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Abstract—A robustly stabilizing MPC (model predictive replaces the design of a control signal with a sequence of
control) algorithm with guaranteed resolvability is developed control policies, and explicit feedback policies are obtained
for uncertain nonlinear systems. With resolvability, initial for MPC of linear systems with state and control constraints
feasibility of the finite-horizon optimal control problem implies . . .
future feasibility in a receding-horizon framework. The control in [10], [11]_' In this paper We presgnt a robustly stabilizing
consists of two components; (i) feedforward, and (i) feedback. MPC algorithm for uncertain nonlinear systems that takes
Feedforward control and the associated nominal trajectory are advantage of desirable features of both feedforward and
obtained by online solution of a finite-horizon optimal control  feedback-based MPC approaches. For example, see [12] for
problem for the nominal system dynamics. The feedback control a coupled open-loop and feedback design for discrete linear-
policy is designed off-line, based on a bound on the model . . . .
uncertainty. The entire controller is shown to be robustly .tlme-lnvana.ntlsystems. The resgarch 9” guidance and cor.1trol
stabilizing with a region of attraction composed of initial states  in the proximity of small celestial bodies, such as asteroids
for which the finite-horizon optimal control problem is feasible. ~and comets, provided the motivation for this research, which
The controller design for this algorithm is demonstrated on a first appeared in [13].
class of systems with uncertain nonlinear terms that have norm- The algorithm presented here generates a control input that
bounded derivatives and derivatives in polytopes. An illustrative L . "
numerical example is also provided. has; (i) feedforward (i.e. open—lo_op coqtrol), and (i) fee@—

back parts. Feedforward control is obtained from the online
I. INTRODUCTION solution of a finite-horizon optimal control problem for the

; _=hominal system dynamics. The feedback control policy is
Substantial research over the past two decades[i] [SEesigned off-line based on a bound on the uncertainty in the

established MPC as a powerful control method to solv stem model. The cost in the feedforward optimal control
optimal feedback control problems with state and contral” C ! We pun
roblem has an integral part over the time horizon and a

constraints. In MPC the control input is calculated by solvin . X
P y ost on the final state. The cost on the final state serves

online a finite-horizon optimal control problem subject to trol L function in th ‘ahborhood of th
state and control constraints and with the current state of tig & CONO! Lyapunov function in the neighbornood ot the

system as the initial state. The control input signal is obtaine igin (see [2], [5], [14] for the use of control Lyapunov

and applied to the system over a specified time interval un hjncknons to prg]vet f:]abll't¥ fc;r ':AF:CE Thet agd|t|(;)n oftfzed_- i
the next re-computation provides an updated control inp ack ensures that the actual state trajectories do not deviate

which is then applied to the system and the cycle repea om the feedforward trajectories beyond a specified bound.

Here, resolvability is equivalent to having a feasible solutior his boynd IS then useq to relax the initial state constraint

to the finite-horizon optimal control problem in a future time" the f|r_1|_te-hc_Jr|zon optimal control problem to gu_arar!tee

given a feasible solution at the current time. _resolvab|llty .W"FhOUt any bound on t_he re-computation time
Since the computation of the feedforward control irllc)u1[ntervals. This is particularly useful if the online calculation

relies on a nominal system model, the robustness of MPC 95 the feedforward control is computationally intensive.

system uncertainties is non-trivial to establish. One approac:hlglr—:;r:e QA:: ig;)ngfo I;:r;iti)hnovggr t\,?,hti):h r?r?el: Sftilri/it:ﬁglrlil;;nng
to robustness is reducing the re-computation time interval& 9

. . o ptimal control problem is feasible. Furthermore, the MPC
sufficiently to establish robust stability. Such an approac o I : =
. ' . . o controller has an explicit characterization of its robustness; it
is taken in [3] in which explicit upper bounds on re-

cﬁan accommodate uncertainties up to the level considered in

computation time intervals are derived. However, the upp . . .
bounds can be very conservative in terms of a real-tin?efetgie&iagkafog'r%riesg![gig' ;:sosrutr?g(;h;?e\rte:::rledgxggpgjec?lt
implementation. Other approaches proposed in the literatuPe 9 '

a feedback policy. Therefore, we also present procedures

for robustness [see [1] for review of the literature] sucl}or the design of feedback policies on a class of uncertain
as open-loop min-max MPC [6], [7] where the satisfaction 9 P

nonlinear systems with derivatives in unit balls or polytopes.

of the constraints for all possible system realizations isl‘his class of systems also contains nominally LTI (linear-

considered. Another approach is feedback MPC [8], [9] the%ltme-invariant) systems. Nominally LTI systems with convex

Authors are with Jet Propulsion Laboratory, California Staté and control constraints lead to convex optimization
Institute  of Technology, 4800 Oak Grove Dr, M/S 198-326,problems for the feedforward control computations that can
jP n?igtgsegﬁ@ﬁﬁnggogvaSA' Emaibehcet@jpl.nasa.gov, be solved online with guaranteed convergence [15], [16],

. ' [17], [18]. This is a very useful property for applications

1The MPC literature is very extensive, and we omit many excellen ° ) ;
references for brevity. where autonomous control input generation is needed.



The organization of the paper is as follows: Section ||
presents the MPC algorithm and its theoretical development;
Section Il presents explicit feedback design procedures !} J(uoits, T, 2(ts))  where
for systems with bounded derivatives and derivatives in tAT
a polytope, as well as a design of feedforward control J:/ h(z(7),uo(7))dr + V (2(ts + T))
of nominally LTI systems; and Section IV demonstrates ts

—

the MPC algorithm on an illustrative example. Proofs of z=F(z,uo,t)
supporting lemmas are relegated to the Appendix. _ 2(t) € Xy, Vi€ |[ts, ts+T)
The following is a partial list of notation used in this paper; subjectto ¢ wu,(t) € U,, Vt € [ts, t, + T
Q = QT > 0 implies Q is a positive semi-definite matrix; 2(ts +T) € Q,
Co{G4,...,Gn} represents the convex hull of matrices x(ts) — 2(ts) € X
Gi,...,Gn; R" is the space of dimensional vectors with wherez(t,) is the state of the real system dynamics ().
real componentsZ™ is the set of positive integers; and, for
RN _
ViRT = R, VV = [9V/0xy ... OV/Oxy]. The FHC is a typical problem solved in an MPC frame-

Il. DESCRIPTION OF THESYSTEM AND THE work, except for the last constraint given by

MODEL-PREDICTIVE-CONTROL ALGORITHM x(ty) — 2(t,) € Xy, (6)

Consider an (l;ncerta|ln nonlinear dynamical system Withich is a relaxation on the initial state of the FHC. This
stater € IR™ and controlu € IR™ as relaxation together with feedback contr} will provide a

= f(z,ut). (1) theoretical guarantee for the resolvability of the FHC and
lead to a robustly stabilizing controller.
We will refer to dynamics in (1) as theeal dynamics Our The following conditions are instrumental for the stability

objective is to obtain a control inpuf(-) such that the closed proof (In Section Il we present a class of uncertain systems
loop system for (1) imsymptotically stable about the origin, for which the satisfaction of these conditions is ensured).

x = 0, with a region of attractioriR, € X such that Condition 1: Functionh in the FHC satisfies

z(t) e X, u(t) e U, Vt >ty, whenz(ty) € Ra, (2) h(z,u) > al|z||P + bl|lul]", Yz, u, 7)
and whereX C IR" andU C IR™ are sets defining the statewith p > 1, » > 0, a« and b both positive constants, and
and control constraints, respectively. We propose a modg(0,0) = 0. o
predictive control (MPC) approach where the control input Condition 2: FunctionV in the FHC is positive definite
is composed of two components: [19] and there exists a feedback control law= £(x) and

« Feedforward control inputy,, u, = L(2) s_,uch thatV' defines a Lyapunov function for (1)

« Feedback control input, and (5) satisfying
such that VYV (2)f(x, L(x),t) + h(z, L(z)) <0, Yz €Q,, (8)

u(t) = o(t) +us(t). ©)  YVE)F@ L)) + bz £() <0, V2 Q,, (9)

Suppose there exist se¥,, X; andU,, Uy, which all

: . where2, C X, contains the origin. Additionally, feedback
contain the origin, such tht c g y

law £ rendersQ2, C IR" invariant for dynamics (1) and (5),

X,+X;CX, i.e., if z(tg) € Q, (2(to) € Q,) for somety, thenx(t) €
U,+U;CU. 4 q,, vt>t (2(t) € Q,, Vt > tp). Itis also assumed that
The feedforward component of the control input will be de- L(z)eU,, VzeQ,. (10)

termined through online solution of a finite-horizon optimal . Th ist closed baf dth ©
control problem, and the feedback part will be determined Cond|t|on_3. Tner_e exist closed batisaround the origin
off-line as a control policy. Br and]_3r_ in IR™ with rgdn R > r such that sef), in the
For feedforward control design, knowledge of the foIIow-FHC satisfies the following
ing nominal plant model is assumed: X;CB,CBrCQ,. (11)
&
Condition 4: There exists a feedback control law; =

where F' is an approximate model of in (1) andz € R"  K(z,2) in (3) that renders the s& invariant for ) £ z—z
is the state driven by this control through the nominal modé¥ith dynamics (1) forz and (5) forz, that is, if 5(to) € Xy
dynamics. Model (5) is used to solve the following finite-for someto > 0, thenn(t) € Xy Vi > to and for allu,(-).
horizon optimal control problem (FHC): Additionally, uy = K(z, 2) € Uy if n(t) € X;. o
The following algorithm describes our MPC approach:

Z=F(z,upt), (5)

2For setsA and B, C = A + B implies that: Ifa € A andb € B then
a+beC. B, £ {v : |jv]| < p}.



’Mpc Algorithm ‘ t >t > 0 such that|z(t)| < R —r for t > t, where
R > r > 0 are as defined in Condition 3. This leads to

Begin with £k = 0 and iterate the following steps over
computation times,, for k € Z*. lz(®)| < lw(t)—2z(t)||+]z(t)] < r+(R—7) =R, YVt > t,
1) Measure the state(t;) of the real system (1).

2) Solve the FHC at time, = t;, with T = T} and
obtain u, ; With u,(t) = u, k(t) ON t € [tg, tr + z(t) € Qo , Vit >
Tk].

3) Apply v = u, i + uy to the real system (1) and

which implies that

S|

Since we apply Step 5 in MPC Algorithm far> ¢, using

u, to nominal system (5) to obtain and z;, with Condition 2, . ~0
2(t) = 24(t) On [tg, Lhs] » where uy = K(z, 2). Jim [l (8)]f = 0.
4) If 2(t) & 2, for somet > 0, thenu, = L(z) , for This proves the convergence af(t) to the origin. The
t =2t _ stability of the origin is a direct implication of conditions
5) If x(t) € €, for somet > 0, thenu = L(x), for| 5 4n4'3 which completes the proof. n
t>t.

I. MPC FORA CLASS OFSYSTEMS WITH DERIVATIVES

- . I
Lemma 1 (Resolvability of the FHCBuppose that the N CONVEX SETS

FHC is feasible at, with Ty, and lett, for kK € Zt be

the times that a solution of the FHC is computed. Then, In this section, we will specialize MPC results to the

the feasibility of the FHC is guaranteed &t with 7, >  following class of systems,

Tk_l-f 5k1 VkG ZJr, 5k =t —tp_1, 0 < 5k < Ti_1 x':Ax—i-Bu—l—EqS(t,q)

provided conditions 2 and 4 hold. o (14)
Lemma 2 (Shrinking Optimal Cost with Receding Horizon): ¢=Cqz + Dqu,

Lett;, (k € Z™) be computation times for the FHC satisfyingwhere¢ : IR x IR" — IR™ is a continuously differentiable

infy,(ty, — tr—1) > € for somee > 0. Suppose the FHC is function representing the uncertain nonlinear part of the

feasible for some,_; and 7)., with optimal costJ;_;, dynamics, i.ef(x,u,t) = Ax+ Bu+ E¢(t,q) in (1). Since

and conditions 1, 2, 3, and 4 hold. Then, the FHC is feasiblge develop explicit solutions to the existence conditions 1-4

for tp with Ty, € [T—1 — 0k, Th—1], and ifzx_1(tx—1) € Q,  for (14), this is a particularly important class of systems.

and z,_1 (tx) ¢ Q, the optimal cost satisfies The nominal system dynamics is assumed to have the

Ji—Jr <-B, forsomeg>o0.  (12) 'ollowing form,
© 2= Az+ Bu, + EY(t,qo)

Remark 1:The MPC Algorithm can be modified by re- ¢o=Cozt Dou (15)
moving Step 4 and continuing to resolve the FHC even when ° 1 e
the nominal trajectory is iff2,. In that case, the existencewherey : IR x IR" — IR" is an approximation fog in
of the local controller irQ2, still leads to the inequality (39) the real system (14), i.eF'(z, u,,t) = Az + Bu, + (¢, ¢o)
in the proof of Lemma 2, and we can establish asymptoti® (5). Here, the following are assumed:
stability of the nominal system and resolvability of the FHC Condition 5: Functions¢ and ) are continuously differ-

by adapting the proof of Theorem 1 in [2]. o entiable and there exists a closed and convex set of matrices
C npan
The following theorem is the main result of this paper: OcR such that
, . . oy
Theorem 1:Consider system (1) with a control input %(t’q) €6 and a*q(h(]) €0, Vg t. (16)
described by the MPC Algorithm. Suppose that conditions ©

1-4 are satisfied. Then, the resulting closed loop system isCondition 6: There exists a scalar > 0 such that
asymptotically stable with a region of attractidy,, 6t qo) —¥(t, @)l < v, Vt, 2€X,, uo € Uy, (17)

Ro.={£ € R": FHC is feasible withz(t;) = ¢} . (130) whereq, = C,z + Dyu, as in 15. o

Proof: Given the MPC Algorithm and:(fo) such that  Remark 2:Condition 6 is satisfied wheX, and U, are
the FHC is feasible with somd}, suppose there exists compact sets, and is continuous in its arguments and has
k € Z* such thatz,_i(tr_1) ¢ Qo and zx_1(tx) & Qo. no dependence oh For example suppose that there exists
This implies z,_1(t) ¢ Q, for t € [t,_1, t;] and equation & NOrM bound on the uncertainty, i.e.,

(12) holds. C;onrsgque_ntly, if the nommall trajectarydoes l6(t, q0) — (. )|l < pllaoll, V.o,

not enter(}, in finite time, then there exists € Z* such _ -

that J; < 0, which is a contradiction. This together with Wherep > 0. Furthermore, there exist positive scalarsand
Condition 2 imply the existence of finite tinie> 0 such that 2 such that

z(t) € Qo, Yt > 1. F_urther, using Condition 2 once more, Iz <p1 YzeX,, and ||| < ps Yu, €Uy,

the closed loop nominal system (5) converges asymptotically
to the origin whenz(ty) € R,. Therefore, there exists which satisfies Condition 6 foy = p(p1||C, || + p2||Dyll)- ©



This class of systems has a subclass that is particulartharacterizations of the constraint sets are also possible and
interesting for MPC applications, namely wheri{t,z) = can easily be integrated into the design framework.
w(t), which can be viewed as an exogenous input_ In this Condition 7: The foIIowing hold for the constraint sets in
case, the nominal system (15) is an LTI system. Since tige FHC,

dynamics of the nominal system give a set of equality con- X,={zeR":alz<1,i=1,...,mo},

straints for the finite-horizon optimal control problem, having X;={zeR":blex<1,i=1,...,ms}, 23
an LTI nominal system is useful when all other state and U,={uc R™: v Tu < 1}, (23)
control constraints define a convex feasible donaien, Us={ue R™: u"llju <1},

the optimal control problem becomes a convex optimizatiothereHm I1; are symmetric positive-definite matrices:

problem, which can be numerically solved reliably and 1 fo|10wing is a corollary of Theorem 1 that describes a

autonomously in real-time by using interior point methodgyejon procedure for systems with norm-bounded derivatives.
[16]. Therefore, analysis of systems of the form (14) with LTI Corollary 1: Consider an uncertain nonlinear system (14)

nominal plants is useful for real-time autonomous control.With a nominal model given by (15) satisfying conditions 5,
The dynamics between the real state and the nominal stafe.and 7 with

n £ x — z, are called &rror dynamics and are given by

0= An+ Buy + E[$(t,q) —(t ¢)] (18)
where uy = u — u,. This equation is then rewritten as,

©={0ecR™ " : 9| <1}. (24)

Suppose that there exist matricgs= 57 > 0, Q = Q7 > 0,
L, Y and positive scalarg, 3, u, c1, andc, satisfying the
N = An+ Bus + E [¢(t,q) — ¢(t, q0)] + E [6(t,q0) — ¥(t,q,)].  following matrix inequalities,

T TRT
The following lemma (see [20] for a proof), which is a 54 +ffﬁ+fft)%gT /A SCq+L'Dy <0 (25)
generalization of mean value theorem, is used to obtain a i -
CqS+DqL —BI

linear differential inclusion (LDI) [21] for the error dynamics

in (19). QAT+ AQ+BY T \THT T  vTPT
Lemma 3:Consider a continuously differentiable function ( + "B + uEE" QUHYIDT QC, +Y D, <0
¢ : R" — IR™ with its Jacobian given bylp(q)/dq. cQ+DY -1 0 -
Suppose that there exists a closed convexAset IR™*™ Co@+DqY 0 —ul (26)
such that 9 g o7 0 YT
¥
— A .
8q(Q)€ ’ vq |:L Hf1:|207 |:Y H;1:|207 (27)
Then, for everyg; andq, there existsA € A such that
A alQa; <1, i=1,...,m,, (28)
Pla2) = ola) = Aa —a). o bIShi <1, i=1,...,my, (29)
Equation (19) can be written as Q>cl>cl>S (30)
0= An+ Bug + Blr(tn,ug) +w(t, z,u0)l, - (0) - pere o and D are matrices satisfying
where n(t,n,uy) = ¢(t, Cqx + Dgu) — ¢(t, Cqz + Dqu,), oD -0
and w(t, z,u,) = ¢(t,Cqz + Dguo) — Y(t, Cyz + Dgu,), -
wherew is assumed to satisfy Then, the ellipsoidgg = {z : 27Q 'z < 1} andeg =

lwo(t, 2 )l <7, Vz€xp up €U,y t20 (21) {2 @ 57 < 1} satisfyeg € X, andes C X, Then,
the MPC Algorithm with

by Condition 6. Applying Lemma 3 with Condition 5,
h(w,u) = ||Cx|* + || Dul|?,

7(t,m,up) = 0(t)(Cyn + Dyuy), where 6(t) € ©, Vt. V(z) = 27Q 1z, (31)
(22)
This description of the error dynamics is particularly L(z) =Kz, K=YQ"', (32)
useful to obtain feedback laws that satisfy Condition 4 for a K(z,2) = Kf(x —2), K;=LS™",

class of uncertain nonlinear systems. Here, we consider MO invariant ellipsoids o and e replacing (), and X;
. . . o 1
well known classes where Jacobian matrices are either norr'&pectively, results in an asymptotically stable closed loop

bounded or are in polytopes, and we give the correspondigg,stem for (14) with region of attractioR., given in (13).
feedback results. @ o

f'l;ue f(:ll?wmgd condltlllqn g(l;/elsda pql);_toplc fd;z]scrlptl(in The following corollary establishes the results of Corollary
0 te _staetan_ ?hn (Iezll|pgm|\|at tis?lp lon o elconr for systems with uncertain nonlinear terms that have
constraint sets in the - Note that more general convex, . ives contained in polytopes.

4All equality constraints in a convex optimization problem must be linear .CoroIIary 2 Consider a.uncertam nonl'ne_ar _SyStem (14)
equalities. with a nominal model given by (15) satisfying all the



assumptions of Corollary 1 with the following modifica- IV. AN ILLUSTRATIVE EXAMPLE

tion: For (24), assume that there exists a set of matrices |, thjs section, we present an example illustrating the MPC
¥1,..., ¥y such that algorithm. In this example, a “standard” approach to MPC,
O={hcR™ ™ : geCo{S,....¥ . 33 without the relaxation of the mmal state constramlt in the

{ o{ N}} (33) feedforward problem (6) and without the feedback, is shown

Then, all the conclusions of Corollary 1 hold if inequalitiesto fail. The same problem is then solved successfully by the
(25) and (26) are replaced by the following, for=1,...,N  MPC algorithm. The dynamics of the system are given by,

AiS+SAT+ B L+ L BT +S/M (B + M) EET <0, (34) s = [8 HH[HH[ gl]wsinz (C,2)(@7)
AQ+QAT +B,Y +YTBT QCT+YTDT o7
w € [0,05].
WhETEAi =A+ EZiCq , Bi=B+ EZqu . <o

Remark 3:All the matrix inequalities given in Corollary Here w is an uncertain parameter. We assume that the
1 and 2 are LMIs (linear matrix inequalities) except (25)nominal system is the linear part of (37), that/i¢/, q) = 0
(26), (34), and (35). But, these are also LMIs for a giverdnd ¢(t,q) = wsin®q in (15) and (14), respectively. This
X > 0. Therefore, a simple line search ancan be applied implies that||0¢/dq|| < 1, and Condition 5 is satisfied with
to solve the system of matrix inequalities. o © asin (24). The state constraints are given by,

Remar!( 4:The proofs gf Cprollaries 1 and 2 come frqm —025<2,<5 and —1<azy<2
establishing invariant ellipsoids around both the nominal
trajectory and the origin by using LMIs [22], [21]. o and the control constraint i$u| < 1.4. For the MPC

algorithm, we partition the control constraint into
A. Computation of Feedforward Control for Nominally LTI
Systems

In this section, we describe a methodology to calculate the The integral cost functioh(z,u) = ||Cz||* + ||Dul]? is
feedforward control for nominally LTI systems. In this casegetermined by,

luo) < 1.2 and |uy| <0.2.

1 in (15) is only a function of time but notq,. Additionally, 10 0
X, andU, are assumed to be convex sets. The feedforward c=10 01 D=1o0
control can be parameterized by a zero-order-hold approach, 0 0 ’ 1

i.e.,u, is piecewise constant on time intervals of fixed length

§t. The resulting sampled-data system can then be written &ther design parameters needed in Corollary 1nare0.5,
I, = (1/1.2%)1, I = (1/0.2%)1, and

zj+1 = Aqzj + Bauo ; + &5, (36)
where ’ ’ e a; = {1/54%5] 0], lbh = {20200 ]0]
ot . tit1 . as = | — , 0 = |—
Ag=e%t, Bd:/ ACtT I BAr, ¢ :/ eACTD By (t)dr. az =10 1/1.9], bs =[0 10]

0 t;

as =10 —1/0.9], by=[0 —10].

g}hen, the values of the solution variables obtained by solving
the LMIs (SDPT3 [18] is used to generate the numerical
solutions) in Corollary 1 are

ts+T N
/t h(2(7) o (7)) dr 2 66D €5 h(z), to,5) Ko=[ —5.6850 —2.0990 |, Kj=[ —34747 —2.6140 |

0.0400 —0.0480 g— 0.0018 —0.0017
—0.0480 0.2935 ’ ~ | —0.0017 0.0059 |’

This allows us to approximate the integral part of the co
J in the FHC with a finite sum,

s =0
where e; results from the specific numerical integration Q = {
technique used, any = T'/ét. Then, the state and control

constraints are only imposed at temporal nodes, i.e. and the associated invariant ellipsoids andeg are shown
in Figure 1.
ZjEXO, ’U,jGUO, jZO,...,N.

If X, andU, are sets that can be described by semidefinite
constraints, such as linear, quadratic, or conic inequalities

[15], then the FHC is approximated by a finite-dimensional
parameter optimization problem. Specifically, it becomes a
semidefinite programming problem (SDP), which can be x
solved in polynomial time. There exist algorithms and soft-

ware [16], [18], [17] that compute the global optimum with a
deterministic stopping criteria, and with a prescribed level of
accuracy. Therefore, they are very well-suited for real-time, T
Onboal’d Computatlons -02 -0.15 -0.41 -0.05 0 0.05 0.1 0.15 0.2

X

1
Fig. 1. Invariant Ellipsoidg s C e¢ for the MPC Algorithm



Figure 2 presents a simulation for a typical MPC imple-

mentation, wherev = 0.3. In the simulation, the finite-

horizon optimal control problem is solved by applying a -0.01]

zero-order-hold discretization with a time incremexit =

0.5 seconds, and constraints are guaranteed at the temporal

nodes. The feedforward solution is recomputed eviby
seconds with a finite time horizon 030 seconds. The
trajectory enters the invariant s, (the ellipsoid around

the origin in the plot) and asymptotically converges to the t

origin. However, the state constraint an is violated, as
indicated by the state crossing a solid linexat= —0.25.

2
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Fig. 2. State Trajectory with Standard MPC
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Fig. 5. State error, as a function of time

however, this reduction cannot always be pre-determined,
and the required reduction may be computationally too
demanding for a real-time implementation for a complex
system. Therefore, using the MPC algorithm of this paper
can be especially useful when explicit guarantees are needed
for feasibility once an initial feasible solution is computed.

V. CONCLUSIONS

We presented a general MPC algorithm that differs from
earlier counterparts in terms of using separate feedforward
and feedback control components, along with a relaxation
of the initial state constraint for the solution of the finite-
horizon optimal control problem at each computation. The

The same simulation is repeated with the MPC algorithrrelaxation makes possible the off-line design of the feedback
of this paper (figure 3), and the trajectory asymptoticallyontrol policy and guarantees resolvability and asymptotic
converges to the origin without violating any state or controtability once an initial feasible solution is obtained for the
constraints. Figure 4 depicts the associated feedforward afigite-horizon optimal control problem. This MPC algorithm
feedback components of the control, which are within sa§ robust to system uncertainties that are accounted for
control constraints. Additionally, figure 5 shows the erroexplicitly in the feedback control design; this characteriza-
between the nominal and real trajectories also goes to zer@on, which can easily be extended to external disturbances,

1.5

0.5¢

x2

-0.5f

- ) 1 2 3 4 5
x1
Fig. 3. State Trajectory with the MPC Algorithm
2 ; ‘ ‘
1k

s° o

5 1t‘o 15
Fig. 4. Feedforward and feedback control as a function of time

20

is particularly desirable for real-time autonomous control
applications. Design procedures are also given for a par-
ticular class of uncertain nonlinear systems, along with an
illustrative example to demonstrate the algorithm.

APPENDIX

Proof for Lemma 1 (Resolvability of the FHCJuppose
at ¢, the FHC is feasible withl},_; and wu, ;_1(t) for
t € [tk—1,tk—1 + Tr—1], @and z_1(-) is the corresponding
state trajectory of (5). Lety = t;_1 + 0 and resolve the
FHC. NOte,1L07k(t) = 1L07k_1(t) fort e [tk-, tr—1 —|—Tk_1] is
one feasible solution of the FHC with, = T},_; — d; Since
x(tx) — zx—1(tx) € Xy is invariant due to Condition 4 (i.e.
zi(tk) = zrk—1(tr) is the initial state of a feasible trajectory).

Now, we show that we can extend this feasible trajectory
on [tg, tx—1 + Tk—1] tO [t, tx + Tx] for any givenT} >
Tr_1 — 6, by considering the following control input,

_ Juok—1(t), t€ [ty ther + Th—1];
Uop k(t) =
o uo,k(t) = E(z(t)), te [tk71 + kab tk + Tk].
(38)
which follows from Condition 2 by noting that
2 (th—1 + Th—1) = 2p—1(tk—1 + Ti—1) € Q,. Consequently
(38) defines a feasible trajectory o, ¢ + 7], implying

The time interval between two computations can be redhe FHC has a feasible solution #t with time horizonTy,
duced to make “standard” MPC give feasible state traject@nce it is feasible at;_; with T;_1. Now, we can conclude

ries, which is observed by reducing the computation timéhe proof by using induction.

interval to 5 seconds in this example (results not shown);



Proof of Lemma 2 (Shrinking Optimal Cost with Receding

Horizon) Since the FHC is feasible at_; with T _; and
Ue,5—1(+) provides the optimal cost!_;, u, x—1(-) can also
be used to provide a feasible solution for the FHCtat
with Ty, € [Tk—1 — dk, Tk—1] by using (38) as in the proof
of Lemma 1. Soz,(t) = zx—1(t) is a feasible trajectory for
t € [tr, t—1+Tk—1]. We will show that (12) is satisfied with
T, = Tyr_1 which will directly imply that (12) is satisfied
with Ty, € [Tx—1 — o, Tk—1] by construction of the proof.
The cost with control input (38) andl, = 7)1 is

tp—1+Tk—1
Jp= / h(zk=1(T), Uo,k—1(T))dT
ty
tp+T,—1
+ / h(zi(7)s vok(7))dT + V (21 (8 + Ti—1)) -
tp—1+Tr—1
Since
tr
J;ll:/ h(zk—1(T), Uo—1(7))dT
tp—1
tp—1+Tk—1
n / h(2h-1(7), o 1 (7))dT + V (zk—1 (te—1 + Th_1)),
tr
we have J, — J;_, =
tp+Th—1 t
/h(Zk(T),Uo,k(T))dT*/ h(zk—1(7), to,k—1(7))dT
t—1+T,—1 tk—1

+ V(ze(te + Th-1)) — V(zk—1(ts—1 + Th—1)) .
—_—
=z (tg—1+Tk—1)

Condition 2 implies the following withu, 1 (t) = L£(zx (1))
ont e [tx—1 + Tk—1, tix + Trp—1):

t+Th_1 te4+Te_1
/ V (21 (7))dr + / h(zk(7), ok (1))dr < 0, and
te—1+Tr_1 tp—1+Te—1
V(zk(te + Tho—1)) = V(zk(th—1 + Th—1))+
te+TK 1
/ h(zk(T), o,k (7))dT < 0.
tp—1+Tk—1

This implies that

ty
Jp—Jp1 < —/ h(2k-1(7), uok—1(7))dr . (39)
tr—1

Given conditions 1 and 3, ifjz|| > R, thenh(z,u,) >

al|z||P > aRP sincep > 1. Sinced, > e > 0, then for
t € [tr—1,tk],
ty
/ h(zg—1(7), uok—1(7))dT > aRPe > 0.  (40)
th—1 B

Combining inequalities (39) and (40) shows thdj —
Ji_1 £ =0 <0, and sinceJ; < Ji, then

Jp = Jh1 < =B <0. |
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