
A Nonlinear Model Predictive Control Algorithm with Proven
Robustness and Resolvability
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Abstract— A robustly stabilizing MPC (model predictive
control) algorithm with guaranteed resolvability is developed
for uncertain nonlinear systems. With resolvability, initial
feasibility of the finite-horizon optimal control problem implies
future feasibility in a receding-horizon framework. The control
consists of two components; (i) feedforward, and (ii) feedback.
Feedforward control and the associated nominal trajectory are
obtained by online solution of a finite-horizon optimal control
problem for the nominal system dynamics. The feedback control
policy is designed off-line, based on a bound on the model
uncertainty. The entire controller is shown to be robustly
stabilizing with a region of attraction composed of initial states
for which the finite-horizon optimal control problem is feasible.
The controller design for this algorithm is demonstrated on a
class of systems with uncertain nonlinear terms that have norm-
bounded derivatives and derivatives in polytopes. An illustrative
numerical example is also provided.

I. I NTRODUCTION

Substantial research over the past two decades [1]-[5]1

established MPC as a powerful control method to solve
optimal feedback control problems with state and control
constraints. In MPC the control input is calculated by solving
online a finite-horizon optimal control problem subject to
state and control constraints and with the current state of the
system as the initial state. The control input signal is obtained
and applied to the system over a specified time interval until
the next re-computation provides an updated control input,
which is then applied to the system and the cycle repeats.
Here, resolvability is equivalent to having a feasible solution
to the finite-horizon optimal control problem in a future time
given a feasible solution at the current time.

Since the computation of the feedforward control input
relies on a nominal system model, the robustness of MPC to
system uncertainties is non-trivial to establish. One approach
to robustness is reducing the re-computation time intervals
sufficiently to establish robust stability. Such an approach
is taken in [3] in which explicit upper bounds on re-
computation time intervals are derived. However, the upper
bounds can be very conservative in terms of a real-time
implementation. Other approaches proposed in the literature
for robustness [see [1] for review of the literature] such
as open-loop min-max MPC [6], [7] where the satisfaction
of the constraints for all possible system realizations is
considered. Another approach is feedback MPC [8], [9] that
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1The MPC literature is very extensive, and we omit many excellent
references for brevity.

replaces the design of a control signal with a sequence of
control policies, and explicit feedback policies are obtained
for MPC of linear systems with state and control constraints
in [10], [11]. In this paper we present a robustly stabilizing
MPC algorithm for uncertain nonlinear systems that takes
advantage of desirable features of both feedforward and
feedback-based MPC approaches. For example, see [12] for
a coupled open-loop and feedback design for discrete linear-
time-invariant systems. The research on guidance and control
in the proximity of small celestial bodies, such as asteroids
and comets, provided the motivation for this research, which
first appeared in [13].

The algorithm presented here generates a control input that
has; (i) feedforward (i.e. open-loop control), and (ii) feed-
back parts. Feedforward control is obtained from the online
solution of a finite-horizon optimal control problem for the
nominal system dynamics. The feedback control policy is
designed off-line based on a bound on the uncertainty in the
system model. The cost in the feedforward optimal control
problem has an integral part over the time horizon and a
cost on the final state. The cost on the final state serves
as a control Lyapunov function in the neighborhood of the
origin (see [2], [5], [14] for the use of control Lyapunov
functions to prove stability for MPC). The addition of feed-
back ensures that the actual state trajectories do not deviate
from the feedforward trajectories beyond a specified bound.
This bound is then used to relax the initial state constraint
in the finite-horizon optimal control problem to guarantee
resolvability without any bound on the re-computation time
intervals. This is particularly useful if the online calculation
of the feedforward control is computationally intensive.

The MPC controller is shown to be robustly stabilizing
within a region of attraction for which the finite-horizon
optimal control problem is feasible. Furthermore, the MPC
controller has an explicit characterization of its robustness; it
can accommodate uncertainties up to the level considered in
the feedback policy design. For the theoretical development
of the MPC algorithm, it is assumed that there exists such
a feedback policy. Therefore, we also present procedures
for the design of feedback policies on a class of uncertain
nonlinear systems with derivatives in unit balls or polytopes.
This class of systems also contains nominally LTI (linear-
time-invariant) systems. Nominally LTI systems with convex
state and control constraints lead to convex optimization
problems for the feedforward control computations that can
be solved online with guaranteed convergence [15], [16],
[17], [18]. This is a very useful property for applications
where autonomous control input generation is needed.



The organization of the paper is as follows: Section II
presents the MPC algorithm and its theoretical development;
Section III presents explicit feedback design procedures
for systems with bounded derivatives and derivatives in
a polytope, as well as a design of feedforward control
of nominally LTI systems; and Section IV demonstrates
the MPC algorithm on an illustrative example. Proofs of
supporting lemmas are relegated to the Appendix.

The following is a partial list of notation used in this paper:
Q = QT ≥ 0 impliesQ is a positive semi-definite matrix;
Co{G1, . . . , GN} represents the convex hull of matrices
G1, . . . , GN ; IRn is the space ofn dimensional vectors with
real components;Z+ is the set of positive integers; and, for
V : IRN → IR, ∇V = [ ∂V/∂x1 . . . ∂V/∂xn ].

II. D ESCRIPTION OF THESYSTEM AND THE

MODEL-PREDICTIVE-CONTROL ALGORITHM

Consider an uncertain nonlinear dynamical system with
statex ∈ IRn and controlu ∈ IRm as

ẋ = f(x, u, t). (1)

We will refer to dynamics in (1) as thereal dynamics. Our
objective is to obtain a control inputu(·) such that the closed
loop system for (1) isasymptotically stable about the origin,
x = 0, with a region of attractionRa ⊆ X such that

x(t) ∈ X , u(t) ∈ U , ∀ t ≥ t0, whenx(t0) ∈ Ra , (2)

and whereX ⊆ IRn andU ⊆ IRm are sets defining the state
and control constraints, respectively. We propose a model
predictive control (MPC) approach where the control input
is composed of two components:

• Feedforward control input,uo,
• Feedback control input,uf ,

such that
u(t) = uo(t) + uf (t) . (3)

Suppose there exist setsXo, Xf and Uo, Uf , which all
contain the origin, such that2

Xo + Xf ⊆ X ,

Uo + Uf ⊆ U .
(4)

The feedforward component of the control input will be de-
termined through online solution of a finite-horizon optimal
control problem, and the feedback part will be determined
off-line as a control policy.

For feedforward control design, knowledge of the follow-
ing nominal plant model is assumed:

ż = F (z, uo, t) , (5)

whereF is an approximate model off in (1) andz ∈ IRn

is the state driven by this control through the nominal model
dynamics. Model (5) is used to solve the following finite-
horizon optimal control problem (FHC):

2For setsA andB, C = A + B implies that: Ifa ∈ A andb ∈ B then
a + b ∈ C.

FHC

min
uo(·)

J(uo; ts, T, z(ts)) where

J =
∫ ts+T

ts

h(z(τ), uo(τ))dτ + V (z(ts + T ))

subject to


ż = F (z, uo, t)
z(t) ∈ Xo , ∀ t ∈ [ts, ts + T ]
uo(t) ∈ Uo , ∀ t ∈ [ts, ts + T ]
z(ts + T ) ∈ Ωo

x(ts)− z(ts) ∈ Xf

wherex(ts) is the state of the real system dynamics (1).

The FHC is a typical problem solved in an MPC frame-
work, except for the last constraint given by

x(ts)− z(ts) ∈ Xf , (6)

which is a relaxation on the initial state of the FHC. This
relaxation together with feedback controluf will provide a
theoretical guarantee for the resolvability of the FHC and
lead to a robustly stabilizing controller.

The following conditions are instrumental for the stability
proof (In Section III we present a class of uncertain systems
for which the satisfaction of these conditions is ensured).

Condition 1: Functionh in the FHC satisfies

h(z, u) ≥ a||z||p + b||u||r , ∀ z, u , (7)

with p ≥ 1, r ≥ 0, a and b both positive constants, and
h(0, 0) = 0. �

Condition 2: FunctionV in the FHC is positive definite
[19] and there exists a feedback control lawu = L(x) and
uo = L(z) such thatV defines a Lyapunov function for (1)
and (5) satisfying

∇V (x)f(x,L(x), t) + h(x,L(x)) ≤ 0 , ∀x ∈ Ωo , (8)

∇V (z)F (x,L(z), t) + h(z,L(z)) ≤ 0 , ∀ z ∈ Ωo , (9)

whereΩo ⊂ Xo contains the origin. Additionally, feedback
law L rendersΩo ⊂ IRn invariant for dynamics (1) and (5),
i.e., if x(t0) ∈ Ωo (z(t0) ∈ Ωo) for somet0, thenx(t) ∈
Ωo , ∀ t ≥ t0 (z(t) ∈ Ωo , ∀ t ≥ t0). It is also assumed that

L(x) ∈ Uo , ∀x ∈ Ωo . (10)
�

Condition 3: There exist closed balls3 around the origin
BR andBr in IRn with radii R > r such that setΩo in the
FHC satisfies the following

Xf ⊆ Br ⊂ BR ⊆ Ωo . (11)
�

Condition 4: There exists a feedback control lawuf =
K(x, z) in (3) that renders the setXf invariant for η , x−z
with dynamics (1) forx and (5) forz, that is, if η(t0) ∈ Xf

for somet0 ≥ 0, then η(t) ∈ Xf ∀ t ≥ t0 and for alluo(·).
Additionally, uf = K(x, z) ∈ Uf if η(t) ∈ Xf . �

The following algorithm describes our MPC approach:

3Bρ , {v : ‖v‖ ≤ ρ}.



MPC Algorithm

Begin with k = 0 and iterate the following steps over
computation timestk for k ∈ Z+.

1) Measure the statex(tk) of the real system (1).
2) Solve the FHC at timets = tk with T = Tk and

obtain uo,k with uo(t) = uo,k(t) on t ∈ [tk, tk +
Tk].

3) Apply u = uo,k + uf to the real system (1) and
uo to nominal system (5) to obtainx andzk, with
z(t) = zk(t) on [tk, tk+1] , where uf = K(x, z).

4) If z(t̃) ∈ Ωo for somet̃ ≥ 0, thenuo = L(z) , for
t ≥ t̃.

5) If x(t̄) ∈ Ωo for somet̄ ≥ 0, thenu = L(x) , for
t ≥ t̄.

Lemma 1 (Resolvability of the FHC):Suppose that the
FHC is feasible att0 with T0, and let tk for k ∈ Z+ be
the times that a solution of the FHC is computed. Then,
the feasibility of the FHC is guaranteed attk with Tk ≥
Tk−1 − δk, ∀k ∈ Z+, δk = tk − tk−1, 0 ≤ δk < Tk−1

provided conditions 2 and 4 hold. �
Lemma 2 (Shrinking Optimal Cost with Receding Horizon):

Let tk (k∈Z+) be computation times for the FHC satisfying
infk(tk − tk−1) ≥ ε for someε > 0. Suppose the FHC is
feasible for sometk−1 and Tk−1 with optimal costJ∗k−1,
and conditions 1, 2, 3, and 4 hold. Then, the FHC is feasible
for tk with Tk ∈ [Tk−1−δk, Tk−1], and if zk−1(tk−1) /∈ Ωo

andzk−1(tk) /∈ Ωo the optimal cost satisfies

J∗k − J∗k−1 ≤ −β , for some β > 0. (12)
�

Remark 1:The MPC Algorithm can be modified by re-
moving Step 4 and continuing to resolve the FHC even when
the nominal trajectory is inΩo. In that case, the existence
of the local controller inΩo still leads to the inequality (39)
in the proof of Lemma 2, and we can establish asymptotic
stability of the nominal system and resolvability of the FHC
by adapting the proof of Theorem 1 in [2]. �

The following theorem is the main result of this paper :

Theorem 1:Consider system (1) with a control input
described by the MPC Algorithm. Suppose that conditions
1-4 are satisfied. Then, the resulting closed loop system is
asymptotically stable with a region of attractionRa,

Ra = {ξ ∈ IRn : FHC is feasible withx(ts) = ξ} . (13)
�

Proof: Given the MPC Algorithm andx(t0) such that
the FHC is feasible with someT0, suppose there exists
k ∈ Z+ such thatzk−1(tk−1) /∈ Ωo and zk−1(tk) /∈ Ωo.
This implieszk−1(t) /∈ Ωo for t ∈ [tk−1, tk] and equation
(12) holds. Consequently, if the nominal trajectoryz does
not enterΩo in finite time, then there existsk ∈ Z+ such
that J∗k < 0, which is a contradiction. This together with
Condition 2 imply the existence of finite timẽt ≥ 0 such that
z(t) ∈ Ωo, ∀t ≥ t̃. Further, using Condition 2 once more,
the closed loop nominal system (5) converges asymptotically
to the origin whenx(t0) ∈ Ra. Therefore, there exists

t̄ ≥ t̃ ≥ 0 such that‖z(t)‖ ≤ R − r for t ≥ t̄, where
R > r > 0 are as defined in Condition 3. This leads to

‖x(t)‖ ≤ ‖x(t)−z(t)‖+‖z(t)‖ ≤ r+(R−r) = R , ∀ t ≥ t̄ ,

which implies that

x(t) ∈ Ωo , ∀ t ≥ t̄ .

Since we apply Step 5 in MPC Algorithm fort ≥ t̄, using
Condition 2,

lim
t→∞

‖x(t)‖ = 0 .

This proves the convergence ofx(t) to the origin. The
stability of the origin is a direct implication of conditions
2 and 3, which completes the proof.

III. MPC FOR A CLASS OFSYSTEMS WITH DERIVATIVES

IN CONVEX SETS

In this section, we will specialize MPC results to the
following class of systems,

ẋ = Ax+Bu+ Eφ(t, q)
q = Cqx+Dqu ,

(14)

whereφ : IR× IRnq → IRnp is a continuously differentiable
function representing the uncertain nonlinear part of the
dynamics, i.e.f(x, u, t) = Ax+Bu+Eφ(t, q) in (1). Since
we develop explicit solutions to the existence conditions 1-4
for (14), this is a particularly important class of systems.

The nominal system dynamics is assumed to have the
following form,

ż = Az +Buo + Eψ(t, qo)
qo = Cqz +Dquo ,

(15)

whereψ : IR × IRnq → IRnp is an approximation forφ in
the real system (14), i.e.F (z, uo, t) = Az+Buo +ψ(t, qo)
in (5). Here, the following are assumed:

Condition 5: Functionsφ andψ are continuously differ-
entiable and there exists a closed and convex set of matrices
Θ ⊆ IRnp×nq such that

∂φ

∂q
(t, q) ∈ Θ and

∂ψ

∂q
(t, q) ∈ Θ , ∀ q, t . (16)

�
Condition 6: There exists a scalarγ > 0 such that

‖φ(t, qo)−ψ(t, qo)‖ ≤ γ , ∀ t , z ∈ Xo , uo ∈ Uo , (17)

whereqo = Cqz +Dquo as in 15. �
Remark 2:Condition 6 is satisfied whenXo andUo are

compact sets, andφ is continuous in its arguments and has
no dependence ont. For example suppose that there exists
a norm bound on the uncertainty, i.e.,

‖φ(t, qo)− ψ(t, qo)‖ ≤ ρ‖qo‖ , ∀ t , qo ,

whereρ > 0. Furthermore, there exist positive scalarsρ1 and
ρ2 such that

‖z‖ ≤ ρ1 ∀ z ∈ Xo , and ‖uo‖ ≤ ρ2 ∀uo ∈ Uo ,

which satisfies Condition 6 forγ = ρ(ρ1‖Cq‖+ρ2‖Dq‖). �



This class of systems has a subclass that is particularly
interesting for MPC applications, namely whenψ(t, z) =
ψ(t), which can be viewed as an exogenous input. In this
case, the nominal system (15) is an LTI system. Since the
dynamics of the nominal system give a set of equality con-
straints for the finite-horizon optimal control problem, having
an LTI nominal system is useful when all other state and
control constraints define a convex feasible domain.4 Then,
the optimal control problem becomes a convex optimization
problem, which can be numerically solved reliably and
autonomously in real-time by using interior point methods
[16]. Therefore, analysis of systems of the form (14) with LTI
nominal plants is useful for real-time autonomous control.

The dynamics between the real state and the nominal state,
η , x− z, are called “error dynamics” and are given by

η̇ = Aη +Buf + E [φ(t, q)− ψ(t, qo)] , (18)

where uf = u− uo. This equation is then rewritten as,

η̇ = Aη +Buf +E [φ(t, q)− φ(t, qo)] +E [φ(t, qo)− ψ(t, qo)] .
(19)

The following lemma (see [20] for a proof), which is a
generalization of mean value theorem, is used to obtain a
linear differential inclusion (LDI) [21] for the error dynamics
in (19).

Lemma 3:Consider a continuously differentiable function
ϕ : IRn → IRm with its Jacobian given by∂ϕ(q)/∂q.
Suppose that there exists a closed convex setΛ ∈ IRn×m

such that
∂ϕ

∂q
(q) ∈ Λ , ∀q .

Then, for everyq1 andq2 there exists∆ ∈ Λ such that

ϕ(q2)− ϕ(q1) = ∆(q2 − q1) .
�

Equation (19) can be written as

η̇ = Aη +Buf + E[π(t, η, uf ) + w(t, z, uo)] , (20)

where π(t, η, uf ) = φ(t, Cqx +Dqu) − φ(t, Cqz +Dquo),
and w(t, z, uo) = φ(t, Cqz + Dquo) − ψ(t, Cqz + Dquo),
wherew is assumed to satisfy

‖w(t, z, uo)‖ ≤ γ , ∀ z ∈ xo, uo ∈ Uo, t ≥ 0 (21)

by Condition 6. Applying Lemma 3 with Condition 5,

π(t, η, uf ) = θ(t)(Cqη +Dquf ) , where θ(t) ∈ Θ, ∀ t .
(22)

This description of the error dynamics is particularly
useful to obtain feedback laws that satisfy Condition 4 for a
class of uncertain nonlinear systems. Here, we consider two
well known classes where Jacobian matrices are either norm
bounded or are in polytopes, and we give the corresponding
feedback results.

The following condition gives a polytopic description
of the state and an ellipsoidal description of the control
constraint sets in the FHC. Note that more general convex

4All equality constraints in a convex optimization problem must be linear
equalities.

characterizations of the constraint sets are also possible and
can easily be integrated into the design framework.

Condition 7: The following hold for the constraint sets in
the FHC,

Xo ={x ∈ IRn : aT
i x ≤ 1, i = 1, . . . ,mo},

Xf ={x ∈ IRn : bTi x ≤ 1, i = 1, . . . ,mf},
Uo ={u ∈ IRm : uT Πou ≤ 1},
Uf ={u ∈ IRm : uT Πfu ≤ 1},

(23)

whereΠo, Πf are symmetric positive-definite matrices.�
The following is a corollary of Theorem 1 that describes a

design procedure for systems with norm-bounded derivatives.
Corollary 1: Consider an uncertain nonlinear system (14)

with a nominal model given by (15) satisfying conditions 5,
6, and 7 with

Θ = {θ ∈ IRnp×nq : ‖θ‖ ≤ 1} . (24)

Suppose that there exist matricesS = ST > 0, Q = QT > 0,
L, Y and positive scalarsλ, β, µ, c1, andc2 satisfying the
following matrix inequalities,24 SAT+AS+BL+LTBT +S/λ

+(β + λγ2)EET SCT
q +LTDT

q

CqS+DqL −βI

35≤0 (25)

264
„
QAT+AQ+BY

+Y TBT + µEET

«
QCT+Y TDT QCT

q +Y TDT
q

CQ+DY −I 0
CqQ+DqY 0 −µI

375≤0

(26)[
S LT

L Π−1
f

]
≥ 0 ,

[
Q Y T

Y Π−1
o

]
≥ 0 , (27)

aT
i Qai ≤ 1 , i = 1, . . . ,mo , (28)

bTi Sbi ≤ 1 , i = 1, . . . ,mf , (29)

Q ≥ c1I > c2I ≥ S , (30)

whereC andD are matrices satisfying

CTD = 0 .

Then, the ellipsoidsεQ = {x : xTQ−1x ≤ 1} and εS =
{x : xTS−1x ≤ 1} satisfy εQ ⊆ Xo and εS ⊆ Xf . Then,
the MPC Algorithm with

h(x, u) = ‖Cx‖2 + ‖Du‖2 ,
V (x) = xTQ−1x ,

(31)

L(x) = Kx , K = Y Q−1 ,
K(x, z) = Kf (x− z) , Kf = LS−1 ,

(32)

and invariant ellipsoidsεQ and εS replacingΩo and Xf ,
respectively, results in an asymptotically stable closed loop
system for (14) with region of attractionRa given in (13).

�
The following corollary establishes the results of Corollary

1 for systems with uncertain nonlinear terms that have
derivatives contained in polytopes.

Corollary 2: Consider a uncertain nonlinear system (14)
with a nominal model given by (15) satisfying all the



assumptions of Corollary 1 with the following modifica-
tion: For (24), assume that there exists a set of matrices
Σ1, . . . ,ΣN such that

Θ =
{
θ ∈ IRnp×nq : θ ∈ Co {Σ1, . . . ,ΣN}

}
. (33)

Then, all the conclusions of Corollary 1 hold if inequalities
(25) and (26) are replaced by the following, fori = 1, . . . , N

AiS+SAT
i +BiL+LTBT

i +S/λ+(β+λγ2)EET ≤0, (34)[
AiQ+QAT

i +BiY + Y TBT
i QCT+Y TDT

CQ+DY −I

]
≤0, (35)

whereAi = A+ EΣiCq , Bi = B + EΣiDq . �
Remark 3:All the matrix inequalities given in Corollary

1 and 2 are LMIs (linear matrix inequalities) except (25),
(26), (34), and (35). But, these are also LMIs for a given
λ > 0. Therefore, a simple line search onλ can be applied
to solve the system of matrix inequalities. �

Remark 4:The proofs of Corollaries 1 and 2 come from
establishing invariant ellipsoids around both the nominal
trajectory and the origin by using LMIs [22], [21]. �

A. Computation of Feedforward Control for Nominally LTI
Systems

In this section, we describe a methodology to calculate the
feedforward control for nominally LTI systems. In this case,
ψ in (15) is only a function of timet but notqo. Additionally,
Xo andUo are assumed to be convex sets. The feedforward
control can be parameterized by a zero-order-hold approach,
i.e.,uo is piecewise constant on time intervals of fixed length
δt. The resulting sampled-data system can then be written as,

zj+1 = Adzj +Bduo,j + ξj , (36)
where

Ad =eAδt, Bd =

Z δt

0

eA(δt−τ)Bdτ, ξj =

Z tj+1

tj

eA(δt−τ)Eψ(t)dτ.

This allows us to approximate the integral part of the cost
J in the FHC with a finite sum,∫ ts+T

ts

h(z(τ), uo(τ))dτ ≈ δt
N∑

j=0

ej h(zj , uo,j) ,

where ej results from the specific numerical integration
technique used, andN = T/δt. Then, the state and control
constraints are only imposed at temporal nodes, i.e.

zj ∈ Xo, uj ∈ Uo, j = 0, . . . , N.

If Xo andUo are sets that can be described by semidefinite
constraints, such as linear, quadratic, or conic inequalities
[15], then the FHC is approximated by a finite-dimensional
parameter optimization problem. Specifically, it becomes a
semidefinite programming problem (SDP), which can be
solved in polynomial time. There exist algorithms and soft-
ware [16], [18], [17] that compute the global optimum with a
deterministic stopping criteria, and with a prescribed level of
accuracy. Therefore, they are very well-suited for real-time,
onboard computations.

IV. A N ILLUSTRATIVE EXAMPLE

In this section, we present an example illustrating the MPC
algorithm. In this example, a “standard” approach to MPC,
without the relaxation of the initial state constraint in the
feedforward problem (6) and without the feedback, is shown
to fail. The same problem is then solved successfully by the
MPC algorithm. The dynamics of the system are given by,

ẋ =
[

0 1
0 0

]
x+

[
0
1

]
u+

[
0

−0.1

]
ω sin2 (Cqx)(37)

Cq =
[

1 0
]
, x =

[
q q̇

]T

ω ∈ [ 0, 0.5 ] .

Here ω is an uncertain parameter. We assume that the
nominal system is the linear part of (37), that isψ(t, q) = 0
and φ(t, q) = ω sin2 q in (15) and (14), respectively. This
implies that‖∂φ/∂q‖ ≤ 1, and Condition 5 is satisfied with
Θ as in (24). The state constraints are given by,

−0.25 ≤ x1 ≤ 5 and − 1 ≤ x2 ≤ 2

and the control constraint is|u| ≤ 1.4. For the MPC
algorithm, we partition the control constraint into

|uo| ≤ 1.2 and |uf | ≤ 0.2 .

The integral cost functionh(z, u) = ‖Cx‖2 + ‖Du‖2 is
determined by,

C =

 1 0
0 0.1
0 0

 , D =

 0
0
1

 .

Other design parameters needed in Corollary 1 areγ = 0.5,
Πo = (1/1.22)I, Πf = (1/0.22)I, and

a1 = [ 1/4.95 0 ] , b1 = [ 20 0 ]
a2 = [−5 0 ] , b2 = [−20 0 ]
a3 = [ 0 1/1.9 ] , b3 = [ 0 10 ]
a4 = [ 0 − 1/0.9 ] , b4 = [ 0 − 10 ] .

Then, the values of the solution variables obtained by solving
the LMIs (SDPT3 [18] is used to generate the numerical
solutions) in Corollary 1 are

Ko =
ˆ
−5.6850 −2.0990

˜
, Kf =

ˆ
−3.4747 −2.6140

˜
Q =

»
0.0400 −0.0480
−0.0480 0.2935

–
, S =

»
0.0018 −0.0017
−0.0017 0.0059

–
,

and the associated invariant ellipsoidsεQ andεS are shown
in Figure 1.
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Fig. 1. Invariant EllipsoidsεS ⊂ εQ for the MPC Algorithm



Figure 2 presents a simulation for a typical MPC imple-
mentation, whereω = 0.3. In the simulation, the finite-
horizon optimal control problem is solved by applying a
zero-order-hold discretization with a time incrementδt =
0.5 seconds, and constraints are guaranteed at the temporal
nodes. The feedforward solution is recomputed every10
seconds with a finite time horizon of30 seconds. The
trajectory enters the invariant setΩo (the ellipsoid around
the origin in the plot) and asymptotically converges to the
origin. However, the state constraint onx1 is violated, as
indicated by the state crossing a solid line atx1 = −0.25.
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Fig. 2. State Trajectory with Standard MPC

The same simulation is repeated with the MPC algorithm
of this paper (figure 3), and the trajectory asymptotically
converges to the origin without violating any state or control
constraints. Figure 4 depicts the associated feedforward and
feedback components of the control, which are within set
control constraints. Additionally, figure 5 shows the error
between the nominal and real trajectories also goes to zero.
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Fig. 3. State Trajectory with the MPC Algorithm
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Fig. 4. Feedforward and feedback control as a function of time

The time interval between two computations can be re-
duced to make “standard” MPC give feasible state trajecto-
ries, which is observed by reducing the computation time
interval to 5 seconds in this example (results not shown);
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Fig. 5. State errorη as a function of time

however, this reduction cannot always be pre-determined,
and the required reduction may be computationally too
demanding for a real-time implementation for a complex
system. Therefore, using the MPC algorithm of this paper
can be especially useful when explicit guarantees are needed
for feasibility once an initial feasible solution is computed.

V. CONCLUSIONS

We presented a general MPC algorithm that differs from
earlier counterparts in terms of using separate feedforward
and feedback control components, along with a relaxation
of the initial state constraint for the solution of the finite-
horizon optimal control problem at each computation. The
relaxation makes possible the off-line design of the feedback
control policy and guarantees resolvability and asymptotic
stability once an initial feasible solution is obtained for the
finite-horizon optimal control problem. This MPC algorithm
is robust to system uncertainties that are accounted for
explicitly in the feedback control design; this characteriza-
tion, which can easily be extended to external disturbances,
is particularly desirable for real-time autonomous control
applications. Design procedures are also given for a par-
ticular class of uncertain nonlinear systems, along with an
illustrative example to demonstrate the algorithm.

APPENDIX

Proof for Lemma 1 (Resolvability of the FHC): Suppose
at tk−1 the FHC is feasible withTk−1 and uo,k−1(t) for
t ∈ [tk−1, tk−1 + Tk−1], and zk−1(·) is the corresponding
state trajectory of (5). Lettk = tk−1 + δk and resolve the
FHC. Note,uo,k(t) = uo,k−1(t) for t ∈ [tk, tk−1 +Tk−1] is
one feasible solution of the FHC withTk = Tk−1− δk since
x(tk)− zk−1(tk) ∈ Xf is invariant due to Condition 4 (i.e.
zk(tk) = zk−1(tk) is the initial state of a feasible trajectory).

Now, we show that we can extend this feasible trajectory
on [tk, tk−1 + Tk−1] to [tk, tk + Tk] for any givenTk ≥
Tk−1 − δk by considering the following control input,

uo,k(t) =
{
uo,k−1(t), t ∈ [tk, tk−1 + Tk−1];
uo,k(t) = L(z(t)), t ∈ [tk−1 + Tk−1, tk + Tk].

(38)
which follows from Condition 2 by noting that
zk(tk−1 + Tk−1) = zk−1(tk−1 + Tk−1) ∈ Ωo. Consequently
(38) defines a feasible trajectory on[tk, tk + Tk], implying
the FHC has a feasible solution attk with time horizonTk,
once it is feasible attk−1 with Tk−1. Now, we can conclude
the proof by using induction. �



Proof of Lemma 2 (Shrinking Optimal Cost with Receding
Horizon): Since the FHC is feasible attk−1 with Tk−1 and
uo,k−1(·) provides the optimal costJ∗k−1, uo,k−1(·) can also
be used to provide a feasible solution for the FHC attk
with Tk ∈ [Tk−1 − δk, Tk−1] by using (38) as in the proof
of Lemma 1. So,zk(t) = zk−1(t) is a feasible trajectory for
t ∈ [tk, tk−1+Tk−1]. We will show that (12) is satisfied with
Tk = Tk−1 which will directly imply that (12) is satisfied
with Tk ∈ [Tk−1 − δk, Tk−1] by construction of the proof.

The cost with control input (38) andTk = Tk−1 is

Jk =

tk−1+Tk−1Z
tk

h(zk−1(τ), uo,k−1(τ))dτ

+

tk+Tk−1Z
tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ + V (zk(tk + Tk−1)) .

Since

J∗k−1 =

tkZ
tk−1

h(zk−1(τ), uo,k−1(τ))dτ

+

tk−1+Tk−1Z
tk

h(zk−1(τ), uo,k−1(τ))dτ + V (zk−1(tk−1 + Tk−1)),

we have Jk − J∗k−1 =
tk+Tk−1Z

tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ−
tkZ

tk−1

h(zk−1(τ), uo,k−1(τ))dτ

+ V (zk(tk + Tk−1))− V (zk−1(tk−1 + Tk−1)| {z }
=zk(tk−1+Tk−1)

) .

Condition 2 implies the following withuo,k(t) = L(zk(t))
on t ∈ [tk−1 + Tk−1, tk + Tk−1]:

tk+Tk−1Z
tk−1+Tk−1

V̇ (zk(τ))dτ +

tk+Tk−1Z
tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ ≤ 0, and

V (zk(tk + Tk−1))− V (zk(tk−1 + Tk−1))+
tk+Tk−1Z

tk−1+Tk−1

h(zk(τ), uo,k(τ))dτ ≤ 0.

This implies that

Jk − J∗k−1 ≤ −
tk∫

tk−1

h(zk−1(τ), uo,k−1(τ))dτ . (39)

Given conditions 1 and 3, if||z|| ≥ R, thenh(z, uo) ≥
a||z||p ≥ aRp since p ≥ 1. Since δk ≥ ε > 0, then for
t ∈ [tk−1, tk],

tk∫
tk−1

h(zk−1(τ), uo,k−1(τ))dτ ≥ aRpε︸ ︷︷ ︸
β

> 0. (40)

Combining inequalities (39) and (40) shows thatJk −
J∗k−1 ≤ −β < 0, and sinceJ∗k ≤ Jk, then

J∗k − J∗k−1 ≤ −β < 0. �

ACKNOWLEDGEMENTS

We gratefully acknowledge David S. Bayard, Daniel P.
Scharf, and Fred Y. Hadaegh of JPL, and Roy S. Smith
of University of California, Santa Barbara, for their very
valuable comments and suggestions. This research was per-
formed at the Jet Propulsion Laboratory, California Institute
of Technology, under the contract with National Aeronautics
and Space Administration, and funded through the internal
Research and Technology Development program.

REFERENCES

[1] D. Mayne, J. B. Rawlings, C. Rao, and P. Scokaert, “Constrained
model predictive control: Stability and optimality,”Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[2] H. Chen and F. Allgower, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,”Automatica,
vol. 34, no. 10, pp. 1205–1217, 1998.

[3] H. Michalska and D. Mayne, “Robust receding horizon control of
constrained nonlinear systems,”IEEE Transactions on Automatic
Control, vol. 38, no. 11, pp. 1623–1633, 1993.

[4] J. B. Rawlings and K. R. Muske, “The stability of constrained receding
horizon control,” IEEE Transactions on Automatic Control, vol. 38,
no. 10, pp. 1512–1516, 1993.

[5] A. Jadbabaie, “Receding horizon control of nonlinear systems: A
control lyapunov function approach,” Ph.D. dissertation, California
Institute of Technology, 2000.

[6] H. Chen, C. Scherer, and F. Allgower, “A game theoretic approach to
nonlinear robust receding horizon control of constrained systems,” in
Proceedings of the American Control Conference, 1997.

[7] M. Magni, H. Nijmeijer, and A. V. D. Schaft, “A receding horizon
approach to the nonlinearH∞ control problem,”Automatica, vol. 37,
no. 3, pp. 429–435, 2001.

[8] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,”Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[9] P. O. M. Scokaert and D. Q. Mayne, “Min-max feedback model
predictive control fro constrained linear sytems,”IEEE Transactions
on Automatic Control, vol. 43, no. 8, pp. 1136–1142, 1998.

[10] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,”Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[11] A. Bemporad, F. Borelli, and M. Morari, “Model predictive control
based on linear programming-the explicit solution,”IEEE Transactions
on Automatic Control, vol. 47, no. 12, pp. 1974–1985, 2002.

[12] R. S. Smith, “Robust model predictive control of constrained linear
systems,” inProceedings of the American Control Conference, June
2004, pp. 245–250.
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