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Abstract. The paper presents a way to robustly command a system of systems 
as a single entity. Instead of modeling each component system in isolation and 
then manually crafting interaction protocols, this approach starts with a model 
of the collective population as a single system. By compiling the model into 
separate elements for each component system and utilizing a teamwork model 
for coordination, it circumvents the complexities of manually crafting robust in- 
teraction protocols. The resulting systems are both globally responsive by vir- 
tue of a team oriented interaction model and locally responsive by virtue of a 
distributed approach to model-based fault detection, isolation, and recovery. 

1 Introduction 

Over the next decades NASA mission concepts are expected to involve growing 
teams of tightly coordinated spacecraft in dynamic, partially understood environ- 
ments. In order to maintain team coherence, each spacecraft must robustly respond to 
global coordination anomalies as well as local events. Currently techniques for im- 
plementing such teams are extremely difficult. They involve either having one 
spacecraft tightly control the team or giving each spacecraft separate commands with 
explicit communication actions to coordinate with others. While both approaches 
can handle two or three simple spacecraft, neither scales well to larger populations or 
more complex spacecraft. New techniques are needed to facilitate managing popula- 
tions of three or more complex spacecraft. 

Flexible teamwork is a technique developed in the multi-agent community for 
teams of agents that achieve joint goals in the face of uncertainties arising from com- 
plex dynamic domains that obstruct coherent teamwork. Flexible teamwork involves 
giving the agents a shared team plan and a general model of teamwork. Agents ex- 
ploit this model and team plan to autonomously reason about coordination and com- 
munication, providing the requisite flexibility. While this framework has been im- 
plemented in the context of real-world synthetic environments like robotic soccer and 
helicopter-combat simulation, these systems take an ad hoc rule-based approach to- 
ward failure diagnosis and response. 

Our system takes a model-based approach toward representing teams and encoding 
their group activities. As Figure 1 shows, a user models a team as if one member 



tightly controls the others, but a compiler takes that model and distributes it across the 
team to move all reasoning as close as possible to the components being reasoned 
about. The result is a team with elements that are both locally and globally respon- 
sive, without having a user explicitly reason about the distribution. 

Fig 1. User models system assuming a central controller, and a compiler handles the underly- 
ing distribution and coordination. 

Defining the approach starts with an explanation of the system architecture that re- 
sides on each component and how the components interact. Sections 3 and 4 then 
discuss the team sequencing and distributed mode management aspects of the system 
respectively. Section 5 subsequently discusses related work followed by conclusions 
in section 6. 

2 System Architecture 

The system architecture involves three distinct distributed components: mode identi- 
fier, mode reconfigurer, and team sequencer. As illustrated in Figure 2, the mode 
identifier combines sensory information from the hardware with past commands from 
the reconfigurer to determine the mode of the system. The mode reconfigurer in turn 
takes the current state estimate with a target mode from the team sequencer to deter- 
mine the next commands to pass to a robot’s hardware drivers. Finally, the team 
sequencer procedurally controls the identifier-reconfigurer-driver feedback loop by 
providing target states to the reconfigurer. At all times local mode identifiers main- 
tain state knowledge, and sequencers react to this information by changing the target 
state. While this system can take manually generated commands, it was initially 
motivated as an executive that supports distributed autonomy via shared activities [l]. 

While this architecture has been explored for single agent systems using TITAN 
[ 2 ] ,  it has yet to be cleanly extended to tightly coordinated teams. This work makes 
the extension by developing distributed techniques for mode identification, mode 
reconfiguration, and team sequencing. In each component the techniques motivated 
replacing the underlying algorithms to provide the original capabilities while support- 
ing distributed computation and hard real-time performance guarantees. 
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Fig 2. The component architecture of executive on each robotic element consists of three ele- 
ments that current state information - some of which is identified as team state information and 
has to be kept consistent among all robotic elements. 

3 Team Sequencing 

The distributed onboard sequencer is based both on the Reactive Model-based Pro- 
gramming Language (RMPL) [3] and a model of flexible teamwork [4] developed 
within the distributed artificial intelligence community. This teamwork is more than 
a union of agents’ simultaneous execution of individual plans, even if such plans have 
explicit coordination actions. Uncertainties often obstruct pre-planned coordination, 
resulting in a corresponding breakdown in teamwork. Flexible teamwork involves 
giving agents a shared team plan and a general model of teamwork. Agents then ex- 
ploit this model and plan to autonomously handle coordination and communication, 
providing the flexibility needed to overcome the emergence of unexpected interac- 
tions caused either by slight timing delays or anomalies. 

3.1 Procedural Control 

RMPL elevates the level at which a control programmer thinks about a robotic sys- 
tems. Instead of reasoning about sensors, actuators, and hardware, a RMPL pro- 
grammer thinks in terms of commanding a system through a sequence of configura- 
tion states. As such, a control program is written at a higher level of abstraction, by 
asserting and checking states which may not be directly controllable or observable. 

As an example of the rich types of behavior that an RMPL control programmer can 
encode, consider the control program below for a simplistic approach toward getting 
to rovers to jointly lift a bar. It performs the task by commanding the robot arms into 
a rising mode whenever they are stopped, and then stopping when one of the robots 
senses that its arm is at the top position. While only partially shown in this simplistic 



example, RMPL code can express numerous types of behavior including conditional 
branching, iteration, concurrent task accomplishment, and preemption. 

(do (parallel 
(whenever ( =  RArm.Mode stopped) 
donext (=  RArm.Mode rising)) 

(whenever ( =  LArm.Mode stopped) 
donext ( =  LArm.Mode rising))) 

watching (:or (=  LArmAtTop T) (= RArmAtTop T))) 

The formal semantics of RMPL has been defined in terms of Hierarchical Con- 
straint Automata (HCA) [2], where the nesting of automata directly corresponds to 
the nesting of RMPL constructs. For instance, Figure 3 has the HCA for our exam- 
ple, where the outer and two inner boxes respectively correspond to the do- 
watching and the two whenever-donext constructs. 

Maintain(LAAT=TIIRAAT=T) 
I 

RAM=stopped 1 - 4 4  RAM + rising 

I 
Fig 3. Hierarchical constraint automaton (HCA) for two rovers lifting a bar consist of four 
locations inside nested automata, where LAAT, RAAT, LAM, and RAM respectively denote 
LArmAtTop, RArmAtTop, LArm. M o d e ,  and R A r m .  M o d e .  

Unlike standard automata, multiple locations in an HCA can be marked. When 
marked a location stays marked until its target state (if any) has been reached. At 
which point the mark gets replicated zero or more times over arcs that have true con- 
ditions. For instance, the two left locations lack target states, but stay marked by 
virtue of the loop arcs. Whenever a robot arm stops, the appropriate arc is enabled 
and the arm’s target state becomes ‘rising’. This continues until the Maintain() fails 
and erases the entire automaton, reflecting the do- wat ching construct. 

In general, an HCA corresponds to a tree of parallel processes whose execution 
follows the algorithm below. As this algorithm shows, a location is a simple process 
that asserts a target state and exits upon reaching that state or being aborted from 
above. Higher level HCAs manage their child components and cannot be restarted 
until exiting. This algorithm differs from the one presented in [2] due to maintaining 
a more hierarchical agent focus, which facilitates subsequent distribution. Cycling 
through all of the processes on each state change and recording the exits at the end of 
a cycle to subsequently enable transitions on the next cycle would make the two be- 
come identical. This divergence was made to facilitate distributed execution of an 
HCA. 



Process Execute (HCA) 
I f  HCA is a location then 

Else 
Assert target state until target reached 

For each initial child component M 

Repeat 
Start Execute (M) 

Wait for a change to the local/team state 
If the Maintain() condition fails then 
Abort each active child component 

Else 
For each child component M that just exited 

If C holds and N is not executing then 
For each transition M A N  in HCA 

Start Execute (N) 
Until no more child components are executing 

Exit on end of cycle. 

3.2 Teamwork Extensions 

From a representational standpoint, team plans are similar to any other hierarchical 
plan. The only syntactic addition to turn a hierarchical plan into a team plan involves 
defining teams to perform activities and assigning roles to teammates. More pre- 
cisely, injecting teamwork modeling into an existing hierarchical plan execution sys- 
tem involves adding three features [4]: 

- generalization of activities to represent team activities with role assignments; 
- representation of team and/or sub-team states; and 
- restrictions to only let a teammate modify a team state. 

The key observation underlying the use of RMPL is how the language’s approach 
to defining a control program as an HCA naturally matches the approach to defining a 
team plan with a model of flexible teamwork. Team plans are hierarchically defined 
in terms of sub-plans and primitive actions, where each teammate is assigned a role 
consisting of a subset of the sub-plans and actions. Returning to the our example, the 
Maintain() is a team HCA with components that are local HCAs for each rover. Thus 
the right hand rover need only address the components of Figure 4, and the two rov- 
ers need only communicate to be consistent over the team’s Maintain() condition. 
The condition tells the rovers when to collectively abort their HCAs. In general, 
agents only need to communicate when a team level automaton changes its active 
components or some property of its Maintain() condition changes. Changes in a local 
HCA’s components can be hidden. 

As the example illustrates, all an RMPL programmer has to do to facilitate distrib- 
uted sequencing is associate state variables with teammates to determine local and 
team HCAs. He does not have to worry about synchronization issues across multiple 
agents. The underlying model of flexible teamwork will robustly manage these issues 
by keeping team state information consistent among the closely coordinated popula- 
tion of agents. 
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Fig 4. The right rover executes an HCA that ignores local information regarding the left rover. 

4. Distributed Mode Management 

By building off of the model-based device description language developed for DS-1’s 
Mode Identification & Recovery (MIR) executive [5] ,  we acquire a representation for 
explicitly defining the interrelationships between an agent team’s complete set of 
software and hardware components. This facilitates reasoning about how one com- 
ponent’s status affects others’ and ultimately sensor observations, which facilitates 
taking a set of observations and inferring the team’s status. While there are a number 
of constructs in the language, they all support defining a network of typed compo- 
nents. These component types are defined in terms of how a component’s modes 
define constraints among its port variables, and these constraints are encode using 
variable logic equations - Boolean equations where the literals are simply variable 
equality constraints. For instance, the following defines an extremely simplistic sys- 
tem with two components for its robot arms using the language defined in [6].  

(defvalues ArmCmd (raise lower none)) 
(defvalues bool (T  F)) 
(defcomponent Arm 
:ports ( (ArmCmd cmd) (bool stress) ) 
:modes ( (stalled) (stopped) (rising) (falling) ) 
:transitions 
( ( *  - >  rising (:and ( =  stress F) (=  cmd raise))) 
( *  - >  falling (:and (= stress F) (=  cmd lower))) 
( *  - >  stalled ( =  stress T ) )  
(stalled - >  stopped (=  stress F)))) 

(defsystem rovers 
:sensors ( (bool LArmAtTop) (bool LArmStress) 

: af fectors ( (ArmCmd LArmCmd) (ArmCmd MrmCmd) ) 
:structure 
( (Arm RArm (RArmCmd RArmStress) ) 

(bool RArmAtTop) (bool RArmStress) ) 

(Arm LArm (LArmCmd LArmStress))) ) 



Current model-based diagnosis techniques use some variant of truth maintenance 
[7], where components are translated into Boolean equations. In both cases the sys- 
tems require collecting all observations into a central place and then invoking heuris- 
tic algorithms to find the most probable mode that agrees with the observations. 
While some work has been done to distribute these systems, their underlying algo- 
rithms cannot support hard real-time guarantees by virtue of having to solve an NP- 
Complete problem for each collection of observations. While heuristics can make 
these algorithms fast on average, the point is that they cannot easily guarantee per- 
formance in all cases. 

Instead of trying to prove the problem dependent speed of heuristics, we will take 
an approach suggested by knowledge compilation research. This approach involves 
moving as much of the computation into the off board compilation phase as possible 
to simplify the onboard computation. Where previous systems take linear time to 
compile a model and then possibly exponential time to use the compilation to perform 
mode estimation, our approach takes possibly exponential time to compile a model 
into a decomposable negation normal form representation and then linear time to 
perform mode estimation with the equation. 

Definition 1: A variable logic equation is in DecomDosable Negation Normal Form 
(DNNF) if (1) it contains no negations and (2 )  the subexpressions under each con- 
junct refer to disjoint sets of variables. 

For instance, the two robot arm example compiles into a tree-like structure with 
two subtrees like Figures 6 and 7 for the two robot arms, and these subtrees are com- 
bined with an “and” node. In general, the compilation results look like Figure 5 with 
a substructure for each agent, and these substructures are combined in the team state. 

- 
local states 

Fig 5. The global structure of compiled model consists of substructures local to each team 
member that are connected through a structure in a shared team state. 

4.1 Mode Estimation 

Given that conjuncts have a disjoint branch variables property, the minimal cost of a 
satisfying variable assignment is just the cost of a variable assignment with single 
assignment equations, the minimum of the subexpression costs for a disjunct, and the 
sum of the subexpression costs for a conjunct. With this observation, finding the 
optimal satisfying variable assignments becomes a simple three-step process: 



1. associate costs with variable assignments in leaves; 
2. propagate node costs up through the tree by either assigning the min or sum of the 

descendents’ costs to an OR or AND node respectively; and 
3 .  if the root’s cost is 0, infinity, or some other value then respectively retnrn default 

assignments, failure, or descend from the root to determine and return the variable 
assignments that contribute to its cost. 

For instance, Figure 6 illustrates the process of determining that the right arm is 
stopped. First observing that RArmStress is false results in assigning values to the 
RArmStress leaves, and the mode and command leaves get costs related to the last 
known modes and commands. Second, costs are propagated to the tree root. Third, 
the root node’s cost of zero is used to drill down to find the lowest cost tree with the 
mode assignment (Le. RAM1=stopped). 

0 : [RArmCmdo=none] 

0 :  

inf : 
0 :  

0 :  

inf : 

0 :  

inf 

inf 

0 

inf 

0 :  

[RArmStresso=F] 

[RAMo=stopped] 

[RAM~=stopped] 

[RAMo=stalled] 

[RAMo=rising] 

[RAM l=rising] 

[RArmCm&=raise] 

[RAMo=falling] 

[RAM l=falling] 

RArmCm&=lower] 

[RAMode,=stalled] 

inf : [RArmStresso=T] 

Fig 6.  Utilizing local reasoning on its local and team model, the right-hand rover can deter- 
mine that it has transitioned to a stopped mode. 

Distributing the DNNF equations across a population is a simple matter of assign- 
ing sensors to agent and then assigning each node to an agent depending on the loca- 
tions of sensors that contribute to that node’s computation. If all contributers are on a 
single agent, then the node can be locally computed. Other nodes contribute to the 
team state. While all of the higher level nodes can be managed in the team state, it is 
more efficient to minimize the nodes in the team state. One way to reduce the num- 
ber of nodes is to exclude nodes whose costs can be computed from other nodes in 
the team state. This results in only including the leftmost nodes of Figure 5’s the 
team state structure. In any case, given the team state component of the structure, any 
agent can drill down to determine its local modes. 



4.2 Mode Reconfiguration 

It turns out that not only do components have modes to estimate, but they also accept 
commands to change modes to a target configuration once an estimate is determined. 
For instance, the simplistic robot arm model has four modes. In general, each com- 
ponent is modeled as a state machine that takes commands to transition between 
states and each state determines interactions among variables. In the example the 
robot arm can be commanded to rise or drop, but it stalls once arm stress is detected. 
This stalled mode subsequently puts the arm into a stopped mode once the stress is 
relieved. 

While DS-1’s MIR executive was able to perform real-time reconfiguration plan- 
ning with this approach to representing models, it required a modeler to conform to 
four requirements: only consider reversible control actions, unless the only effect is to 
repair failures; each control variable has an idling assignment that appears in no tran- 
sitions and each transition has a non-idling control condition; no set of control condi- 
tions for a transition is a proper subset of control conditions for another transition; 
and the components must be totally orderable such that the effects of one component 
has no impact on previous components. Alternative approaches based on universal 
planning [SI avoid these restrictions by taking a model and a target state and generat- 
ing a structure that is used to generate commands to reach the target state in real-time 
regardless of the current state. Unfortunately universal plans are restricted to deter- 
mine actions for reaching a single target state, but a robot will tend to have an evolv- 
ing target state as it performs its commands. Also, universal plans tend to grow rap- 
idly with system size. 

This system both avoids the DS-1 restrictions and the universal plan limitations by 
taking a user supplied parameter n and guaranteeing to find an optimal plan from the 
current state to a target state if such can be reached within n steps. This guarantee is 
facilitated by evaluating a universal(n) plan against the current configuration and 
target configuration [9]. 

Definition 2: A universal(n1 plan is a structure that can be evaluated in linear time to 
generate an optimal n level plan to reach any target configuration from any current 
configuration if such a plan exists. 

Universal(n) plans are more general than universal plans by virtue of their not be- 
ing tied down to a specific target configuration. They are more restricted than univer- 
sal plans by virtue of the n level requirement, where a level is any number of simulta- 
neous non-interacting actions. When increasing n, the universal(n) plan becomes less 
restrictive until reaching some model dependent value M - where there is a guarantee 
that target configuration can be reached from any configuration within M steps. In 
practice n is kept relatively small because universal(n) plans tend to grow rapidly 
with n. 

To provide an example, Figure 7 uses a DNNF equation to represent a universal( 1) 
plan for the two robot arm example. Just as in mode estimation, using the DNNF to 
determine the next command is a three-step process. First the current and target 
modes are used to assign costs to the RAMo and RAMl leaves respectively, and the 
RArmCm4 command leaves get user supplied command costs. Second, costs are 



propagated to the tree root. Third, the root node’s cost of 0 is used to drill down to 
find the actual command to perform. In this simplistic case the current right arm 
mode was stopped and, the target mode was rising, and the found command to pass to 
the right arm was raise. 

0 : [RArmCmdo=none] 

0 : [RArmStresso=F] 

0 : [RAMo=stopped] 

inf : [RAM1=stopped] 

inf : [RAMo=stalled] 

inf : [RAMo=rising] 

0 : [RAM1=rising] 

0 : [RArmCmd,,=raise] 

inf : [RAMo=falling] 

h f  : [RAM1=falling] 

0 :[RArmCmdo=lower] 

inf : [RAModel=stalled] 

inf : [RArmStresso=T] 

Fig 7. Utilizing local reasoning on its local and team model, the right-hand rover can determine 
how to make the arm rise. 

5. Related Work 

The closest related work on distributed sequencing comes from STEAM [4], 
MONAD [lo], and TPOT-RL [ 111. These two systems address teams of tightly co- 
ordinated agents that can fail, but they are based on rule-based approaches that lack 
system models to facilitate principled approaches to mode estimation and failure 
response. Work by Stolzenburg and Arai [ 121 takes a more model-based approach by 
using Statecharts to specify a multiagent system, but they focus on communication 
via events as opposed to maintaining team state information. Still, the constructs of 
RMPL can be defined in terms of compilation to Statechart fragments instead of 
HCAs to facilitate formal analysis. 

While others have made the leap to applying compilation techniques to both sim- 
plify and accelerate embedded computation to determine a system’s current mode of 
operation, they are more restricted than this system. First, DNNF equation creation 
and evaluation was initially developed in a diagnosis application [ 131, but the result- 
ing system restricted a component to only have one output and that there cannot be 
directed cycles between components. Our system makes neither of these restrictions. 
The Mimi-ME system [14] similarly avoided making these restrictions, but it can 
neither support distributed reasoning nor provide real-time guarantees by virtue of 



having to collect all information in one place and then solve an NP-complete prob- 
lem, called MIN-SAT, when converting observations into mode estimates. Our ap- 
proach both supports distribution and real-time guarantees. 

The closest related work on real-time reconfiguration planning comes from the 
Burton reconfiguration planner used on DS-1 [5] and other research on planning via 
symbolic model checking [15]. In the case of Burton our system improves on that 
work by relaxing a number of restricting assumptions. For instance, Burton required 
the absence of causal cycles, but our system has no problem with them. On the other 
hand, our system can only plan n steps ahead where Burton did not have that limita- 
tion. Similarly, the work using symbolic model checking lacked the n-step restric- 
tion, but it compiled out a universal plan for a particular target state. Our system uses 
the same compiled structure to determine how to reach any target state within n steps 
of the current state. 

Finally, distribute behavioral systems like CAMPOUT [ 161 solve similar prob- 
lems, but lack mechanisms for error handling. Such systems form a natural layer 
below the system presented here for teams with joint activities that are too tightly 
interacting to allow reasoning about mode management. 

6. Conclusions 

This paper presents a model-based executive for commanding teams of agents. It 
works by letting an operator define and command the team as a single entity with a 
single controlling CPU. A compiler then distributes the control functions guided by a 
specification assigning system components (sensors and actuators) to team members. 

As the example suggests, there are several ways to improve the system. From a 
representational perspective, the assignment of an agent to a role in a group activity is 
hardwired. For instance, there is no way to represent the possibility that LArm and 
Wrrn are interchangeable. The multi-agent community has explored multiple tech- 
niques for role assignment, but work needs to be done to include them in the team 
sequencer. 

Also, knowledge compilation approaches like those used in mode management are 
not perfect. While onboard computation has linear complexity, that complexity is in 
terms of compiled DNNF equation size. Some problems are inherently intractable 
and lead to equations that are exponentially larger than the source model, but in prac- 
tice that should never happen with engineered designs. Designs that result in inher- 
ently intractable mode estimation problems would be too uncontrollable to use in 
practice. As a rule of thumb, a system’s mode estimation difficulty rises with the 
number of unobserved component interactions. Thus the number of interactions 
increases the size of the DNNF equation, but the number of sensors decreases it. 
Since engineers currently simplify estimation difficulty by adding sensors to a design, 
DNNF compilation results can be used to guide sensor placement if desired. 

Finally, the system has only been tested in toy scenarios like this paper’s running 
example. The main evaluation metrics are the size of the DNNF equation generated 
by the compiler and the size of the computed team state. Initial experiments in toy 
domains as well as a domain for a formation flying interferometer [17] show that the 



size of the teamstate component of the DNNF equation depends on the complexity of 
the robot interactions and not on the complexity of the entire system. This bodes well 
for scaling issues. 
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