
A Model-Based Executive for Commanding Robot
Teams

Anthony Barrett

Jet Propulsion Laboratory, California Institute of Technology, M / S 126-347
4800 Oak Grove Drive, Pasadena, CA 91 109-8099 (USA)

anthony.barrettQjpl.nasa.gov

Abstract. The paper presents a way to robustly command a system of systems
as a single entity. Instead of modeling each component system in isolation and
then manually crafting interaction protocols, this approach starts with a model
of the collective population as a single system. By compiling the model into
separate elements for each component system and utilizing a teamwork model
for coordination, it circumvents the complexities of manually crafting robust in-
teraction protocols. The resulting systems are both globally responsive by vir-
tue of a team oriented interaction model and locally responsive by virtue of a
distributed approach to model-based fault detection, isolation, and recovery.

1 Introduction

Over the next decades NASA mission concepts are expected to involve growing
teams of tightly coordinated spacecraft in dynamic, partially understood environ-
ments. In order to maintain team coherence, each spacecraft must robustly respond to
global coordination anomalies as well as local events. Currently techniques for im-
plementing such teams are extremely difficult. They involve either having one
spacecraft tightly control the team or giving each spacecraft separate commands with
explicit communication actions to coordinate with others. While both approaches
can handle two or three simple spacecraft, neither scales well to larger populations or
more complex spacecraft. New techniques are needed to facilitate managing popula-
tions of three or more complex spacecraft.

Flexible teamwork is a technique developed in the multi-agent community for
teams of agents that achieve joint goals in the face of uncertainties arising from com-
plex dynamic domains that obstruct coherent teamwork. Flexible teamwork involves
giving the agents a shared team plan and a general model of teamwork. Agents ex-
ploit this model and team plan to autonomously reason about coordination and com-
munication, providing the requisite flexibility. While this framework has been im-
plemented in the context of real-world synthetic environments like robotic soccer and
helicopter-combat simulation, these systems take an ad hoc rule-based approach to-
ward failure diagnosis and response.

Our system takes a model-based approach toward representing teams and encoding
their group activities. As Figure 1 shows, a user models a team as if one member

tightly controls the others, but a compiler takes that model and distributes it across the
team to move all reasoning as close as possible to the components being reasoned
about. The result is a team with elements that are both locally and globally respon-
sive, without having a user explicitly reason about the distribution.

Fig 1. User models system assuming a central controller, and a compiler handles the underly-
ing distribution and coordination.

Defining the approach starts with an explanation of the system architecture that re-
sides on each component and how the components interact. Sections 3 and 4 then
discuss the team sequencing and distributed mode management aspects of the system
respectively. Section 5 subsequently discusses related work followed by conclusions
in section 6.

2 System Architecture

The system architecture involves three distinct distributed components: mode identi-
fier, mode reconfigurer, and team sequencer. As illustrated in Figure 2, the mode
identifier combines sensory information from the hardware with past commands from
the reconfigurer to determine the mode of the system. The mode reconfigurer in turn
takes the current state estimate with a target mode from the team sequencer to deter-
mine the next commands to pass to a robot’s hardware drivers. Finally, the team
sequencer procedurally controls the identifier-reconfigurer-driver feedback loop by
providing target states to the reconfigurer. At all times local mode identifiers main-
tain state knowledge, and sequencers react to this information by changing the target
state. While this system can take manually generated commands, it was initially
motivated as an executive that supports distributed autonomy via shared activities [l].

While this architecture has been explored for single agent systems using TITAN
[2] , it has yet to be cleanly extended to tightly coordinated teams. This work makes
the extension by developing distributed techniques for mode identification, mode
reconfiguration, and team sequencing. In each component the techniques motivated
replacing the underlying algorithms to provide the original capabilities while support-
ing distributed computation and hard real-time performance guarantees.

commands
I

updates

Fig 2. The component architecture of executive on each robotic element consists of three ele-
ments that current state information - some of which is identified as team state information and
has to be kept consistent among all robotic elements.

3 Team Sequencing

The distributed onboard sequencer is based both on the Reactive Model-based Pro-
gramming Language (RMPL) [3] and a model of flexible teamwork [4] developed
within the distributed artificial intelligence community. This teamwork is more than
a union of agents’ simultaneous execution of individual plans, even if such plans have
explicit coordination actions. Uncertainties often obstruct pre-planned coordination,
resulting in a corresponding breakdown in teamwork. Flexible teamwork involves
giving agents a shared team plan and a general model of teamwork. Agents then ex-
ploit this model and plan to autonomously handle coordination and communication,
providing the flexibility needed to overcome the emergence of unexpected interac-
tions caused either by slight timing delays or anomalies.

3.1 Procedural Control

RMPL elevates the level at which a control programmer thinks about a robotic sys-
tems. Instead of reasoning about sensors, actuators, and hardware, a RMPL pro-
grammer thinks in terms of commanding a system through a sequence of configura-
tion states. As such, a control program is written at a higher level of abstraction, by
asserting and checking states which may not be directly controllable or observable.

As an example of the rich types of behavior that an RMPL control programmer can
encode, consider the control program below for a simplistic approach toward getting
to rovers to jointly lift a bar. It performs the task by commanding the robot arms into
a rising mode whenever they are stopped, and then stopping when one of the robots
senses that its arm is at the top position. While only partially shown in this simplistic

example, RMPL code can express numerous types of behavior including conditional
branching, iteration, concurrent task accomplishment, and preemption.

(do (parallel
(whenever (= RArm.Mode stopped)
donext (= RArm.Mode rising))

(whenever (= LArm.Mode stopped)
donext (= LArm.Mode rising)))

watching (:or (= LArmAtTop T) (= RArmAtTop T)))

The formal semantics of RMPL has been defined in terms of Hierarchical Con-
straint Automata (HCA) [2], where the nesting of automata directly corresponds to
the nesting of RMPL constructs. For instance, Figure 3 has the HCA for our exam-
ple, where the outer and two inner boxes respectively correspond to the do-
watching and the two whenever-donext constructs.

Maintain(LAAT=TIIRAAT=T)
I

RAM=stopped 1 - 4 4 RAM + rising

I
Fig 3. Hierarchical constraint automaton (HCA) for two rovers lifting a bar consist of four
locations inside nested automata, where LAAT, RAAT, LAM, and RAM respectively denote
LArmAtTop, RArmAtTop, LArm. M o d e , and R A r m . M o d e .

Unlike standard automata, multiple locations in an HCA can be marked. When
marked a location stays marked until its target state (if any) has been reached. At
which point the mark gets replicated zero or more times over arcs that have true con-
ditions. For instance, the two left locations lack target states, but stay marked by
virtue of the loop arcs. Whenever a robot arm stops, the appropriate arc is enabled
and the arm’s target state becomes ‘rising’. This continues until the Maintain() fails
and erases the entire automaton, reflecting the do- wat ching construct.

In general, an HCA corresponds to a tree of parallel processes whose execution
follows the algorithm below. As this algorithm shows, a location is a simple process
that asserts a target state and exits upon reaching that state or being aborted from
above. Higher level HCAs manage their child components and cannot be restarted
until exiting. This algorithm differs from the one presented in [2] due to maintaining
a more hierarchical agent focus, which facilitates subsequent distribution. Cycling
through all of the processes on each state change and recording the exits at the end of
a cycle to subsequently enable transitions on the next cycle would make the two be-
come identical. This divergence was made to facilitate distributed execution of an
HCA.

Process Execute (HCA)
I f HCA is a location then

Else
Assert target state until target reached

For each initial child component M

Repeat
Start Execute (M)

Wait for a change to the local/team state
If the Maintain() condition fails then
Abort each active child component

Else
For each child component M that just exited

If C holds and N is not executing then
For each transition M A N in HCA

Start Execute (N)
Until no more child components are executing

Exit on end of cycle.

3.2 Teamwork Extensions

From a representational standpoint, team plans are similar to any other hierarchical
plan. The only syntactic addition to turn a hierarchical plan into a team plan involves
defining teams to perform activities and assigning roles to teammates. More pre-
cisely, injecting teamwork modeling into an existing hierarchical plan execution sys-
tem involves adding three features [4]:

- generalization of activities to represent team activities with role assignments;
- representation of team and/or sub-team states; and
- restrictions to only let a teammate modify a team state.

The key observation underlying the use of RMPL is how the language’s approach
to defining a control program as an HCA naturally matches the approach to defining a
team plan with a model of flexible teamwork. Team plans are hierarchically defined
in terms of sub-plans and primitive actions, where each teammate is assigned a role
consisting of a subset of the sub-plans and actions. Returning to the our example, the
Maintain() is a team HCA with components that are local HCAs for each rover. Thus
the right hand rover need only address the components of Figure 4, and the two rov-
ers need only communicate to be consistent over the team’s Maintain() condition.
The condition tells the rovers when to collectively abort their HCAs. In general,
agents only need to communicate when a team level automaton changes its active
components or some property of its Maintain() condition changes. Changes in a local
HCA’s components can be hidden.

As the example illustrates, all an RMPL programmer has to do to facilitate distrib-
uted sequencing is associate state variables with teammates to determine local and
team HCAs. He does not have to worry about synchronization issues across multiple
agents. The underlying model of flexible teamwork will robustly manage these issues
by keeping team state information consistent among the closely coordinated popula-
tion of agents.

Maintain(LAAT=T/ IRAAT=T) I
RAM + rising

I

Fig 4. The right rover executes an HCA that ignores local information regarding the left rover.

4. Distributed Mode Management

By building off of the model-based device description language developed for DS-1’s
Mode Identification & Recovery (MIR) executive [5] , we acquire a representation for
explicitly defining the interrelationships between an agent team’s complete set of
software and hardware components. This facilitates reasoning about how one com-
ponent’s status affects others’ and ultimately sensor observations, which facilitates
taking a set of observations and inferring the team’s status. While there are a number
of constructs in the language, they all support defining a network of typed compo-
nents. These component types are defined in terms of how a component’s modes
define constraints among its port variables, and these constraints are encode using
variable logic equations - Boolean equations where the literals are simply variable
equality constraints. For instance, the following defines an extremely simplistic sys-
tem with two components for its robot arms using the language defined in [6].

(defvalues ArmCmd (raise lower none))
(defvalues bool (T F))
(defcomponent Arm
:ports ((ArmCmd cmd) (bool stress))
:modes ((stalled) (stopped) (rising) (falling))
:transitions
((* - > rising (:and (= stress F) (= cmd raise)))
(* - > falling (:and (= stress F) (= cmd lower)))
(* - > stalled (= stress T))
(stalled - > stopped (= stress F))))

(defsystem rovers
:sensors ((bool LArmAtTop) (bool LArmStress)

: af fectors ((ArmCmd LArmCmd) (ArmCmd MrmCmd))
:structure
((Arm RArm (RArmCmd RArmStress))

(bool RArmAtTop) (bool RArmStress))

(Arm LArm (LArmCmd LArmStress))))

Current model-based diagnosis techniques use some variant of truth maintenance
[7], where components are translated into Boolean equations. In both cases the sys-
tems require collecting all observations into a central place and then invoking heuris-
tic algorithms to find the most probable mode that agrees with the observations.
While some work has been done to distribute these systems, their underlying algo-
rithms cannot support hard real-time guarantees by virtue of having to solve an NP-
Complete problem for each collection of observations. While heuristics can make
these algorithms fast on average, the point is that they cannot easily guarantee per-
formance in all cases.

Instead of trying to prove the problem dependent speed of heuristics, we will take
an approach suggested by knowledge compilation research. This approach involves
moving as much of the computation into the off board compilation phase as possible
to simplify the onboard computation. Where previous systems take linear time to
compile a model and then possibly exponential time to use the compilation to perform
mode estimation, our approach takes possibly exponential time to compile a model
into a decomposable negation normal form representation and then linear time to
perform mode estimation with the equation.

Definition 1: A variable logic equation is in DecomDosable Negation Normal Form
(DNNF) if (1) it contains no negations and (2) the subexpressions under each con-
junct refer to disjoint sets of variables.

For instance, the two robot arm example compiles into a tree-like structure with
two subtrees like Figures 6 and 7 for the two robot arms, and these subtrees are com-
bined with an “and” node. In general, the compilation results look like Figure 5 with
a substructure for each agent, and these substructures are combined in the team state.

-
local states

Fig 5. The global structure of compiled model consists of substructures local to each team
member that are connected through a structure in a shared team state.

4.1 Mode Estimation

Given that conjuncts have a disjoint branch variables property, the minimal cost of a
satisfying variable assignment is just the cost of a variable assignment with single
assignment equations, the minimum of the subexpression costs for a disjunct, and the
sum of the subexpression costs for a conjunct. With this observation, finding the
optimal satisfying variable assignments becomes a simple three-step process:

1. associate costs with variable assignments in leaves;
2. propagate node costs up through the tree by either assigning the min or sum of the

descendents’ costs to an OR or AND node respectively; and
3 . if the root’s cost is 0, infinity, or some other value then respectively retnrn default

assignments, failure, or descend from the root to determine and return the variable
assignments that contribute to its cost.

For instance, Figure 6 illustrates the process of determining that the right arm is
stopped. First observing that RArmStress is false results in assigning values to the
RArmStress leaves, and the mode and command leaves get costs related to the last
known modes and commands. Second, costs are propagated to the tree root. Third,
the root node’s cost of zero is used to drill down to find the lowest cost tree with the
mode assignment (Le. RAM1=stopped).

0 : [RArmCmdo=none]

0 :

inf :
0 :

0 :

inf :

0 :

inf

inf

0

inf

0 :

[RArmStresso=F]

[RAMo=stopped]

[RAM~=stopped]

[RAMo=stalled]

[RAMo=rising]

[RAM l=rising]

[RArmCm&=raise]

[RAMo=falling]

[RAM l=falling]

RArmCm&=lower]

[RAMode,=stalled]

inf : [RArmStresso=T]

Fig 6. Utilizing local reasoning on its local and team model, the right-hand rover can deter-
mine that it has transitioned to a stopped mode.

Distributing the DNNF equations across a population is a simple matter of assign-
ing sensors to agent and then assigning each node to an agent depending on the loca-
tions of sensors that contribute to that node’s computation. If all contributers are on a
single agent, then the node can be locally computed. Other nodes contribute to the
team state. While all of the higher level nodes can be managed in the team state, it is
more efficient to minimize the nodes in the team state. One way to reduce the num-
ber of nodes is to exclude nodes whose costs can be computed from other nodes in
the team state. This results in only including the leftmost nodes of Figure 5’s the
team state structure. In any case, given the team state component of the structure, any
agent can drill down to determine its local modes.

4.2 Mode Reconfiguration

It turns out that not only do components have modes to estimate, but they also accept
commands to change modes to a target configuration once an estimate is determined.
For instance, the simplistic robot arm model has four modes. In general, each com-
ponent is modeled as a state machine that takes commands to transition between
states and each state determines interactions among variables. In the example the
robot arm can be commanded to rise or drop, but it stalls once arm stress is detected.
This stalled mode subsequently puts the arm into a stopped mode once the stress is
relieved.

While DS-1’s MIR executive was able to perform real-time reconfiguration plan-
ning with this approach to representing models, it required a modeler to conform to
four requirements: only consider reversible control actions, unless the only effect is to
repair failures; each control variable has an idling assignment that appears in no tran-
sitions and each transition has a non-idling control condition; no set of control condi-
tions for a transition is a proper subset of control conditions for another transition;
and the components must be totally orderable such that the effects of one component
has no impact on previous components. Alternative approaches based on universal
planning [SI avoid these restrictions by taking a model and a target state and generat-
ing a structure that is used to generate commands to reach the target state in real-time
regardless of the current state. Unfortunately universal plans are restricted to deter-
mine actions for reaching a single target state, but a robot will tend to have an evolv-
ing target state as it performs its commands. Also, universal plans tend to grow rap-
idly with system size.

This system both avoids the DS-1 restrictions and the universal plan limitations by
taking a user supplied parameter n and guaranteeing to find an optimal plan from the
current state to a target state if such can be reached within n steps. This guarantee is
facilitated by evaluating a universal(n) plan against the current configuration and
target configuration [9].

Definition 2: A universal(n1 plan is a structure that can be evaluated in linear time to
generate an optimal n level plan to reach any target configuration from any current
configuration if such a plan exists.

Universal(n) plans are more general than universal plans by virtue of their not be-
ing tied down to a specific target configuration. They are more restricted than univer-
sal plans by virtue of the n level requirement, where a level is any number of simulta-
neous non-interacting actions. When increasing n, the universal(n) plan becomes less
restrictive until reaching some model dependent value M - where there is a guarantee
that target configuration can be reached from any configuration within M steps. In
practice n is kept relatively small because universal(n) plans tend to grow rapidly
with n.

To provide an example, Figure 7 uses a DNNF equation to represent a universal(1)
plan for the two robot arm example. Just as in mode estimation, using the DNNF to
determine the next command is a three-step process. First the current and target
modes are used to assign costs to the RAMo and RAMl leaves respectively, and the
RArmCm4 command leaves get user supplied command costs. Second, costs are

propagated to the tree root. Third, the root node’s cost of 0 is used to drill down to
find the actual command to perform. In this simplistic case the current right arm
mode was stopped and, the target mode was rising, and the found command to pass to
the right arm was raise.

0 : [RArmCmdo=none]

0 : [RArmStresso=F]

0 : [RAMo=stopped]

inf : [RAM1=stopped]

inf : [RAMo=stalled]

inf : [RAMo=rising]

0 : [RAM1=rising]

0 : [RArmCmd,,=raise]

inf : [RAMo=falling]

h f : [RAM1=falling]

0 :[RArmCmdo=lower]

inf : [RAModel=stalled]

inf : [RArmStresso=T]

Fig 7. Utilizing local reasoning on its local and team model, the right-hand rover can determine
how to make the arm rise.

5. Related Work

The closest related work on distributed sequencing comes from STEAM [4],
MONAD [lo], and TPOT-RL [111. These two systems address teams of tightly co-
ordinated agents that can fail, but they are based on rule-based approaches that lack
system models to facilitate principled approaches to mode estimation and failure
response. Work by Stolzenburg and Arai [121 takes a more model-based approach by
using Statecharts to specify a multiagent system, but they focus on communication
via events as opposed to maintaining team state information. Still, the constructs of
RMPL can be defined in terms of compilation to Statechart fragments instead of
HCAs to facilitate formal analysis.

While others have made the leap to applying compilation techniques to both sim-
plify and accelerate embedded computation to determine a system’s current mode of
operation, they are more restricted than this system. First, DNNF equation creation
and evaluation was initially developed in a diagnosis application [131, but the result-
ing system restricted a component to only have one output and that there cannot be
directed cycles between components. Our system makes neither of these restrictions.
The Mimi-ME system [14] similarly avoided making these restrictions, but it can
neither support distributed reasoning nor provide real-time guarantees by virtue of

having to collect all information in one place and then solve an NP-complete prob-
lem, called MIN-SAT, when converting observations into mode estimates. Our ap-
proach both supports distribution and real-time guarantees.

The closest related work on real-time reconfiguration planning comes from the
Burton reconfiguration planner used on DS-1 [5] and other research on planning via
symbolic model checking [15]. In the case of Burton our system improves on that
work by relaxing a number of restricting assumptions. For instance, Burton required
the absence of causal cycles, but our system has no problem with them. On the other
hand, our system can only plan n steps ahead where Burton did not have that limita-
tion. Similarly, the work using symbolic model checking lacked the n-step restric-
tion, but it compiled out a universal plan for a particular target state. Our system uses
the same compiled structure to determine how to reach any target state within n steps
of the current state.

Finally, distribute behavioral systems like CAMPOUT [161 solve similar prob-
lems, but lack mechanisms for error handling. Such systems form a natural layer
below the system presented here for teams with joint activities that are too tightly
interacting to allow reasoning about mode management.

6. Conclusions

This paper presents a model-based executive for commanding teams of agents. It
works by letting an operator define and command the team as a single entity with a
single controlling CPU. A compiler then distributes the control functions guided by a
specification assigning system components (sensors and actuators) to team members.

As the example suggests, there are several ways to improve the system. From a
representational perspective, the assignment of an agent to a role in a group activity is
hardwired. For instance, there is no way to represent the possibility that LArm and
Wrrn are interchangeable. The multi-agent community has explored multiple tech-
niques for role assignment, but work needs to be done to include them in the team
sequencer.

Also, knowledge compilation approaches like those used in mode management are
not perfect. While onboard computation has linear complexity, that complexity is in
terms of compiled DNNF equation size. Some problems are inherently intractable
and lead to equations that are exponentially larger than the source model, but in prac-
tice that should never happen with engineered designs. Designs that result in inher-
ently intractable mode estimation problems would be too uncontrollable to use in
practice. As a rule of thumb, a system’s mode estimation difficulty rises with the
number of unobserved component interactions. Thus the number of interactions
increases the size of the DNNF equation, but the number of sensors decreases it.
Since engineers currently simplify estimation difficulty by adding sensors to a design,
DNNF compilation results can be used to guide sensor placement if desired.

Finally, the system has only been tested in toy scenarios like this paper’s running
example. The main evaluation metrics are the size of the DNNF equation generated
by the compiler and the size of the computed team state. Initial experiments in toy
domains as well as a domain for a formation flying interferometer [17] show that the

size of the teamstate component of the DNNF equation depends on the complexity of
the robot interactions and not on the complexity of the entire system. This bodes well
for scaling issues.

Acknowledgements

This work was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administra-
tion. The author would also like to thank Alan Oursland, Seung Chung, Adnan Dar-
wiche, Milind Tambe, Daniel Dvorak, and Mitch Ingham for discussions contributing
to this effort

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10

Clement, B., Barrett, A.: “Continual Coordination through Shared Activities.” In
Proceedings of the Second International Conference on Autonomous Agents and
Multi-Agent Systems, 2003.
Ingham, M., Ragno, R., and Williams, B. C.: “A Reactive Model-based Pro-
gramming Language for Robotic Space Explorers.” In Proceeding ofthe Interna-
tional Symposium on ArtiJcial Intelligence, Robotics and Automation in Space,
June 2001.
Williams, B. C., Chung, S., and Gupta, V.: “Mode Estimation of Model-based
Programs: Monitoring Systems with Complex Behavior.” In Proceedings of the
Seventeenth International Joint Conference on Artzjkial Intelligence. August
200 1.
Tambe, M., “Towards Flexible Teamwork.” In Journal of Artificial Intelligence
Research, Volume 7. 1997
Williams, B. C., Nayak, P. “A Model-based Approach to Reactive Self-
Configuring Systems.” In Proceedings of the Thirteenth National Conference on
Artijkial Intelligence. August 1996.
Barrett, A. “Model Compilation for Real-Time Planning and Diagnosis with
Feedback.” In Prodeedings of the Nineteenth Interantional Joint Conference on
Arti$cial Intelligence. July 2005
Nayak, P., Williams, B. C. “Fast Context Switching in Real-time Propositional
Reasoning,” In Proceedings of the Fourteenth National Conference on Artijkial
Intelligence, July 1997.
Schoppers, M. “The use of dynamics in an intelligent controller for a space far-
ing rescue robot.” Artijkial Intelligence 73:175-230. 1995.
Barrett, A. “Domain Compilation for Embedded Real-Time Planning.” In Pro-
ceedings of the Fourteenth International Conference on Automated Planning &
Scheduling, June 2004.
Vu, T., Go, J., Kaminka, G., Veloso, M., Browning, B. “MONAD: A Flexible
Architecture for Multi-Agent Control.” In Proceedings of the Second Interna-

tional Joint Conference on Autonomous Agents and Multi-Agent Systems. July
2003.

11. Stone, P. Layered Learning in Multi-Agent Systems: A Winning Approach to
Robotic Soccer, MIT Press, Cambridge, MA 1998.

12. Stolzenburg, F., Arai, T. “From the Specificatio of Multiagent Systems by State-
charts to Their Formal Analysis by Model Checking: Towards Safety-Critical
Applications.” In: Schillo, M. et al. (Eds.): MATES 2003, Lecture Notes in Com-
puter Science, Vol. 283 1. Springer-Verlag Berlin Heidelberg (2003). 13 1-143.

13. Danviche, A. “Compiling Devices: A Structure-Based Approach,” In Proceed-
ings of the Sixth International Conference on Knowledge Representation and
Reasoning m). June 1998.

14. @hung, S., Van Eepoel, J., Williams, E. C. “Improving Model-based Mode Esti-
mation through Offline Compilation,” In Proceedings of the International Sym-
posium on Art$cial Intelligence, Robotics and Automation in Space, June 2001.

15. Cimatti, A., Roveri, M. “Conformant Planning via Model Checking.” In: Bi-
unido, S., Fox, M. (eds.): Recent Advances in AI Planning, 5“ European Confer-
ence on Planning. Lecture Notes in Computer Science, Vol. 1809. Springer-
Verlag, Berlin Heidelberg (2000). 21-34.

16. Pirjanian, P., Huntsberger, T., Barrett, A. “Representing and Executing Plan
Sequences for Distributed Multi-Agent Systems.” In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Novem-
ber 200 1.

17. Chung, S., Barrett, A. “Distributed Real-time Model-based Diagnosis.” In Pro-
ceedings of the 2003 IEEE Aerospace Conference, March 2003.

