
State variables also provide interfaces to access plans as 
they are developed by the planner and to inspect plans by 
the execution engine. Achievers execute planned state 
constraints as part of the execution engine and provide 
interfaces that describe their own execution behavior. State 
variables are consulted by the planner for modeling 
information about the physics of the state to be controlled 
(state effects model) as well as for information about 
control system execution behavior. For states that are 
actively estimated or controlled, the state variable consults 

its achievers for determining their execution behavior; 
otherwise, the physics in the state effects model (discussed 
in the next section) is sufficient to describe a state s 
behavior. 

The goal checker is part of the execution engine. It issues 
goals to state variables to be executed when certain 
preconditions are satisfied. Some of these preconditions 
are timing constraints as developed in the plan; others are 
state preconditions and the readiness of achievers to begin 
enforcing specific constraints. These other preconditions 
are checked through interfaces on state variables. State 
variables provide state information stored in their value 
histories for checking state preconditions. State variables 
consult their achievers for checking the readiness of their 
achievers to begin enforcing specific constraints. 

The planner must be informed about the execution 
capabilities of achievers (such as whether or not an 
achiever can execute a goal). At plan time, the planner can 
consult a state variable to determine if a goal is achievable, 
if 2 goals can be achieved back to back, and what the 
expected state will be when the execution engine executes 
a particular goal. A state variable that has achievers can 
consult its achievers in turn to answer these questions. In 
this way, the planner can be informed about the execution 
engine s behavior. 
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Figure 2: State effects model the physics of the system under control 
and the interface to the system under control in terms of commands 
and measurements. 



State variables and achievers provide centralized places for 
storing modeling information that is consistent for use in 
both planning and execution. Rule-based and procedural 
based approaches can be embedded within achievers to 
model and implement achiever execution behavior. 

State Effects Models 
The MDS architecture defines the states of the system to 
be controlled using state effects models. The state effects 
model provides the basis for communication between 
planners and execution engines. By defining state effects 
to be modeled in a single unified fashion ensures that both 
the planner and execution engines can make the same 
assumptions about the system they are controlling. 

State effects models define 

(1) Physical models of the dynamic behavior of 
states, including the physical effects between 
states, 

(2) Measurements that the control system uses to 
estimate the states being controlled, and how 
states affect measurements, and 

(3) Commands that the control system uses to control 
the states of the system under control, and how 
the commands affect states. 

The state effects model is used during planning and 
execution to 

(1) Decompose the user s intent into a plan of 
coordinated constraints on affecting states needed 
to achieve the intent, 

(2) Validate the plan against predictions of states 
based on initial conditions and predictions of 
affecting states, and 

(3) Generate state predictions to be checked and 
optionally enforced during execution. 

Each of these uses is discussed below in greater detail. 

Mission Planning & Execution 
I 

Figure 3: The MDS control system architecture 



Plan Decomposition 
In MDS, decomposition of user intent is done through a 
process of goal elaboration. Each high-level goal on a 
state variable elaborates lo a supporting network of goals 
on states that affect the state, as defined in the state effects 
model. For example, if the user intent is to have a new 
picture, then this high-level goal may elaborate to goals on 
the power state of the camera, the operational mode state 
of the camera, the data storage resource state, etc. 

Plan Validation 
A plan is validated against its predictions by using the state 
effects model to compute projections on each state 
variable s timeline. Projections are represented as state 
constraints. For example, a state effects model for a battery 
state of charge is defined as being affected by the all the 
power sink and source states. Thus, the projection for the 
battery state of charge is computed according to a state 
effects model where the battery state is equal to the 
integral of the sum of all power sources minus the integral 
of the sum of all power sinks. The plan for power sources 
and sinks is integrated and checked against an overall 
constraint on the battery state of charge to be above 10%. 

Prediction Enforcement 
During execution, this projection can be checked as a 
constraint on the battery state of charge. If it appears that 
the charge is falling below its projection, the execution 
engine can decide whether or not to recompute the 
projection to see if there is a real problem, or to exercise a 
another plan. 

State Estimation 
Estimators in the execution engine use state effects models 
for measurements, commands, and state-to-state effects to 
estimate state variables. The execution engine checks the 
state estimates against the plan to ensure that the plan for 
having proper state knowledge is executing properly, and 
to determine when the plan can progress. An example state 
effects measurement model is a camera s power switch 
measurement that is affected by its corresponding switch 
open/closed state. The estimator for the power switch state 
uses this measurement to estimate the state variable of the 
power switch. In the absence of a measurement, the 
estimator could use the power switch s state effects 
command model. In this case, the state effects model 
describes how the state of the power switch is affected by 
the power switch command. The estimator could use this 
model to estimate the state of the power switch based on 
the last power switch command issued (and potentially the 
health state of the power switch). In the absence of either a 
command or a measurement, the state estimator could infer 
the state of the switch by consulting the camera operating 
mode state variable. It would be correct do this by 
reasoning from the following chain of state-to-state effects 

in the state effects model: the power switch state affects 
the power use, which in turn affects the camera operating 
state. 

State Control 
State controllers in the execution engine use the state 
effects models for commands to determine when to issue 
commands. When the execution engine issues constraints 
to a controller to change a state in the system under 
control, the controller responds by issuing the proper 
commands. Per the example above, the state effects model 
for the power switch command would show that the power 
switch command effects the power switch. The power 
switch state controller would use this model to determine 
that it needs to issue the power switch command to change 
the state of the power switch. 

Refinement of Projections to Incorporate 
Execution Engine Behavior 

In addition to the state effects model, projections can 
reflect the behavior of the execution engine. The planning 
engine consults state variables to compute projections, 
which in turn can consult their achievers in the execution 
engine. The achievers model their behavior when 
executing goals, and can use this along with the state 
effects. model to refine a state projection that would 
otherwise be based purely on the state effects model. This 
refined state projection reflects not only the state 
constraint, and the state effects model, but also what the 
achiever does to the physical state when the acheiver 
executes the state constraint. This refined state projection 
should be a subset of the original state constraint if the 
plan is valid, otherwise the constraint is noted as 
unachievable, and an alternative plan is considered. In this 
way the execution engine models its capability to execute 
constraints and provides this information to the planner. 
By using the modeling information, the planner can insure 
that the plans are consistent with the capabilities of the 
execution engine. 

State Uncertainty 
MDS handles inaccuracies in modeling by explicitly 
representing uncertainty in state estimates produced during 
execution. A state variable s history contains uncertainty 
associated with an estimate for each point in time. An 
estimator always updates the history with a measure of 
uncertainty. 

A state s controller has access to this uncertainty, and must 
control to bounds specified in the planned state constraints. 
The bounds specified in planned state constraints are 
checked by the controller against the current estimated 
state and its uncertainty. The controller takes actions to 
ensure that the bounds are met given the uncertainty in the 



state estimate. For example, if a control constraint is to 
keep an actuator s position within a deadband, and the 
current uncertainty is expressed as a range, then the 
controller must actually control to a narrower range to 
account for the uncertainty in the knowledge of the 
position. 

If a given control constraint requires a certain state 
uncertainty, then the planner s elaboration of the control 
constraint includes a constraint on the uncertainty of the 
knowledge of the state. This sort of uncertainty constraint 
is called a knowledge goal, and is executed by the 
estimator that is responsible for estimating the state. It is 
the responsibility of the estimator to achieve the planned 
level of uncertainty during execution. This is monitored by 
the execution engine, which will flag deviations to the 
planner if the knowledge constraint is not being met. 

Timing Uncertainty 
MDS deals with uncertainty in the timing of plans using 
flexible time. Each time point in the planned goal network 
has a range of possible times, to either allow for the 
uncertainty in execution times of constraints or to 
accommodate flexibility in the execution system. 
Uncertain temporal intervals are appropriately labeled. The 
state projections produced by the planner take into account 
the range of times. The planner assumes times that would 
produce the worst-case state projections. The worst-case 
projections are bounded by the operators by imposing 
deadlines on activities in the form of temporal constraints. 
An example is a rover traverse followed by a fixed time 
Earth communication window. The energy use during the 
traverse is limited by the deadline imposed by the 
communication window, when the rover must be 
immobile. If the traverse is not completed by the 
communication window, the traverse constraint ends early, 
and is replanned to restart after the communication 
window. 

Determining that a plan with flexible time will execute 
successfully boils down to determining dynamic 
controllability of the temporal constraint network [6]. How 
this execution actually ensues is called timepoint firing, 
and is described in detail in [ 121. 

State Analysis 
State Analysis [2] improves on the current state-of-the- 
practice by producing requirements on system and 
software design in the form of explicit models of system 
behavior, and by defining a state-based architecture for the 
control system. It provides a common language for 
systems and software engineers to communicate, and thus 
bridges the traditional gap between software requirements 
and software implementation. 

State Analysis provides a uniform, methodical, and 
rigorous approach for: 

(1) discovering, characterizing, representing, and 
documenting the states of a system under control, 

(2) modeling the behavior of states and relationships 
among them, including information about 
hardware interfaces, operations, and achiever 
behavior, 

(3) capturing the mission objectives in detailed 
scenarios motivated by operator intent, 

(4) keeping track of system constraints and operating 
rules, and 

(5 )  describing the methods by which objectives will 
be achieved. 

The state analysis methodology recognizes the need for 
specifying execution behavior and planning specifications 
in terms of common models. State effects models are 
developed in a spiral process of state discovery until all of 
the states of the system to be controlled are known and 
their physical models are well understood. The execution 
and planning engine software is then specified in terms of 
these physical models. This includes specifications for 
estimation and control algorithms, elaborations, constraint 
semantics, projection algorithms, and the other information 
exchanged between the execution and planning engine as 
discussed in the previous sections. 

Conclusion 
We have discussed the MDS control architecture, 
modeling framework, and systems engineering 
methodology for developing state-based models of real- 
world behavior, effects, and execution engine behavior, 
which are used to inform both planning and execution. 
These models provide a basis for ensuring the design-time 
consistency of assumptions in the execution engine and 
planner, and are the basis for run-time communications 
and coordination between planners, schedulers, and 
execution engines. The modeling framework has been 
designed to be an open architecture for applying various 
formalisms and algorithms for spacecraft operations 
planning and execution. 

In summary, 

(1) MDS has clearly defined roles in the architecture for 
planning and execution 

(2) MDS has defined semantics of execution in terms of 
state-histories that are represented using state 
constraints (goals). The MDS architecture has well- 
defined interfaces for exchanging information 
between the execution and planning engines, 
including methods on achievers called by the planner. 

(3) MDS handles inaccuracies in modeling by explicitly 
representing uncertainty in state estimates produced 
during execution, using this uncertainty in controllers, 



planning for uncertainty in knowledge goals, and 
monitoring and enforcing the planned level of 
uncertainty during execution using estimators. 

(4) MDS deals with uncertainty in activity duration and 
event timing using flexible time, uncertain time 
intervals, and worst-case state predictions limited by 
temporal constraints that impose deadlines. 

(5 )  MDS State Analysis is a systems engineering 
methodology that with the MDS software frameworks 
bridges the gap between how execution is treated in 
the planning process, and what happens when the 
resulting plan is actually executed. 
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